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Abstract

The Maximum Diversity Problem (MDP) consists in selecting a subset of m el-
ements from a given set of n elements (n > m) in such a way that the sum of
the pairwise distances between the m chosen elements is maximized. We present
a hybrid metaheuristic algorithm (denoted by MAMDP) for MDP. The algorithm
uses a dedicated crossover operator to generate new solutions and a constrained
neighborhood tabu search procedure for local optimization. MAMDP applies also
a distance-and-quality based replacement strategy to maintain population diver-
sity. Extensive evaluations on a large set of 120 benchmark instances show that
the proposed approach competes very favorably with the current state-of-art meth-
ods for MDP. In particular, it consistently and easily attains all the best known
lower bounds and yields improved lower bounds for 6 large MDP instances. The
key components of MAMDP are analyzed to shed light on their influence on the
performance of the algorithm.
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1 Introduction

Let N = {s1, s2, ..., sn} be a set of elements and dij be the distance between
elements si and sj (dij=dji), with dij > 0 if i 6= j and dij = 0 otherwise. The
Maximum Diversity Problem (MDP for short) consists in selecting a subset
M ⊂ N of a given cardinality m (m < n) from N , such that the sum of
the distances between every two elements in M is maximized. Formally, the
problem can be stated as the following quadratic zero-one integer program
[27]:

Maximize f(x) =
1

2

n∑

i=1

n∑

j=1

dijxixj (1)

subject to
n∑

i=1

xi = m (2)

where xi is a binary variable indicating whether an element si is selected to
be a member of the subset M .

MDP is known to be NP-hard and has a high computational complexity [16].
In addition to its theoretical significance as a difficult combinatorial problem,
MDP is notable for its ability to formulate a number of practical applications:
location of undesirable or mutually competing facilities [11], decision analysis
with multiple objectives [36], composing jury panels [28], genetic engineering
[33], medical and social sciences [27], and product design [18]. During the
past three decades, MDP has been studied under many different names such
as maxisum dispersion [26], MAX-AVG dispersion [39], edge-weighted clique
[1,31], remote-clique [9], maximum edge-weighted subgraph [30], and dense
k-subgraph [8,12].

The computational challenge of the MDP has motivated a variety of solution
approaches including exact methods, approximation algorithms and meta-
heuristic methods. Examples of approximation algorithms are described in
[12,22]. These approaches provide a performance guarantee, but do not com-
pete well with other methods in computational testing. Three recent examples
of exact methods are described in [5,32,38]. While these methods have the
theoretical advantage of finding optimal solutions to a given problem, their
applications are generally limited to problems with some 150 elements.

For larger problem instances, heuristics and metaheuristics are often used to
find approximate solutions of good quality with a reasonable computing time.
This includes tabu search [1,4,6,10,30,44], iterated tabu search [36], simulated
annealing [25], iterated greedy algorithm [28], estimation of distribution algo-
rithms [43], genetic algorithms [13], variable neighborhood search [6,8], scatter
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search [15,21], path-relinking method [2,3] and memetic search [24]. Another
approach that has received considerable attention in the solution of the MDP
is greedy randomized adaptive search procedure (GRASP) [2,3,10,16,40–42].
Finally, a comprehensive survey and an interesting comparison of the most sig-
nificant heuristic and metaheuristic methods for MDP can be found in [6,33].

This paper presents MAMDP, a hybrid metaheuristic algorithm integrating
a tabu search procedure with a population-based evolutionary algorithm for
solving the Maximum Diversity Problem. The proposed algorithm integrates
three complementary key components to ensure the high efficiency of the
search process. First, to generate promising new solutions, we introduce a
dedicated crossover operator which tries to preserve common elements that
are shared by parent solutions. The design of this crossover operator is moti-
vated by an experimental observation that high quality solutions share a large
number of common elements. Second, to allow the algorithm to explore effi-
ciently the search space around each newly generated solution by crossover,
we devise a tabu search optimization procedure which relies on a constrained
neighborhood and a dynamic tabu list management strategy. Finally, to main-
tain the population diversity, we employ a quality-and-distance replacement
strategy for population updates.

To assess the performance and the competitiveness of our algorithm in terms
of both solution quality and computing efficiency, we provide computational
results on a total of 120 MDP benchmark instances with up to 5000 elements,
showing that the proposed algorithm achieves highly competitive results with
respect to the best existing MDP heuristics. Moreover, for 6 large MDP in-
stances, the proposed algorithm is able to provide new improved results.

The remaining part of the paper is organized as follows. In Section 2, the
ingredients of our algorithm are described, including the dedicated crossover
operator, the constrained neighborhood tabu search procedure and the quality-
and-distance based pool updating rule. Section 3 is dedicated to the compu-
tational results. Section 4 investigates several important components of the
proposed MAMDP algorithm and concluding remarks are given in Section 5.

2 A hybrid metaheuristic algorithm for MDP

Our hybrid metaheuristic algorithm follows the general memetic framework
which combines the population-based evolutionary search and neighborhood-
based local search [34,35]. The basic idea is to take advantage of both a recom-
bination (or crossover) operator that discovers unexplored promising regions
of the search space, and a local search operator that finds good solutions by
concentrating the search around these regions. In order to be effective, the gen-
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eral memetic framework needs to be carefully adapted to the given problem
and to integrate problem-specific knowledge within its search operators and
strategies [23]. As discussed in [17] and [19] (Chapter 9), the MA framework
shares ideas with scatter search [20]. In particular, scatter search provides
unifying principles for joining solutions by structured combinations of elite
solutions from a reference set. Additionally, scatter search pays special atten-
tion to both distance and quality when it updates the reference set. Finally,
scatter search typically uses tabu search to improve each new solution. In this
sense, the proposed algorithm can be considered as a simplified scatter search
algorithm.

The general procedure of our hybrid metaheuristic algorithm for MDP (called
MAMDP) is summarized in Algorithm 1. It is composed of four main ba-
sic components: a population initialing procedure, a tabu search procedure,
a crossover operator and a population management strategy. Starting from
an initial population of local optima obtained by the tabu search procedure
(Section 2.2), MAMDP performs a series of cycles called generations. At each
generation, two solutions S1 and S2 are randomly chosen in the population
to serve as parents. The crossover is then used to produce an offspring solu-
tion S0 from S1 and S2 (Section 2.4). The tabu search procedure is applied
to improve S0 for a fixed number of iterations (Section 2.3). Afterward, the
population updating rule decides whether the improved solution S0 should be
inserted into the population and which existing solution should be replaced
(Section 2.5). This process repeats until a stop condition is verified, such as a
time limit or a fixed number of generation (Section 3.3). In the following, we
describe the four main components of the proposed algorithm.

Algorithm 1 Memetic algorithm for the Maximum Diversity Problem
Require: A set of n elements N = {s1, s2, ..., sn}, distance matrix [dij ]n×n, cardi-

nality of the subset m (m < n), population size p

Ensure: The best solution S∗ found
1: Initialize population Pop = {S1, ..., Sp} /* Section 2.2 */
2: S∗ ← Best(Pop) /* S∗ records the best solution encountered until now */
3: while Stop condition is not verified do

4: Randomly select 2 parent solutions S1 and S2 from Pop = {S1, ..., Sp}
5: S0 ← Cross Over(S1, S2) /* Section 2.4, generate a new solution from par-

ents */
6: S0 ← Tabu Search(S0) /* Section 2.3, improve the offspring */
7: if f(S0) > f(S∗) then

8: S∗ ← S0 /* Update the best solution found so far */
9: end if

10: Pop← PopulationUpdate(S0, Pop) /* Section 2.5, update population using
a distance-and-quality rule */

11: end while
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2.1 Search space and evaluation function

Before presenting the components of the MAMDP algorithm, we define first
the search space explored by the algorithm as well as the evaluation function
to measure the quality of a candidate solution.

Given that the objective of MDP is to determine a subset M ⊂ N of size m

(called m-subset) while maximizing the sum of the distances between every
two elements in M , we define our search space Ω to be the collection of all
possible subsets of N of cardinality m, i.e., Ω = {S ⊂ N : |S| = m}. It is clear
that Ω has a size of Cm

n = n!
m!(n−m)!

which may be very large for reasonable
values of n and m.

