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Abstract. We present PICP4, a new algorithm for tackling constrained
continuous multi-objective problems. The algorithm combines constraint
propagation techniques and evolutionary concepts. Unlike other evolu-
tionary algorithm which gives only heuristic solutions, PICP4 is able to
bound effectively the Pareto optimal front as well as to produce accurate
approximate solutions.

1 Introduction

The multi-objective combinatorial optimization problems aim to model real
world problems that involve many criteria and constraints. In this context, the
optimum solution searched is not a single value but a set of good compromises
or “trade-offs” that all satisfy the constraints.

A constrained continuous multi-objective problem (CCMO) can be defined
as follows:

min  f;(7T) i=1,..0
CeMO{ st.  Co(F)>0 l=1...m
T e R"

where n is the number of variables, 7 is a decision vector, o the number of
objectives and m the number of constraints of the problem.

Over the past few years, many researchers developed some evolutionary algo-
rithms which tackle multi-objective optimization problems. They demonstrated
the advantage in using population-based search methods [11,9,17,10, 20, 19, 3].

Unfortunately, when the constraints become difficult to satisfy, or when the
feasible objective space is not connected, multi-objective evolutionary algorithms
hardly converge to the whole Pareto optimal front. Furthermore, these algo-
rithms don’t give any bounds of the Pareto optimal front.

In this paper, we present PICP4, the “Population and Interval Constraint
Propagation Algorithm” which is able to produce high quality approximate solu-
tions while giving guaranteed bounds for the Pareto optimal front. These bounds
allow us to know if the solutions found are close to or far away from the opti-
mal front. PICPA combines “Interval Constraint Propagation” (ICP) techniques



[2,4] with evolutionary concepts (population and Pareto selection process). Ex-
perimental evaluations of PICPA on some well known test problems show its
effectiveness.

The paper is organized as follows: in the next section we briefly introduce the
general principles of the ICP techniques. Then we present our PICP4 algorithm
in Section 3. Experimental results are the subject of the Section 4. Finally,
conclusions and perspectives are given in the last section.

2 Interval Constraint Propagation

In this section, we explain briefly the basic idea of Interval Constraint Propaga-
tion (ICP). ICP combines interval computation [15] and constraint propagation
[13] in order to solve non linear systems of equations and inequations. ICP algo-
rithms have been first presented by Cleary [2] and Davis [4].

2.1 Interval representation of variables and constraints

Each variable of the problem is represented by an interval, and is linked to other
variables by constraints. Let us consider two variables = and y, and assume that
they belong to some prior feasible value domains:

yely ,ytl= [—_&9]

Let us consider now the constraint: y = z3. Because of its definition, we can
consider the cubic constraint as a subset of R?:

cubic = {(z,y) € R? | y = 2°}

The cubic constraint is a binary constraint since it takes into account two vari-
ables x and y. In our example, the cubic constraint can be used to remove some
inconsistent values in the domain of y. Indeed we see that: Vo € [-2,2], a3 <8.
Therefore , all the values of the domain of y that are greater than 8 can be safely
removed (cf. the hatched area of figure 1).

In a more formal way, the cubic constraint allows us to contract the domain
of z and y thanks to the following projection operator:

where /[y, y"] = [{/y~, V/yT]
and  [z7,2%]? =[(27)% (a%)’]
More generally, for each primitive constraint, there is a projecting procedure al-

lowing to contract each variable domain. For more information about these pro-
jection procedure, the reader is invited to consult a textbook, for example [12].



Fig. 1. Sample of the projection of the cubic constraint.

2.2 To reach a fix point

For a given set of constraints, an iterative application of the corresponding pro-
jection procedures over the constraints will lead to a state where no variable
domain can be further reduced. That is, a fix point is reached. Notice that such
a fix point doesn’t constitute a solution because the variables are not instanced
yet. To get a solution, other techniques have to be jointly applied.

