
Path Relinking for Unconstrained Binary

Quadratic Programming

Yang Wang a, Zhipeng Lü b, Fred Glover c Jin-Kao Hao a,∗

aLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

bSchool of Computer Science and Technology, Huazhong University of Science and

Technology, 430074 Wuhan, China

cOptTek Systems, Inc., 2241 17th Street Boulder, CO 80302, USA

(Accepted to EJOR, 5 July 2012. DOI:
http://dx.doi.org/10.1016/j.ejor.2012.07.012)

Abstract

This paper presents two path relinking algorithms to solve the unconstrained binary
quadratic programming (UBQP) problem. One is based on a greedy strategy to
generate the relinking path from the initial solution to the guiding solution and the
other operates in a random way. We show extensive computational results on five
sets of benchmarks, including 31 large random UBQP instances and 103 structured
instances derived from the MaxCut problem. Comparisons with several state-of-the-
art algorithms demonstrate the efficacy of our proposed algorithms in terms of both
solution quality and computational efficiency. It is noteworthy that both algorithms
are able to improve the previous best known results for almost 40 percent of the
103 MaxCut instances.

Keywords: UBQP, Path Relinking, Tabu Search, MaxCut

1 Introduction

The objective of the unconstrained binary quadratic programming (UBQP)
problem is to maximize the function:

∗ Corresponding author.
Email addresses: yangw@info.univ-angers.fr (Yang Wang),

zhipeng.lui@gmail.com, zhipeng.lv@hust.edu.cn (Zhipeng Lü),
glover@opttek.com (Fred Glover), hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 5 September 2012

f(x) = x′Qx =
n∑

i=1

n∑

j=1

qijxixj (1)

where Q = (qij) is an n by n matrix of constants and x is an n-vector of binary
(zero-one) variables, i.e., xi ∈ {0, 1}, i = 1, . . . , n.

The formulation of UBQP can represent a wide range of important prob-
lems, including those from financial analysis [28], social psychology [20], com-
puter aided design [25] and cellular radio channel allocation [9]. Moreover, a
quite number of combinatorial optimization problems can be transformed into
UBQP, such as graph coloring problem, maxcut problem, set packing problem,
set partitioning problem, maximum clique problem, etc. Interested readers can
refer to [23] for the general transformation procedures.

Given the interest of UBQP, many solution procedures have been reported in
the literature during the past few decades. Exact methods based on branch
and bound or branch and cut [6,21,35] are quite useful to obtain optimal
solutions to instances of limited sizes. To handle larger instances, a number
of heurisric and metaheuristic methods have been developed, including local
search [7], Simulated Annealing [4,22], Tabu Search [14,19,32,34,37,38], and
Evolutionary and Memetic Algorithms [5,26,27,30,31].

Among the existing heuristics, tabu search (TS) based algorithms are the most
successful ones. For example, the first adaptive memory tabu search algorithm
for the UBQP [14] has been used to solve applications coming from a wide
variety of settings. Also, several multi-start tabu search strategies have been
explored in [32] and a sequel using an iterated tabu search algorithm has
been investigated in [34], leading to very good results on large and challenging
UBQP random instances. More recently, the diversification-driven tabu search
method [19], a memetic algorithm [27] using embedded tabu search and a
variable fixing tabu search method [37,38] have proved to be especially effective
for solving the most challenging UBQP instances.

Although numerous algorithms and approaches have been proposed for this
well-known problem, we are not aware of any study on applying path relink-
ing to the UBQP in the literature. Path relinking is a general search strategy
closely associated with tabu search and its underlying ideas share a significant
intersection with the tabu search perspective [15–17], with applications in a
variety of contexts where it has proved to be very effective in solving difficult
problems. In this paper, we follow the general scheme described in [17] and
propose two path relinking algorithms for the UBQP. These two algorithms
differ from each other mainly on the way of generating the path, one employing
a greedy strategy and the other employing a random construction. In order to

2

assess the performance of our path relinking algorithms, we provide computa-
tional results on five sets of random and structured benchmarks with a total of
134 test instances. These results indicate that our proposed algorithms yield
highly competitive outcomes on the tested instances.