To evaluate the quality of a solution S ∈ Ω (i.e., a m-subset), we just sum up
the distances between every two elements in S as follows:

f(S) =
∑

su,sv∈S,u<v

duv (3)

It is easy to see that this function is strictly equivalent to the function defined
in Formula (1).

Finally, we mention that to represent each subset S of Ω, we use a binary
vector S of length n containing exactly m 1s: S[i] = 1 if element si ∈ N

belongs to subset S, S[i] = 0 otherwise. For simplicity reasons, hereafter we
will use the set notion S, instead of its vector representation S, to designate
a solution of Ω even if both are semantically equivalent.

2.2 Generation of initial solutions

Our algorithm begins with an initial population composed of p solutions (p is
the population size which is fixed by a parameter). There are different ways to
obtain the initial population. One basic technique is random generation which,
though easy to apply, can hardly lead to initial solutions of good quality.
In this paper, we initialize the population with locally optimal solutions as
follows. Starting from a random m-subset S (S ∈ Ω), we apply the tabu search
procedure (see Section 2.3) to improve S until a local optimum S is reached.
The resulting improved solution is added to the population if it is not identical
to any solution currently in the population. The insertion condition can be
stated formally using the distance measure defined in Section 2.5 as follows: the
new solution is added to the population if its distance to any existing solution
of the population is greater than zero. This procedure is repeated until the
population is filled up with 3× p solutions from which we finally retain the p
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best ones with the largest objective values to form the initial population. This
procedure allows us to obtain an initial population of relatively high quality.
Notice that for some small (or easy) MDP instances, our algorithm can even
reach the optimal solutions (or solutions with previous best known objective
values) during the phase of initialization of the population due to the high
efficiency of the tabu search procedure.

2.3 The constrained neighborhood tabu search procedure

One key element of our hybrid MAMDP algorithm is its tabu search proce-
dure which ensures the critical role of intensified search of a limited region. In
addition to being applied to generate the initial population as explained in the
previous section, the tabu procedure is in particular used to improve the off-
spring solutions created by the crossover operator (see Section 2.4). Adopting
the general method of tabu search [19], our tabu procedure (see Algorithm
2) is specifically adapted to the MDP problem by introducing a dedicated
constrained neighborhood and a dynamic tabu list management mechanism,
which are developed in this section.

Algorithm 2 Constrained neighborhood tabu search procedure for MDP
Require: A set of n elements N = {s1, s2, ..., sn}, initial solution S, number

MaxIter of tabu search iterations
Ensure: The best solution S∗ found and f(S∗)
1: S∗ ← S /* Records the best solution found so far */
2: Iter ← 0 /* Iteration counter */
3: Compute the potential pv according to Eq. 4 for each element sv ∈ N .
4: Initiate the tabu list and tabu tenure
5: dmax← max{dij | 1 ≤ i < j ≤ n } /* dmax is the maximum distance between

two elements in N*/
6: while Iter < MaxIter do

7: dMinInS ← min{pi | si ∈ S} /* dMinInS is the smallest potential in S */
8: Identify subset X = {si ∈ S | pi ≤ dMinInS + dmax}
9: dMaxOutS ← max{pi | si ∈ N \ S} /* dMaxOutS is the largest potential

in N \ S */
10: Identify subset Y = {si ∈ N \ S | pi ≥ dMaxOutS − dmax}
11: Choose a best admissible swap(su, sv) move from the constrained neighbor-

hood CN(S) defined by X and Y

12: S ← S\{su} ∪ {sv} /* Move to the new solution */
13: Update the tabu list and the potential pv for each sv ∈ N

14: if f(S) > f(S∗) then

15: S∗ ← S /* Update the best solution found so far */
16: end if

17: Iter ← Iter + 1
18: end while
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2.3.1 Constrained swap move and neighborhood

As explained in Section 2.1, our search space Ω is composed of all possible
m-subsets from the given set N . To explore this space, one simple and basic
way is to start with any initial m-subset S and subsequently swap an element
of S with another element of N \S such that the objective value is improved.
One advantage of this swap move is that it maintains solution feasibility.
Nevertheless, this unconstrained swap leads to a large neighborhood of size
m · (n −m). This unconstrained swap and its associated neighborhood were
used in [16] and further explored in [10]. As indicated in [10], although this
unconstrained swap is valuable for local search algorithms, the evaluation of
the neighborhood can be computationally expensive. This is particularly the
case with tabu search given that at each iteration of the algorithm, we wish
to select the best swap move among all m.(n−m) possible moves induced by
S and N \ S.

To reduce the computing time needed to examine neighboring solutions and
improve the computational efficiency of our tabu search procedure, we devise
a constrained neighborhood which is both more focused and smaller-sized.
The idea of our constrained neighborhood is to limit the swap move to two
specifically identified subsets X ⊆ S and Y ⊆ N \ S such that |X| and |Y |
are as small as possible, and the resulting neighborhood contains always the
best solutions of the unconstrained neighborhood induced by S and N \ S.

The constrained neighborhood is based on the notion of potential defined for
each element of the current solution. Precisely, let S ∈ Ω be a solution (i.e.,
a m-subset of N), we define, for each element si ∈ N , its potential pi with
respect to the objective value f(S) as follows:

pi =
∑

sj∈S

dij, for si ∈ N (4)

Let swap(su, sv) designate the move which swaps su ∈ S and sv ∈ N \ S.
Then, when swap(su, sv) is applied, the objective variation ∆uv, also called
the ’move gain’, can be conveniently computed by:

∆uv = f(S ′)− f(S) = pv − pu − duv (5)

where S ′ = S \ {su} ∪ {sv} while pv and pu are respectively the potential of
sv and su according to Formula (4).

From Formula 5, we observe that the move gain ∆uv of swap(su, sv) depends
on pv, pu and duv. For the purpose of maximizing the objective function f , we
should prefer an element sv ∈ N \ S with a large potential and inversely an
element su ∈ S with a small potential. In addition, we also need to consider
the distance duv between su and sv. To maximize f , we constrain su to belong
to a specific subset X ⊆ S containing the elements in S with small potentials,
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and sv to belong to a specific subset Y ⊆ N \ S including the elements in
N \ S with large potentials.
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S = {s1, s2, s3, s4}, N \ S = {s5, s6, s7, s8}, dmax = 4

dMinInS = 3, dMaxOutS = 11, X = {s1, s2}, Y = {s5, s6}
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S

∆15 = 5, ∆16 = 4, ∆25 = −1, ∆26 = 2

swap(s1, s5) is the best swap move

Fig. 1. An example for the constrained neighborhood defined by swap move.

Let dMinInS = min{pi | si ∈ S} and

Let dMaxOutS = max{pi | si ∈ N \ S}.

Then we define subsets X and Y as follows:

X = {si ∈ S | pi ≤ dMinInS + dmax} and

Y = {si ∈ N \ S | pi ≥ dMaxOutS − dmax}

where dmax is the maximum distance between two elements in N , i.e., dmax =
max{dij | 1 ≤ i < j ≤ n }.

To obtain a neighboring solution S ′ from S, we swap one element su ∈ X with
another element sv ∈ Y . All possible swap moves induced by X and Y define
our constrained neighborhood CN(S), i.e.,

CN(S) = {S ′ | S ′ = S\{su} ∪ {sv}, su ∈ X, sv ∈ Y }.

Fig. 1 shows an illustrative example where S has four possible neighboring so-
lutions and we assume that the tabu list is empty (i.e., no element is forbidden
for swap).

Our tabu search procedure explores the search space Ω by following this con-
strained neighborhood. At each iteration, instead of examining all the swap
moves induced by S and N \S, our tabu search first identifies the two subsets
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X and Y associated to S and then selects the best admissible swap(su, sv)
(su ∈ X, sv ∈ Y ) with the highest move gain ∆uv (ties broken randomly).
The resulting solution replaces S to become the new current solution. A swap
move swap(su, sv) is admissible if it is not classified tabu (i.e. neither su nor
sv is in the tabu list) or if it verifies the aspiration criterion. The aspiration
criterion simply states the tabu status of a move is revoked if the move leads
to a solution better than any solution found so far.