In constraint programming, many algorithms for reaching fix points have
been developed. We can mention various local (arc) consistency algorithms for
discrete problems [13, 14], and ICP algorithms for continuous problems [1].

By considering a projection procedure as a local consistency procedure, it can
be incorporated in a fix point algorithm. Thus efficient contracting algorithms
were developed for the continuous constrained problems.

2.3 Discussion

An ICP algorithm is a polynomial time procedure which reduces the domains of
the variables of the problem. This kind of algorithm reduces the search space by
removing inconsistent values of the variables. It does not delete any solution of
the problem. However, such an application of ICP leads only to an approximation
of the solution. In order to increase the precision of the approximation, one may
bisect any variable domain and apply ICP to the two different alternatives. If we
iterate this process, we increase the precision but we get an exponential number
of bisections, and so a huge resolution time. In practice, this approach is not
usable for problems with a high number of variables.

In constrained multi-objective problems, we have to satisfy constraints but
also to minimize (maximize) some objective functions. So, even with a small
number of variables and objectives, the problem cannot be processed simply
with a classical bisection algorithm.



3 Population and Interval Constraint Propagation
Algorithm (PICP4)

The concept of population is very suitable in a multi-objectives context. Indeed,
as the Pareto optimal front is most of the time a set of solutions, each individ-
ual of the population can hopefully become a particular solution of the Pareto
optimal front. As a result, the whole population will be an approximation of the
targeted Pareto optimal front.

Many population-based multi-objective optimization algorithms have thus
been developed. We can mention, among others, ¥SGA4[17], SPEA[20], ¥0S4[19],
MOTS[10], M-PAES|3].

In this section, we present the PICP4 algorithm which combines interval
constraint propagation with a population.

3.1 A new dominance relation definition

PICPA uses a new dominance relation: the Point with Set dominance (PS-
dominance). Let us recall first the classical dominance relation between two
points:

Definition 1 (Dominance). Let us consider a minimization problem. For any
two vectors T and 7 :

T equals 7, iff Vi € {1,2,...,n} : ;i =y;

T dominates 7, iff Vi€ {1,2,...,n} : z; <y, and Ij € {1,2,...,k} : z; <y;

T is dominated by 7, iff Vi € {1,2,..,n} : x; > y; and Jj € {1,2,...,n} :
Zj > Yj

T is non dominated by 7, and 7 is non dominated by T otherwise

We can now introduce the Point with Set Dominance definition:

Definition 2 (PS-Dominance). For any vector T and any vector set {7y},
{7} > 0:

T PS-equals {7}, iff VT € {¥} : T equals ¥

T PS-dominates {7}, iff VT € {7} : T dominates 7

T is PS-dominated by {7}, iff V7 € {T} : T is dominated by ¥

T is PS-non-dominated by {77}, otherwise

The time complexity of the PS-Dominance is in O(n x [{7'}|) as we have to
test T with each element of {7}

Afterwards, we use [y] to denote any interval of R and m to denote any
interval vector of R". Furthermore, an interval vector of R™ may be also called
a box of R™. So, we can use the PS-Dominance relation between any decision
vector T of R™ and any box m of R" (see figure 2). In this case, the time
complexity of the PS-Dominance is in O(n). Indeed, we only need to test the
dominance between 7T and the point located at the bottom left corner of m

Let us consider a box m of R? and 7 a point of R?. In a minimization
problem, we may have the examples given at Figure 2.
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Fig. 2. Samples of some PS-Dominance cases.

3.2 Representation of the search and objective space

In most of the population-based algorithms, an individual or configuration of the
population is a decision vector, each variable of which being given a single value.
Under this representation, each individual corresponds to a particular point in
the objective space.

In our approach, each individual is also a vector, but each variable is now
represented by an interval instead of a single value. Consequently, each individ-
ual of the population corresponds now to a box m of R° (o is the number of
objectives of the problem) in the objective space.