We can see that our constrained neighborhood is a strict subset of the un-
constrained neighborhood. Furthermore, assume that S ′′ is a best admissible
neighboring solution in the unconstrained neighborhood, it is easy to ver-
ify that S ′′ ∈ CN(S). In other words, our constrained neighborhood CN(S)
contains all the best admissible neighboring solutions in the unconstrained
neighborhood, while its size is generally much smaller than the unconstrained
neighborhood.

When a swap(su, sv) move is performed to give a new solution, the potential
associated with each element si in N can be efficiently updated using the
following formula, as shown in [4,6]:

pi =





pi + div, if si = su,

pi − diu, if si = sv,

pi + div − diu, if si 6= su and si 6= sv.

Thus, the updating of the potentials associated with the n elements in N can
be performed in linear time O(n).

To compute subset X (see also line 7–8 in Algorithm 2), we first examine all
the elements in S and identify dMinInS to be the element with the minimum
potential among the elements in S. We then check all the elements in S once
again, a vertex u is added into X if its potential pu ≤ dMinInS + dmax.
Obviously, the procedure for computing subset X can be performed in linear
time O(|S|). Similarly, we compute subset Y by examining all the vertices in
N \S (see also line 9–10 in Algorithm 2) with a time complexity of O(|N \S|).
When the two subsets X and Y are identified, we need to examine all the
swap moves induced by X and Y to select the best admissible move with the
highest move gain in the constrained neighborhood. This can be achieved with
a time complexity of O(|X|× |Y |). In addition, the time needed to update the
potentials associated with the n elements in N is bounded by O(n). There-
fore, the total time of each iteration of our algorithm using the constrained
neighborhood is bounded by O(n)+O(|X|× |Y |). As shown in Section 4.1, X

and Y of our constrained neighborhood are much smaller than S and N \ S,
reducing drastically the computing time of our algorithm.
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2.3.2 Tabu list and tenure management
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Fig. 2. An illustration of the step function (one period) used for tuning the tabu
tenure Tu [45].

As previously explained, a neighboring solution of S is obtained by applying
a swap(su, sv) move to the current solution. To prevent the search from short-
term cycling, when such a move is performed, element su is marked tabu for
the next Tu (called tabu tenure) iterations, during which su cannot be put back
into solution S (except the aspiration criterion is satisfied). Similarly, element
sv is also marked tabu for the next Tv iterations and sv cannot be removed
from S during this period (except the aspiration criterion is satisfied).

It is well known that the performance of a tabu search algorithm depends on
the way the tabu tenure is determined [19]. A too short tabu tenure may lead
the search to revisit solutions previously encountered while a too long tabu
tenure may exclude high quality solutions during the search. Unfortunately,
there does not exist a general way to optimally tune the tabu tenure. In
this paper, we adopt a dynamic tabu list management technique. This tabu
list management technique was first proposed in [14] and recently explored
in [45]. With this technique, the tabu tenure Tu are dynamically adjusted
by a periodic step function Tu(Iter) defined over the number of iterations
Iter: Iter → Tu(Iter) where Iter is the number of iterations and Tu(Iter) is
the tabu tenure for Tu at iteration Iter. Each period of the step function is
composed of 1500 iterations divided into 15 steps.

Fig. 2 provides an illustration of this step function. As shown in Fig. 2, the
tabu tenure Tu is equal to α (α is a parameter) for the first 100 iterations
[1..100], then 2 × α for iterations from [101..200], followed by α again for
iterations [201..300] and 4× α for iterations [401..500] etc. After reaching the
largest value 8×α for iterations [701..800], Tu drops again to α for the next 100
iterations and so on. This function repeats periodically this variation scheme
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every 1500 iterations. Similarly, we use the same strategy to tune the tabu
tenure Tv. At each iteration of the tabu search, Tv is set equal to 0.7 ∗ Tu.

One notices that the tabu tenure Tu for su (the element leaving S) is larger
than the tabu tenure Tv for sv (the element joining S). This can be explained
by the simple fact that in general, there are much fewer elements contained in
S than in N \S (m < n). As a consequence, when an element becomes a part
of the solution, we try to keep it in the solution for a longer period.

As one observes, this tabu mechanism involves four different tabu tenures (α,
2×α, 4×α and 8×α) which are applied with quite different frequencies: 8/15
for α, 4/15 for 2×α, 2/15 for 4×α and 1/15 for 8×α. Since a shorter (longer)
tabu tenure generally implies a more intensified (diversified) search, this tabu
mechanism ensures most of the time an intensified examination of the search
space followed by punctual diversification phases of different intensities. So
if the search with the shortest tabu tenure α is trapped in a local optimum,
the subsequent longer tabu tenure 2 × α is expected to bring the search out
of the trap. If this is not sufficient, a still longer tabu tenures 4 × α, then
8×α is applied to break the trap. Each time the search escapes from the local
optimum, an intensification phase is resumed with the shortest tenure.

Finally, we also experimented two additional tabu tenure methods in addition
to the above dynamic tabu tenure method based on the periodic step function.
The first one applies in a static way each of the four tabu tenures (α, 2×α, 4×α

and 8×α) during the whole search. The second method uses, at each iteration
of the algorithm, a tabu tenure randomly taken from the 15-tuple (α, 2 ×
α, α, 4×α, α, 2×α, α, 8×α, α, 2×α, α, 4×α, α, 2×α, α). This second method
shares similarities with our dynamic method in the sense that the shortest tabu
tenure is used more frequently than the three other values. Yet this second
method follows a random scheme to alter among the different tabu tenures
while the dynamic method method uses the periodic step function shown in
Fig. 2. Experimental results showed that the dynamic method dominates both
cases. Even if other tabu tenure methods would be envisaged, we will see in
Section 3 that the adopted method is effective and robust and allows our
algorithm to deliver highly competitive computational outcomes.

2.4 Crossover operator

Within the hybrid memetic framework, the crossover operator constitutes an-
other important search operator [35]. Its main goal is to create new promising
candidate solutions by blending existing parent solutions, a solution being
promising if it can potentially lead the search process to new search regions
where better solutions may be found. For this reason, crossover plays basi-
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cally an exploratory role which comes to complement the intensification role
of the tabu search procedure. It is well known that even if random crossover
operators (uniform, one-point etc.) can be easily applied in the context of bi-
nary representation, such a blind operator can rarely guide the search process
to effectively explore the most promising search regions. To be effective, a
meaningful crossover operator is usually based on some pertinent properties
(building blocks) of the given problem and a recombination mechanism to
preserve these properties from parents to offspring [23].

To identify “good properties” for MDP, we carried out a detailed analysis of
samples of locally optimal solutions (see Section 4). This analysis discloses
that high quality solutions share a large number of common elements that
have high chances to be part of an optimal solution. Therefore, given two high
quality solutions, it seems pertinent to preserve the shared elements (building
blocks). Our proposed crossover operator follows this idea and operates as
follows.

Algorithm 3 The crossover operator of the MAMDP algorithm

Require: Two parent solutions S1 and S2

Ensure: One offspring solution S0

1: S0 ← S1 ∩ S2 /* Build first a partial solution by preserving the common
elements shared by S1 and S2 */

2: while |S0| < m do

3: Select from S1 \ S0 the element u with the highest potential with respect to
S0

4: S0 ← S0 ∪ {u}, S1 ← S1\{u}
5: if |S0| = m then

6: Return S0 and Stop
7: end if

8: Select from S2 \ S0 the element v with the highest potential with respect to
S0

9: S0 ← S0 ∪ {v}, S2 ← S2\{v}
10: end while

11: Return S0

Given two parent solutions S1 and S2 which are chosen randomly from the
population, one offspring solution S0 is constructed as follows (see Algorithm
3). We build first a partial solution by preserving the common elements shared
by the two selected parents, i.e., S0 = S1∩S2. Then we complete S0 to obtain
a feasible solution with a greedy procedure based on the potential pi defined
in Section 2.3.1. The greedy procedure extends S0 in a step-by-step way by
adding at each step one element to S0 until S0 contains exactly m elements.
At the first step, we examine all the elements in S1\S0 to identify the element
with the highest potential with respect to S0 and displace it from S1 \ S0 to
S0. Afterward, we consider the elements in S2 \ S0, identify the element with
the largest potential in S2 \ S0 and add it to S0. Then at each step of this
greedy procedure, we consider the elements in S1 \S0 and S2 \S0 in turn until
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S0 reaches the size of m. This offspring solution is usually of relatively high
quality and has approximatively the same distance to its two parent solutions.

2.5 Population updating rule

The population updating rule decides whether an offspring solution, which is
generated by the crossover operator and further improved by the tabu search
procedure, should become a member of the population, and in the affirma-
tive, which existing solution of the population should be replaced. Population
management is an important issue since the population updating rule im-
pacts directly the population diversity which conditions the convergence of
the search algorithm.

In our case, we wish to maintain a healthy diversity of the population during
the search. For this purpose, we adopt an updating strategy which takes into
account both quality and the distance between the solutions of the population
[29,37]. While the notion of quality can be easily understood with respect
to the objective function, we need to formally define the notion of distance
between solutions.

Definition 1. Distance between two solutions: Given two solutions Sa

and Sb, the distance dist(Sa, Sb) between Sa and Sb is the minimum number of
swap moves necessary to transform Sb to Sa, i.e., dist(Sa, Sb) = m−|Sa∩Sb|.

Definition 2. Distance between one solution and a population: Given
a population Pop = {S1, ..., Sp} and the distance dist(Si, Sj) between any
two solutions Si and Sj (i, j ∈ {1, ..., p} and i 6= j), the distance between a
solution Si (i = 1, ..., p) and the population Pop is defined as the minimum
distance between Si and any other solution in the population:

DSi,Pop = min{dist(Si, Sj)|Sj ∈ Pop, Sj 6= Si} (6)

To update the population, we adopt the strategy which was originally proposed
in [29], and has shown to be very effective in maintaining the balance between
the diversity and quality of the population. This strategy uses a quality-and-
distance scoring function (denoted by H(Si, Pop′)) to rank the solutions of the
population Pop′ = Pop ∪ {S0}. Formally, H(Si, Pop′) is defined as follows:

H(Si, Pop′) = βÃ(f(Si)) + (1− β)Ã(DSi,Pop′) (7)

where β is a parameter set to 0.6 according to [29], f(Si) is the objective value
of Si, and Ã(.) is a normalized function defined as follows:

Ã(y) =
y − ymin

ymax − ymin + 1
(8)
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where ymax and ymin are respectively the maximum and minimum of y in the
population Pop. “+1” is used for the purpose of avoiding the possibility of a
0 denominator.

Algorithm 4 Population updating strategy

Require: Offspring solution S0 and Population Pop = {S1, ..., Sp}
Ensure: Updated population Pop = {S1, ..., Sp}
1: Tentatively add S0 to the population: Pop ′ = Pop ∪ {S0}
2: for i = 0, ..., p do

3: Calculate the distance between Si and Pop′ according to Eq. (6)
4: Calculate the goodness score H(Si,Pop′) of Si according to Eq. (7)
5: end for

6: Identify the solution Sw with the smallest goodness score in Pop ′: Sw =
arg min{H(Si, Pop′)|i = 0, ..., p}

7: if (Sw 6= S0) then

8: Replace Sw with S0: Pop = Pop ∪ {S0}\{Sw}
9: end if

Our population updating strategy is described in Algorithm 4. To update the
population, we first tentatively add S0 to the population Pop, then we use
the scoring function H to identify the solution Sw with the smallest goodness
score H(Si, Pop′) in Pop′. If Sw is not the offspring S0, then the population
is updated by replacing Sw with S0.

3 Computational experiments

In this section, we present an extensive assessment of the proposed MAMDP.
For this purpose, we show experimental results obtained by MAMDP on a
large collection of benchmark instances and make comparisons with the best
performing MDP algorithms published in the literature.

3.1 Benchmark instances

To evaluate the efficiency of the proposed approach, we carry out extensive
experiments on the same sets of 120 test instances as in [36], which are fre-
quently used to assess algorithms for MDP. The details of the instance sets
are described as follows [10,15,33]:

• Silva instances: This data set consists of 20 instances, which were generated
by Silva et al [41]. The instance sizes are such that for n = 100, m = 10,
20, 30 and 40; for n = 200, m = 20, 40, 60 and 80; for n = 300, m = 30,
60, 90 and 120; for n = 400, m = 40, 80, 120, and 160; and for n =
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500, m = 50, 100, 150 and 200. These instances can be downloaded from
http://www.optsicom.es/mdp/.
• Random Type I instances (Type1 55, Type1 22 and Type1 52): These in-

stances (60 in total) are based on matrices with real numbers generated from
a (0, 10) uniform distribution. Random Type I was introduced by Duarte
and Mart́ı [10] and includes 3 sets of instances. The first set (Type1 55) con-
sists of 20 instances with n = 500 and m = 50, the second set (Type1 52)
includes 20 instances with n = 500 and m = 200, and the third set contains
20 instances with n = 2000 and m = 200. Random Type I instances are
available at http://www.uv.es/∼rmarti/paper/mdp.html.
• Random Type II instances (Type2): These instances (20 in total) are based

on matrices with real numbers generated from a (0, 1000) uniform distri-
bution. This data set was introduced by Duarte and Mart́ı [10] and have
size of n = 500 and m = 50. Random Type II instances can be downloaded
from http://www.uv.es/∼rmarti/paper/mdp.html.
• Beasley instances (b2500): This data set consists of 10 instances, which

were taken from the OR-Library [7]. All the instances have 10% density
with m = 2500 and n = 1000. These instances were used in [8,28,36,44] to
assess the MDP algorithms and are available at http://people.brunel.ac.uk/
∼mastjjb/jeb/orlib/bqpinfo.html.
• Random larger instances (p3000 and p5000): These instances (10 in to-

tal) are based on matrices with integer numbers generated from a [0, 100]
uniform distribution. For these instances, the distance between some el-
ements is equal to zero and the density of these instances (i.e., the per-
centage of the non-zero entries) is 10%, 30%, 50%, 80%, 100% respec-
tively. There are five instances with n = 3000 and m = 1500, and five
instances with n = 5000 and m = 2500. These instances were tested in
[8,28,36,44]. See http://www.soften.ktu.lt/∼gintaras/max div.html for the
sources of the generator and input files to replicate these instances.

3.2 Parameter settings

The settings of the parameters used by our MAMDP algorithm are given in
Table 1. These parameter values have been determined by performing a prelim-
inary experiment on a selection of 10 hard instances (Type1 22.1, Type1 22.2,
b2500-1, b2500-3, b2500-5, b2500-7, p3000 1, p3000 3, p5000 2 and p5000 3)
which are randomly taken without bias from three groups of the largest bench-
mark instances (Type1 22, b2500, p3000 and p5000). Instances from these 3
groups are usually hard for the existing MDP algorithms (see Table 7) and
are thus appropriate for the purpose of comparisons. We use these 10 selected
instances for tuning our parameters as well as for the analysis of Section 4.

To set the parameters, we first fix those required by the TS procedure (MaxIter ,
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α) and then determine those used by the memetic algorithm (p,β). For (MaxIter ,
α), we test values for α in the range [5..25] and MaxIter in the range [5000..200000].
For each of the 10 instances, we run the TS procedure 10 times, each run being
limited to 60 seconds. Table 2 reports, for each instance and each parameter
combination, the average solution gap to the previous best objective values
(i.e., fprev − favg) (where favg represents the average objective value obtained
with the TS procedure).