Consider a problem with two variables x1, 2 and two objectives fi1, fo. A
population of three individuals might be represented as in Figure 3.

In this representation, we consider that the whole population gives a sub-
paving (i.e. union of non-overlapping boxes) of R°. As a consequence, the match-
ing boxes of R™ may overlap (see figure 3).

3.3 Pareto selection of boxes

Consider a set of individuals represented as introduced in Section 3.2. We ensure
that all the feasible configurations are contained in the sub-paving described by
the population. As a consequence, the Pareto optimal front is also enclosed by
the population.

In order to remove the individuals which do not contain any solution of the
Pareto optimal set, we apply the following Pareto selection procedure:

1. Try to instantiate all the individuals of the population with bounded local
search effort.



T2 fo
\\ —~3
/___>
i
Search space xl Objective space h

Fig. 3. Sample of the representation with intervals.

2. Apply the PS-Dominance relation 3.1 to remove the individuals which are
dominated by another instantiated individual.

At this stage, we get a reduced population of individuals, and we ensure that

the union of these boxes (or individuals) contains the whole Pareto optimal set.
— . - .

We give now some elements of the proof: let { f } be the feasible objective
space, ¥ a point of the Pareto optimal front and [Z] a box that contains 7/:

therefore, AT € {7} and 7 dominates 7/
so, A7 € {f} and T PS-dominates m

As a result, m cannot be PS-Dominated and won’t be removed from the popu-
lation.

Figure 4 shows an example of a Pareto selection process with the PS-Dominance
relation. We see that the hatched boxes can be safely removed because they are
PS-Dominated by some feasible points of the objective space.

3.4 The PICP4 algorithm

PICPA combines an ICP process (see Section 2) with a Pareto interval selection
(see Section 3.3) into a single algorithm.

PICPA uses a population of variable size whose maximum is a parameter
to be fixed. PICP4 starts with a single individual m where each variable x; is
initialized with its interval (value domain). We suppose that each variable is
locally consistent. If this is not the case, a first ICP process may be applied to
reach a fix point. Clearly this individual corresponds to a box of IR°.

Let m be this box. Take an objective f; and bisect its value interval [f;].
Such a bisection triggers two applications of the ICP process to contract variable
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Fig. 4. A Pareto selection sample.

intervals on the individual m, leading to two new individuals [?’] and [:v—”] These
individuals replace the parent individual. These two individuals are composed of
reduced intervals and correspond thus to two reduced boxes [T'] and [f—”]> of R°.
This “bisection-contraction” process continues until the number of individuals in
the population reaches its allowed maximum. Notice that if any variable domain
is reduced to the empty set by the ICP process, the underlying individual will
be not inserted into the population.

Once the population reached its full size, an instantiation process will try to
create a complete feasible instantiation for each m That is, a particular value
of the interval will be searched for each individual which satisfies the problem
constraints. Since this stage may require a huge processing time, PICPA uses
a search effort parameter as a stop criterion to stop the instantiation process.
Thus, after this stage, some individuals will be completely instantiated, leading
to a real vector @ while others remain uninstantiated. Notice that the result of
this instantiation is recorded in a separate data structure and the individuals in
the current population will not be altered.

At this point, we execute a Pareto selection mechanism (cf. section 3.3) to
eliminate dominated individuals from the population. Since the population is
reduced, we start again the above “bisection-contraction” process to extend the
population to its maximal size.

The PICPA algorithm stops if one of the following cases occurs:

1. an empty population is encountered, in this case, the problem is proved to
be infeasible, consequently has no solution;

2. the Pareto selection process cannot remove any individuals from the popula-
tion. In this case, the individuals of the population constitute the bounds of
the problem. The individuals which are successfully instantiated (recorded
in a separate structure) give an approximate solution of the Pareto optimal
set.