To see whether there exists significant performance differences in terms of so-
lution quality among the compared parameter combinations of MaxIter and
α, we apply the Friedman non-parametric statistical test followed by the Post-
hoc test on the results from Table 2. This test calculates, for each problem
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Fig. 3. Box and whisker plot of the results obtained with different parameter com-
binations (MaxIter and α). The vertical lines separate the groups of five settings in
which MaxIter has the same value to ease the appreciation of the variations in each
group and among the groups.
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Table 1
Settings of parameters

Parameters Section Description Values

p 2.2 size of population 10
α 2.3 tabu tenure management factor 15

MaxIter 2.3 number of TS iterations after recombination 50000
β 2.5 goodness score coefficient 0.6 [29]

instance, the rank value of each combination according to solution quality
(where rank 25 is assigned to the best combination and rank 1 to the worst
one). Then, it computes the average rank values of each combination across
all the tested problem instances. The Friedman test reveals that there are
statistically significant differences among the 25 tested parameter combina-
tions (with p-value = 6.457 × 10−8). Moreover, the largest 5 associated rank
values produced in this experiment are ID13(19.9), ID12(19.5), ID18(18.5),
ID23(17.9) and ID19(17.7). This test gives evidence for our choice to select
the parameter combination ID13 (MaxIter = 50000, α = 15) for the TS
procedure (see also Table 1). Furthermore, the Post-hoc analysis shows that
our chosen setting ID13 (MaxIter = 50000, α = 15) is significantly different
from some other parameter combinations such as ID1 to ID7, ID10, ID11,
ID16 and ID21.

To further investigate the performance of our TS procedure with 25 combina-
tions of MaxIter and α, we show in Figure 3 the box and whisker plots which
indicate, for each tested parameter combination, the distribution and range
of the obtained results for the 10 used instances. For the sake of clarity, these
results are expressed as the average solution gap to the previous best objective
values fbest reported in the literature. From the box and whisker plot in Figure
3, we observe a visible difference in the distribution of results among the data
sets obtained with the compared combinations. From Figure 3, we can also
see that the five combinations ID13 (with MaxIter = 50000 and α = 15),
ID12 (with MaxIter = 50000 and α = 10), ID18 (with MaxIter = 100000
and α = 15), ID23 (with MaxIter = 2000000 and α = 15) and ID19 (with
MaxIter = 1000000 and α = 20) seem to be the most robust ones, since for
these combinations, the average solution gaps to the previous best objective
values are generally small and the deviations from the best-known results do
not vary much from one instance to another.

In addition to MaxIter and α, our algorithm requires two other parameters
p and β. We fixed p = 10 (small populations are often used in memetic al-
gorithms) while β = 0.6 is chosen according to [29]. As we see below, the
adopted parameter settings are good and robust enough to allow our algo-
rithm to yield very competitive results for the sets of the tested instances
compared with those reported in the literature.

17



Table 2
Parameter tuning

ID Parameter combination Type1 22.1 Type1 22.2 b2500 1 b2500 3 b2500 5 b2500 7 p3000 1 p3000 3 p5000 2 p5000 3

MaxIter α

1 5000 5 12.70 2.20 1966.00 1904.20 1512.00 967.80 661.10 859.00 6317.90 9027.70

2 5000 10 4.90 0.00 724.40 1002.80 663.20 403.40 383.80 384.10 5340.20 6720.20

3 5000 15 2.30 0.00 579.40 570.80 282.80 219.60 250.40 205.00 3348.30 5325.60

4 5000 20 7.60 0.30 725.00 723.80 320.60 182.80 342.90 339.50 3208.70 5327.90

5 5000 25 22.10 0.70 894.20 587.60 475.80 329.40 444.00 598.90 3698.10 5432.20

6 20000 5 8.90 0.00 1093.00 897.00 606.60 213.00 341.50 407.60 3414.30 5927.90

7 20000 10 0.20 0.00 83.40 71.80 56.60 66.80 106.00 0.00 1659.50 3055.10

8 20000 15 0.60 0.00 210.20 77.60 16.60 54.40 56.90 60.50 529.00 1596.00

9 20000 20 3.50 0.00 175.60 3.60 60.20 66.60 89.20 52.60 584.20 1967.10

10 20000 25 9.90 0.60 248.80 43.00 205.60 139.20 154.40 228.80 536.90 1970.70

11 50000 5 3.50 0.00 732.20 1306.00 364.80 342.00 329.50 579.30 1853.90 3444.80

12 50000 10 0.00 0.00 19.20 0.00 15.80 0.00 112.50 0.00 439.00 1043.60

13 50000 15 0.80 0.00 9.40 14.40 63.20 25.00 19.70 0.00 53.20 406.80

14 50000 20 3.00 0.00 53.40 1.20 81.60 58.00 86.80 23.20 93.80 402.80

15 50000 25 8.40 0.60 33.80 10.20 175.00 140.00 148.20 63.80 274.20 683.10

16 100000 5 10.80 0.00 539.40 859.00 312.20 254.80 333.40 295.10 2188.10 2815.60

17 100000 10 0.20 0.00 132.20 276.80 80.40 45.40 62.50 0.00 946.80 1135.20

18 100000 15 1.10 0.00 0.00 70.40 44.20 18.40 62.80 0.00 354.40 708.20

19 100000 20 4.80 0.00 37.40 1.20 41.60 112.40 83.80 0.00 5.30 428.10

20 100000 25 8.70 0.60 25.20 45.40 165.00 97.00 142.90 66.30 126.00 721.10

21 200000 5 15.00 0.00 361.60 802.00 592.80 372.60 258.20 191.70 2655.90 3004.00

22 200000 10 0.30 0.00 241.80 374.80 105.40 111.20 68.70 0.00 114.40 1813.90

23 200000 15 1.00 0.00 148.60 80.00 25.00 28.80 53.70 0.00 17.80 1099.70

24 200000 20 3.60 0.00 79.20 52.40 50.80 79.20 80.40 0.00 193.70 1551.70

25 200000 25 7.60 0.00 25.60 51.20 5.60 155.60 161.00 64.70 1168.90 1671.90

3.3 Reference Algorithms and Experimental Protocol

Our MAMDP algorithm is programmed in C and compiled using GNU GCC.
All the experiments were carried out on a PC running Windows XP with an
Intel Xeon E5440 processor (2.83 GHz and 8 GB of RAM).

In order to evaluate the relative effectiveness and efficiency of our proposed
algorithm, we compared our MAMDP algorithm with 4 recent and best-
performing MDP algorithms in the literature:

• ITS: Iterated robust tabu search algorithm (2007) [36].
• VNS: Variable neighborhood search algorithm (2009) [8].
• TIG: An fine-tuning iterated greedy algorithm (2011) [28].
• LTS-EDA: Robust learnable tabu search guided by estimation of distribu-

tion algorithm (2012) [44].

As reviewed and compared in the most recent survey [33], ITS and VNS seem
to be the most powerful algorithms for the MDP among 30 heuristic algo-
rithms. TIG and LTS-EDA are two recently proposed algorithms and thus
not included in the recent review [33]. However, experimental results show
that TIG and LTS-EDA obtain better or competitive performance than VNS
and ITS. Especially, LTS-EDA is able to reach new best solutions [44] for
some larger random instances. Thus, these 4 reference algorithms are among
the most successful approaches for solving MDP actually available in the lit-
erature.

Moreover, these 4 reference algorithms are tested and compared very recently
in [44] under the same time limit on a Pentium R Dual-Core CPU E5400
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Table 3
Experimental Protocol: cutoff times of our MAMDP algorithm which are equal to
the cutoff times of [44] divided by 1.17

Instance Family Time limit(s) Independent runs

Silva 17 30
Type1 55 17 30
Type1 22 17 30
Type1 52 17 30
Type2 17 30
b2500 256 30
p3000 512 15
p5000 1538 15

Table 4
Performance of MAMDP on the 20 random Type1 22 instances (n = 2000;m = 200)
Instance fprev MAMDP Algorithm

fbest gbest gavg deviation success time(s)

Type1 22.1 114,271 114,271 0 10.23 14.28 13/30 9.44
Type1 22.2 114,327 114,327 0 0 0 30/30 4.88
Type1 22.3 114,195 114,195 0 10.23 13.85 16/30 7.91
Type1 22.4 114,093 114,093 0 7.10 11.33 13/30 9.29
Type1 22.5 114,196 114,196 0 21.90 24.19 12/30 7.25
Type1 22.6 114,265 114,265 0 7.53 9.66 16/30 8.53
Type1 22.7 114,361 114,361 0 0 0 30/30 6.34
Type1 22.8 114,327 114,327 0 6.93 25.94 28/30 6.93
Type1 22.9 114,199 114,199 0 0 0 30/30 6.78
Type1 22.10 114,229 114,229 0 10.70 14.16 15/30 8.00
Type1 22.11 114,214 114,214 0 12.60 12.24 13/30 8.52
Type1 22.12 114,214 114,214 0 14.46 8.15 5/30 15.54
Type1 22.13 114,233 114,233 0 1.00 4.02 27/30 6.67
Type1 22.14 114,216 114,216 0 0.90 4.16 28/30 5.37
Type1 22.15 114,240 114,240 0 0.60 0.48 12/30 9.56
Type1 22.16 114,335 114,335 0 2.30 5.78 24/30 6.18
Type1 22.17 114,255 114,255 0 3.83 7.17 23/30 8.09
Type1 22.18 114,408 114,408 0 0.53 1.02 23/30 8.24
Type1 22.19 114,201 114,201 0 0 0 30/30 6.06
Type1 22.20 114,349 114,349 0 14.40 29.30 24/30 8.82

processor (2.70 GHZ CPU and 2 GB of RAM). According to the Standard
Performance Evaluation Cooperation (www.spec.org), this computer is 1.17
time slower than the computer we used for our experiments. To make the
comparisons as fair as possible, we divide the cutoff times used in [44] by 1.17
and use the reduced times as the stop condition for our MAMDP algorithm
(see Table 3).

3.4 Computational results

First, let us comment that for the four groups of test instances (Silva, Type1 55,
Type1 52 and Type2), our MAMDP algorithm can easily and consistently
reach all the previous best known results with a success rate of 100% within
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Table 5
Performance of MAMDP on the 10 Beasley instances (n = 2500;m = 1000)
Instance fprev MAMDP Algorithm

fbest gbest gavg deviation success time(s)

b2500-1 1153,068 1153,068 0 0 0 30/30 106.46
b2500-2 1129,310 1129,310 0 23.46 43.30 23/30 167.12
b2500-3 1115,538 1115,538 0 0 0 30/30 99.28
b2500-4 1147,840 1147,840 0 0 0 30/30 107.42
b2500-5 1144,756 1144,756 0 0 0 30/30 84.02
b2500-6 1133,572 1133,572 0 0 0 30/30 56.41
b2500-7 1149,064 1149,064 0 1.46 7.89 29/30 125.37
b2500-8 1142,762 1142,762 0 0 0 30/30 98.94
b2500-9 1138,866 1138,866 0 0.66 2.02 27/30 124.86
b2500-10 1153,936 1153,936 0 0 0 30/30 108.29

Table 6
Performance of MAMDP on the 10 large random instances (m = 0.5 ∗ n)
Instance fprev MAMDP Algorithm

fbest gbest gavg deviation success time(s)

p3000 1 6502,308 6502,330 -22 23.20 36.96 6/15 402.78
p3000 2 18272,568 18272,568 0 0 0 15/15 80.33
p3000 3 29867,138 29867,138 0 0 0 15/15 124.16
p3000 4 46915,044 46915,044 0 0 0 15/15 217.52
p3000 5 58095,467 58095,467 0 0 0 15/15 113.37
p5000 1 17509,215 17509,369 -154 -137.80 40.12 6/15 980.22
p5000 2 50102,729 50103,092 -363 -253.60 108.13 2/15 1209.90
p5000 3 82039,686 82040,316 -630 -345.47 279.45 2/15 1574.50
p5000 4 129413,112 129413,710 -598 -461.54 123.72 5/15 817.27
p5000 5 160597,781 160598,156 -375 -276.47 74.80 5/15 894.11

the given time limits. These instances are easy for our MAMDP algorithm (and
other state-of-the-art approaches). Consequently we don’t show the detailed
results of these instances in the paper.

Tables 4 to 6 respectively show the computational statistics of the MAMDP
algorithm on the other three groups of instances (Type1 22, b2500, p3000 and
p5000) which are of larger sizes and harder to solve. In these tables, columns
1 and 2 respectively give the name of the instance and the previous best
objective values (fprev). Note that the previous best objective values (fprev)
are compiled from Tables 4, 6 and 7 presented in [36] and Tables 6 and 11
presented in [44]. To the best of our knowledge, these lower bounds are the
current best known results for these instances.

Columns 3 to 8 show our results: the best objective value (fbest), the best
solution gap to the previous best known objective values gbest (i.e., fbest −
fprev), the average solution gap to the previous best objective values gavg (i.e.,
favg − fprev) (where favg represents the average objective value), the standard
deviation over the tested runs, the success rate (success) for reaching its fbest
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value and the average CPU time in seconds (time) over the runs on which
the fbest value is reached. Given that the MDP is a maximization problem, a
negative value for gbest and gavg indicates an improved outcome compared to
the current best known result.

From Tables 4 to 6 as well as the results for the other four groups of in-
stances (Silva, Type1 55, Type1 52 and Type2), we can see that for all these
120 instances, our MAMDP algorithm can reach the previous best known re-
sults within the time limits given in Table 3. Specifically, for 100 out of 120
instances (83%), MAMDP has a successful rate of 100%, attaining the best
known objective value for each of its runs. More importantly, for 6 large and
very challenging instances (p3000 1, p5000 1, p5000 2, p5000 3, p5000 4 and
p5000 5), our MAMDP algorithm is able to improve on the previous best
objective values.

3.5 Comparison with other algorithms

In order to further evaluate our MAMDP algorithm, in this section we compare
our results with four MDP algorithms in the literature: ITS [36], VNS [8], TIG
[28] and LTS-EDA [44]. As stated previously in Section 3.3, these 4 reference
algorithms are the best performing approaches for MDP currently available.

Table 7 shows the best and average results of our MAMDP algorithm com-
pared with the reference algorithms. The results of these 4 reference algorithms
are compiled from Tables 6 and 11 from [44]. Note that the results of all these
algorithms are obtained under the same time limit (see Section 3.3). Table 7
summarizes the solution difference between the best objective values and the
average objective values obtained by these 5 algorithms with the best known
objective values on the 40 large size benchmark instances with 2,000 to 5,000
elements.

From Table 7, it may be observed that the MAMDP algorithm outperforms
the 4 reference algorithms, named ITS, VNS, TIG and LTS-EDA. In terms
of the best solution, MAMDP matches the best known values on 34 instances
and finds new best solutions for 6 out of the 40 instances, while ITS, VNS,
TIG and LTS-EDA matched the best known solutions on 2, 10, 5, 19 in-
stances respectively. Concerning the average solution value, the results of our
MAMDP algorithm remains competitive when compared with these 4 refer-
ence algorithms. Indeed, for each of these 40 instances, our MAMDP algorithm
is able to reach an average solution value better than each of those 4 reference
algorithms.

In order to estimate the validity of our conclusion, we have applied two statis-
tical tests to compare the average results of our MAMDP algorithm with those
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Table 7
Comparison of MAMDP with four best performing MDP algorithms in the litera-
ture.