The skeleton of the PICP4 is shown in algorithm 1.



e Initialize the population with a single locally consistent individual
e While 0 < |Population| < MazPopulationSize do
e While 0 < |Population| < MaxPopulationSize do
1. Select an individual (parent) and bisect it according to one objective,
leading to two distinct individuals (children)
2. Contract the children
3. Update the population:
(a) Remove the father
(b) Add the locally consistent children
EndWhile
e Potential instantiation of each individual
e PS-Dominance selection process
EndWhile

Algorithm 1: Skeleton of the PICP4 algorithm .

As we see on algorithm 1, only two parameters (size of population and search
effort) are required by PICPA.

PICPA has several advantages compared to other population-based algo-
rithms. Firstly, it requires a small number of parameters. Secondly, it can some-
times answer “No” when the problem is infeasible. Thirdly, it gives in a single
run bounds and an approximation of the Pareto optimal front.

3.5 Discussion

PICPA ensures that the Pareto optimal front will be enclosed in the returned
population. As PICPA mainly bisects in the objective space, it is not very sensi-
tive to the increase of the number of variables. The originalities of PICP4 are:

1. to bound the number of bisections thanks to the population size
2. to bisect mainly in the objectives space
3. to apply a Pareto selection in order to converge to the Pareto optimal front

The computational effort of PICPA can be tuned thanks to the population
size parameter. Indeed, larger population sizes lead to higher solution precisions.
It is true that increasing the population size will increase the computing time.
But this gives us a guaranteed way to get better approximation of the Pareto
optimal front.

4 Experimental results

This section gives experimental results of PICPA on some famous test prob-
lems. Given the deterministic nature of PICP4, the quality of solutions of PICPA
can be directly assessed with respect to the final bounds found. To show its
practical performance however, we contrast the results of PICPA with those of



NSGA-IIc|7]!. Notice that the version of the ¥S6A-IIc algorithm used here gives
better results than those given in [7]. For these test experiments, the following
parameter settings are used:

— for NSGA-IIc,we used the settings given in [8], i.e. simulated binary crossover
[6] with n. = 20 and the polynomial mutation operator with n,, = 20. A
crossover probability of 0.9 and a mutation probability of 0.15 are chosen.
The population size and the maximum number of generation were set ac-
cording to the problem difficulty.

— for PICP4, we set the population size to 1000 and the search effort to 0.2.

Notice that these settings lead to very close computing time for the two
algorithms, ranging from some few seconds to about three minutes according
to the test problems. For each test problem, ¥S64-IIc was run ten times and
the best run was taken for our comparisons. As PICP4 doesn’t use any random
value, only one run is required to get the result.

4.1 The Tanaka test problem

We first used a test problem introduced by Tanaka [18]:

Minimize fi(z) =2
Minimize fa(7) =
(r) =z

2
TNK ¢ s.t. e (x 2+ 23 —1—0.1cos(16 arctan(Z

7)) =0
(z1 — 0.5)% + (22 — 0.5)2 < 0.5
[

and x1,To €

In this problem, the feasible objective space is the same as the feasible deci-
sion variable space. In the TNK experiments, we used a population of size 150
and a maximum generation of 500 for #$64-ITIc. The optimal Pareto set as well
as the bounds given by PICPA are presented in figure 5(a). Figure 5(b) shows
the return set given by PICP4 and NSGA-IIc.

From these figures, we notice that 1) the bounds of PICPA match almost
perfectly the Pareto optimal front and 2) PICP4 and NSGA-IIc give very similar
solutions.

4.2 The Osyczka and Kundu test problem

For our second experiment, we chose a six variables test problem presented by
Osyczka and Kundu [16]:

I downloadable at: http://wuw.iitk.ac.in/kangal/soft.htm
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Fig. 5. Simulation results on TNK.