Instance fpre MAMDP ITS [36] VNS [8] TIG [28] LTS-EDA [44]

gbest gavg gbest gavg gbest gavg gbest gavg gbest gavg

Type1 22.1 114,271 0 10.23 65 209.87 48 150.60 48 101.57 5 60.73
Type1 22.2 114,327 0 0 29 262.27 0 168.87 0 69.90 0 89.87
Type1 22.3 114,195 0 10.23 69 201.40 19 110.83 5 117.77 0 98.97
Type1 22.4 114,093 0 7.10 22 200.53 70 188.13 58 141.93 0 79.87
Type1 22.5 114,196 0 21.90 95 273.27 87 184.10 99 194.70 51 134.47
Type1 22.6 114,265 0 7.53 41 168.17 30 99.30 9 96.20 0 40.17
Type1 22.7 114,361 0 0 12 167.47 0 56.30 0 71.27 0 18.20
Type1 22.8 114,327 0 6.93 25 256.40 0 163.33 0 193.60 0 159.10
Type1 22.9 114,199 0 0 9 139.83 16 78.47 16 80.37 0 70.97
Type1 22.10 114,229 0 10.70 24 204.93 7 139.33 35 121.43 0 56.20
Type1 22.11 114,214 0 12.60 74 237.77 42 145.13 59 139.57 3 69.87
Type1 22.12 114,214 0 14.46 55 249.53 95 143.30 88 156.00 15 84.93
Type1 22.13 114,233 0 1.00 93 279.87 22 168.07 42 167.40 6 85.30
Type1 22.14 114,216 0 0.90 92 248.50 117 194.30 64 202.80 0 81.00
Type1 22.15 114,240 0 0.60 11 117.50 1 62.87 6 80.53 0 22.03
Type1 22.16 114,335 0 2.30 11 225.40 42 215.43 35 167.90 0 36.47
Type1 22.17 114,255 0 3.83 56 217.53 0 170.00 18 144.53 6 57.07
Type1 22.18 114,408 0 0.53 46 169.97 0 57.10 2 117.37 2 22.83
Type1 22.19 114,201 0 0 34 243.20 0 124.60 0 144.37 0 35.87
Type1 22.20 114,349 0 14.40 151 270.67 65 159.43 45 187.23 0 95.40
b2500-1 1153,068 0 0 624 3677.33 96 1911.93 42 1960.20 0 369.20
b2500-2 1129,310 0 23.46 128 1855.33 88 1034.33 1096 1958.47 154 454.53
b2500-3 1115,538 0 0 316 3281.93 332 1503.67 34 2647.87 0 290.40
b2500-4 1147,840 0 0 870 2547.93 436 1521.07 910 1937.13 0 461.73
b2500-5 1144,756 0 0 356 1800.27 0 749.40 674 1655.87 0 286.07
b2500-6 1133,572 0 0 250 2173.47 0 1283.53 964 1807.60 80 218.00
b2500-7 1149,064 0 1.46 306 1512.60 116 775.47 76 1338.73 44 264.60
b2500-8 1142,762 0 0 0 2467.73 96 862.47 588 1421.53 22 146.47
b2500-9 1138,866 0 0.66 642 2944.67 54 837.07 658 1020.60 6 206.33
b2500-10 1153,936 0 0 598 2024.60 278 1069.40 448 1808.73 94 305.27
p3000 1 6502,308 -22 23.20 444 1465.53 251 887.80 114 692.67 74 345.93
p3000 2 18272,568 0 0 0 1321.60 0 924.20 0 991.07 140 387.00
p3000 3 29867,138 0 0 1442 2214.73 328 963.53 820 1166.13 0 304.33
p3000 4 46915,044 0 0 1311 2243.93 254 1068.47 426 2488.20 130 317.07
p3000 5 58095,467 0 0 423 1521.60 0 663.00 278 1353.27 0 370.40
p5000 1 17509,215 -154 -137.80 2046 3410.93 848 1817.27 1000 2391.80 37 417.00
p5000 2 50102,729 -363 -253.60 2568 4444.80 1136 2277.00 183 2172.73 184 550.80
p5000 3 82039,686 -630 -345.47 4822 7612.33 1284 3064.40 1526 5377.13 74 828.53
p5000 4 129413,112 -598 -461.54 1032 4478.90 915 2367.90 1098 3276.80 260 677.20
p5000 5 160597,781 -375 -276.47 1682 4058.90 816 1903.30 914 1753.90 204 642.90

of the four reference algorithms. The first test is the non-parametric Friedman
test. The resulting p-value of 2.2×10−16 obtained by this test clearly indicates
that there are statistically significant differences among the average results
obtained with the five compared methods. Moreover, the associated rank val-
ues produced in this experiment 5.0(MAMDP), 3.975(LTS-EDA), 2.275(TIG),
2.7(VNS) and 1.05(ITS) shows that our MAMDP algorithm outperforms the
reference algorithms. The second test is the non-parametric Wilcoxon test for
pairwise comparisons. For this test, the associated p-value < 0.05 indicates
that there are significant differences between two compared methods. When
applying the Wilcoxon test to compare MAMDP with each of the four refer-
ence algorithms, we obtain a p-value of 1.176 × 10−14 for ITS, 1.176 × 10−14

for VSN, 1.176× 10−14 for TIG and 1.994× 10−14 for LTS-EDA respectively.
These outcomes indicate that the observed differences between MAMDP and
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the 4 reference methods are statistically significant.

4 Analysis of main components of MAMDP

4.1 Influence of the constrained neighborhood

In this section, we investigate the computational gain of the constrained neigh-
borhood compared to the unconstrained neighborhood. In order to isolate the
effect of the neighborhood, we use only the tabu search component of our
memetic algorithm in this experiment. Precisely, we use CTS to denote the
TS procedure using the constrained neighborhood as described in Section 2.3
and UTS to denote the TS procedure using the conventional unconstrained
neighborhood. For UTS, at each iteration, it examines all the swap moves in-
duced by S and N \ S and selects the overall best swap move to generate the
next solution. All the other ingredients are kept the same for both CTS and
UTS.

Table 8 summarizes the comparative results between CTS and UTS on the
selection of the 10 hard instances. Both algorithms were run with the same
number of neighborhood explorations (with MaxIter = 50000) on each in-
stance. In Table 8, we indicate the computing time in seconds required by
both algorithms to realize 50000 iterations of neighborhood explorations. In
addition, since the performance of CTS depends on the size of the two specif-
ically identified subsets X and Y (see Section 2.3), we also indicate the size
of these two subsets (averaged over 50000 iterations) in Table 8. In the last
column of Table 8, we show the ratio of the computing time between UTS and
CTS.

From Table 8, we can see that the constrained neighborhood drastically re-
duces the computing time of the tabu search procedure compared with the
unconstrained neighborhood. Indeed, the reduction ratio ranges from 114.96
to 1280.83 for the 10 tested instances. Furthermore, the sizes of the two subsets
X and Y of the constrained neighborhood are very small compared to sizes of
S and N \ S. This experiment confirms clearly the interest of the constrained
neighborhood in accelerating the tabu search procedure.

4.2 Contribution of crossover to the performance of MAMDP

As indicated in Section 2.4, our proposed MAMDP algorithm employs a ded-
icated crossover operator which tries to preserve common elements that are
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Table 8
Comparative results between the unconstrained neighborhood tabu search (UTS)
and the constrained neighborhood tabu search (CTS) on 10 problem instances

Instance UTS CTS TUTS

TCTS

TUTS(s) |S| |N \S| TCTS(s) |X̄| |Ȳ |

Type1 22.1 225.33 200 1800 1.96 13.12 16.03 114.96

Type1 22.2 225.38 200 1800 1.95 13.25 16.09 115.58

b2500-1 1261.16 1000 1500 3.02 30.29 30.96 417.60

b2500-3 1279.41 1000 1500 3.02 30.91 31.52 423.64

b2500-5 1272.32 1000 1500 3.07 30.18 30.91 414.43

b2500-7 1275.88 1000 1500 3.06 31.00 31.27 416.95

p3000 1 2501.47 1500 1500 3.56 30.68 30.98 702.66

p3000 3 2512.06 1500 1500 3.26 14.38 14.58 770.57

p5000 2 5753.75 2500 2500 4.93 17.00 16.95 1167.08

p5000 3 6237.62 2500 2500 4.87 14.50 14.57 1280.83

Table 9
Comparative results of MAMDP and TS on 10 problem instances

Instance fpre MAMDP TS

gbest gavg gbest gavg

Type1 22.1 114,271 0 0 50 110.45

Type1 22.2 114,327 0 0 35 121.35

b2500-1 1153,068 0 278.50 43476 49295.30

b2500-3 1115,538 0 176.00 41840 48236.00

b2500-5 1144,756 0 7.90 40390 47986.70

b2500-7 1149,064 0 129.00 41860 47943.60

p3000 1 6502,308 -22 163.15 65751 71014.15

p3000 3 29867,138 0 253.70 126700 134585.60

p5000 2 50102,729 -285 1220.15 727769 757700.85

p5000 3 82039,686 -414 2293.95 848126 863409.20

shared by parent solutions. We carried out additional experiments to examine
the influence of the crossover operator over the performance of our hybrid
algorithm. For this purpose, we compare the performance of the MAMDP al-
gorithm with its underlying TS algorithm. Furthermore, in order to highlight
the role of the crossover operators, we weaken the underlying TS of MAMDP
by reducing the number of tabu search iterations to MaxIter = 500.