Minimize  fi(z) = —(25(z1 — 2)% + (22 — 2)? + (23 — 1)? + (24 — 4)*+
(25 — 1)?)
a:%—i—m%—i—mg—i—mi—i—mg—i—x%
T1+2x9—22>0
6 — Tr1 — T2 Z 0
2 — T2 + X1 Z 0
2 — xr1 + 3932 Z 0
= —(3?3—3)2—1‘420
co(z) = (25 —3)2 + 26 —4>0
and 21,2, e € [0..10]
x3,25, € [1..5]
x4, € [0..6]

Minimize fa(x
s.t. ci1(x

OSYy

Like in the TNK experiment (see Section 4.1), we set a population size of
150 and a maximum generation of 500 for ¥SGA-IIc.

From figure 6(a), we observe that the bounds of PICPA are globally very close
to the optimal front, with exceptions for some areas. These larger areas are due
to the great percent of additive constraints. Figure 6(b) shows that the quality
of the two non dominated sets found by PICP4 and NSGA-IIc are very close,
even if some points found by ¥S64-ITc dominate some of PICPA. But we notice
that on this problem, different runs of ¥SG4-IIc give mixed results.
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Fig. 6. Simulation results on OSY.

4.3 Constrained Test Problems (CTP)

For the last experiments, we used two test problems presented in [8] and [5].
As these problems are tunable, we use a functional g() which is a Rastrigin’s
function-base:

Minimize

fi(z) =21
Minimize  fa(x) = g(x) — fi(=)
s.t. g(x) =4

1+ 23 — 10 cos(4mz2) + 23 — 10 cos(4mz3)+
CTP

x7 — 10 cos(4mzy) + x2 — 10 cos(4mas)

Ci(x) = cos(0)(f2(x) — e) —sin(0) f1(z) >

al sin(br (sin(0)(f2(x) — e) + cos(0) f1(x))°)|*
and x1 € [0..1]
Tii>1, € [*55]

For the following experiments, we set a population of size 300 and a maximum

generation of 1000 for ¥SGA-IIc. The PICP4 parameters remain the same as in
the previous sections.

CTP7 The parameter values used to get CTP7 are as follows:

#=-0.057, a=40, b=5 c=1, d=6,
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Fig. 7. Simulation results on CTP7.

The feasible search space, the corresponding disconnected Pareto optimal regions
and the PICP4 bounds are shown in figure 7(a).

Figure 7(a) shows the bounds found by PICPA, which are very tight with
respect to the Pareto optimal front. On this more difficult test problem, the
contraction procedures used by PICP4 proved to be very useful. In figure 7(b),
we see that PICP4 and NSGA-IIc have comparable results.

CTP8 CTP8 is composed of many disconnected feasible regions. In CTPS,
unlike CTP7, we have two constraints. Here are the parameters used to generate
these constraints:

Ci :0=01r, a=40, b=05, c=1, d=2, e=-2

Cy : 0=-0.057r, a=40, b=2, c¢c=1, d=6, e=0

Figure 8(a) shows the feasible search space, the corresponding disconnected
Pareto optimal regions and the PICPA bounds. Figure 8(b) shows the solution
sets by NSGA-IIc and PICPA.

From figure 8(a), we see once again that the PICP4 bounds are very precise.
For this problem, which is the most difficult problem tested here, ¥S64-IIc and
PICP4 found some solutions on the most of disconnected Pareto optimal regions.
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Fig. 8. Simulation results on CTP8.

5 Conclusions

In this paper, we presented PICP4, a new algorithm to solve continuous con-
strained multi-objective problems. PICP4 combines interval constraint propa-
gation with evolutionary concepts (population and selection). This algorithm
has the desirable property of bounding the Pareto optimal front. Experimental
evaluation of PICPA on some well-known test problems show its practical effi-
ciency to find high quality approximation solutions and very tight bounds of the
Pareto optimal front. Also, a new dominance relation called PS-Dominance was
proposed which allows to compare a point to a set of points. We think this work
fills in a gap of existing population-based methods. PICPA strongly depends on
the efficiency of the projection and on instantiation procedures. Currently, we
are investigating these two issues.
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