Experiments were carried out on the selection of the 10 hard instances (Type1 22.1,
Type1 22.2, b2500-1, b2500-3, b2500-5, b2500-7, p3000 1, p3000 3, p5000 2
and p5000 3). To solve each instance, we run both methods 20 times under
exactly the same timeout limit, which was set to be 300 seconds for each run.
In order not to penalize the TS algorithm, we use a multi-start technique to
restart it every 500 iterations whenever the timeout limit is not reached.

Table 9 presents the comparative results between MAMDP and TS on the 10
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instances. For each instance, the following statistics are provided: the best so-
lution gap to the previous best known objective values gbest (i.e., fbest− fprev)
and the average solution gap to the previous best objective value gavg (i.e.,
favg − fprev). From Table 9, we observe that for each of these 10 instances,
MAMDP performs far better than its underlying TS in terms of both best
and average solution values. Furthermore, we also note that although the
performance of its underlying TS algorithm is poor, the results of the hy-
brid MAMDP algorithm remain competitive compared with the current best
known results. Indeed, for 3 instances, the MAMDP algorithm is able to im-
prove on the current best known results. This further confirms our conclusion
that the crossover operator makes an interesting contribution to the overall
performance of the hybrid algorithm.

4.3 Why does the proposed crossover work

We demonstrated above that our proposed crossover operator makes a mean-
ingful contribution to the overall performance of the hybrid algorithm. In this
section, we provide empirical motivations for this crossover operator. For this
purpose, we show an analysis on the structural similarity between local optima
of various quality in terms of commonly shared elements. For two local optima
St and Ss, we define their similarity as sim(St, Ss) = |St∩Ss|

m
. We can see that

the larger the similarity between two solutions, the more common elements
they share.

For this analysis, we employ the selection of the 10 hard instances used in the
previous sections. For each instance, we collect 1000 local optima of different
quality using our memetic algorithm as well as its underlying tabu search.
Among these 1000 local optima, we select the top 10% (100) with the largest
objective values and call them ‘high-quality solutions’. Similarly, we take the
bottom 10% (100) with the smallest objective values and call them ‘low-quality
solutions’.

Table 10 contains the data related to the similarity between our 1000 local
optima. Columns Shq, Sall and Slo report respectively the average degree of
similarity between the 100 high-quality solutions, the average degree of sim-
ilarity between all the 1000 sampled local optima, and the average degree of
similarity between the 100 low-quality solutions. From Table 10, we observe
that in most cases, the degree of similarity between high-quality solutions is
generally very large, from 0.52 to 0.89. High similarity indicates high quality
solutions share a large number of common elements. Assume that high-quality
solutions are close to an optimal solution or could themselves be optimal solu-
tions, it is wise for a recombination operator to preserve the common elements
shared by two (or more) high quality solutions. This is exactly what the pro-
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Table 10
Analysis of structural similarity between high-quality solutions for 10 maximum
diversity instances

Instance Shq Sall Slo

Type1 22.1 0.63 0.20 0.14

Type1 22.2 0.52 0.19 0.14

b2500-1 0.81 0.62 0.44

b2500-3 0.77 0.63 0.44

b2500-5 0.79 0.63 0.44

b2500-7 0.82 0.64 0.44

p3000 1 0.86 0.68 0.53

p3000 3 0.89 0.69 0.53

p5000 2 0.86 0.59 0.51

p5000 3 0.84 0.59 0.52

posed crossover operator undertakes to do.

4.4 Population updating strategy

As shown in Section 2.5, our MAMDP algorithm uses a quality-and-distance
replacement strategy (denoted by DisQual) for population updates to main-
tain the population diversity. In order to assess this strategy, we compare it
with a traditional strategy (denoted by PoolWorst) which simply replaces
the worst solution of the population by the new offspring solution. We show
experimental evidences on the selection of the 10 hard instances to confirm
the interest of the quality-and-distance replacement strategy. While keeping
other ingredients unchanged in the MAMDP algorithm, Table 11 summarizes
the comparative results between these two population updating strategies. For
both strategies, we use the same running conditions as described in Table 3.

From Table 11, it can be observed that on the tested instances, MAMDP with
DisQual matches or outperforms MAMDP with PoolWorst in terms of the
best solution found. For one instance (p5000 2), MAMDP with DisQual is
able to achieve a better objective value than with PoolWorst. Concerning the
average solution value, MAMDP with DisQual is able to reach an average
solution value better than with PoolWorst for 3 instances while a worse re-
sult only for one case. The comparative results indicate that MAMDP with
DisQual is able to reach a slightly better performance than MAMDP with
PoolWorst. However, the associated p-value of 0.179 with the Friedman test
does not confirm a clear dominance of one strategy over the other.
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Table 11
Comparative results two population updating strategies on 10 problem instances

Instance fpre DisQual PoolWorst

gbest gavg gbest gavg

Type1 22.1 114,271 0 10.23 0 9.33

Type1 22.2 114,327 0 0 0 0

b2500-1 1153,068 0 0 0 0

b2500-3 1115,538 0 0 0 0

b2500-5 1144,756 0 0 0 0

b2500-7 1149,064 0 1.46 0 4.60

p3000 1 6502,308 -22 23.20 -22 36.40

p3000 3 29867,138 0 0 0 0

p5000 2 50102,729 -363 -253.60 -342 -206.50

p5000 3 82039,686 -630 -345.47 -630 -317.00

5 Conclusion

This paper deals with the NP-hard Maximum Diversity Problem. To approx-
imate this hard combinatorial problem, we proposed a hybrid memetic al-
gorithm (MAMDP) mixing a dedicated crossover operator and a constrained
neighborhood tabu search procedure. The proposed crossover operator tries to
preserve the elements shared by the parent solutions which hopefully belong
to the optimal solution. Offspring solutions are improved with the tabu search
optimization procedure which relies on a constrained neighborhood. To main-
tain a healthy population diversity, MAMDP applies a pool updating strategy
that considers both the quality of an offspring solution and its distance to the
solutions of the population.

Experimental evaluations on a large collection of 7 sets of 120 instances from
the literature showed that our MAMDP algorithm attains consistently the
previous best known results within a time limit ranging from 17 seconds (for
problems with 100 to 500 elements) to 25 minutes (for instances with 5000
elements). Specifically, for 100 out of 120 cases (84%), MAMDP reaches the
previous best known objective value for each of its runs (a successful rate of
100%). More importantly, for 6 large and very challenging instances (p3000 1,
p5000 1, p5000 2, p5000 3, p5000 4 and p5000 5), our MAMDP algorithm
is able to yield improved solutions (larger lower bounds) with respect to the
current best known results. We also compared MAMDP with 4 best performing
MDP algorithms published recently (2007, 2009, 2011, 2012) and showed that
MAMDP dominates these reference algorithms in terms of solution quality
under comparable experimental conditions.

We also investigated the impact of several essential components of MAMDP.
We carried out experiments to demonstrate the beneficial role of the proposed
crossover operator and showed an analysis of structural similarity between
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local optima which provides motivations for the crossover. Moreover, we also
demonstrated the important role of the distance-and-quality pool updating
strategy which allows MAMDP to maintain population diversity.
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