The remaining part of the paper is organized as follows. Section 2 briefly
reviews some representative approaches for the UBQP. Section 3 describes the
ingredients of our path relinking algorithms. Section 4 presents computational
results and detailed comparisons with other state-of-the-art algorithms in the
literature. Section 5 discusses the results obtained on two other well-known
combinatorial problems. Concluding remarks are given in Section 6.

2 Previous Work

This section reviews some representative heuristic approaches for the UBQP,
including in particular those that are used as the reference methods for our
experimental evaluation.

Glover et al. [14] introduced the first tabu search algorithm for the UBQP
(AMTS). AMTS is based on the one-flip move and two types of memory
structures to record recency and frequency information. Strategic oscillation
is employed to alternate between constructive phases (progressively setting
variables to 1) and destructive phases (progressively setting variables to 0),
which are triggered by critical events, i.e., when the next move causes the
objective function to decrease. The amplitude of the oscillation is adaptively
controlled by a span parameter. Computational results for instances with up to
500 variables show AMTS outperforms the best exact and heuristic methods
previously reported in the literature.

Katayama et Narihisa [22] designed a simulated annealing algorithm (SA)
that is also based on the one-flip move and an incremental neighborhood
evaluation technique. To enhance its search ability, the SA algorithm adopts
multiple annealing processes starting from different temperatures. Tested on
instances with variables ranging from 500 to 2500, the proposed SA heuristic
shows very competitive performances, particularly for the largest instances.

Merz et Katayama [31] conducted a landscape analysis and observed that local
optima of the UBQP instances are contained in a small fraction of the search
space. Based on this, they designed a memetic algorithm (MA) in which a
dedicated crossover operator is utilized to generate good starting solutions for
a k-opt local search. The proposed approach is remarkably effective in solving
a set of problems with up to 2500 variables.

3

Palubeckis [32] presented several multistart tabu search strategies (MST) ded-
icated to the construction of the initial solution. An additional set of challeng-
ing random instances with up to 7000 variables were generated to evaluate
the proposed MST algorithms. Subsequently, Palubeckis [34] developed an
iterated tabu search algorithm (ITS) in which the perturbation mechanism
operates on a specific set of variables. The experimental results indicated that
the ITS consumes less computational effort to find the best solutions than
several MSTS algorithms.

Glover et al. [19] presented a diversification-driven tabu search (D2TS) algo-
rithm that alternates between a basic tabu search procedure and a memory-
based perturbation strategy guided by a long-term memory. Despite its sim-
plicity, computational results showed that D2TS is capable of matching or
improving the previously reported results for the challenging instances intro-
duced in [32].

Lü et al. [27] proposed a hybrid metaheuristic approach (HMA) which com-
bines a basic tabu search procedure and the genetic search framework. HMA is
characterized by its diversification-guided recombination operator and quality-
and-distance-based population updating strategy. The dedicated recombina-
tion operator aims to generate diversified offspring solutions in order to explore
new promising search regions while the tabu search procedure is responsible
for intensified examination around the offspring solutions. Computational re-
sults showed HMA is among the current best performing procedures on the
UBQP benchmark instances.

3 Path Relinking Algorithm

3.1 Main Framework

Algorithm 1 shows the path relinking procedure for UBQP. It starts with the
creation of an initial set of b elite solutions RefSet (line 4, see Sect. 3.2) and
identifies the best and worst solutions in RefSet in terms of the objective
function value for the purpose of updating RefSet (line 5). For each elite
solution xi ∈ RefSet, a binary value Tag(i) indicates whether xi can take
part in a relinking process. Initially, assigning each solution in RefSet a TRUE
Tag which becomes FALSE when it is selected as the initiating solution or the
guiding solution. The set PairSet contains the index pairs (i, j) designating
the initiating and guiding solution from RefSet used for the relinking process.
PairSet is initially composed of all the index pairs (i, j) such that at least
one corresponding Tag has the value TRUE (line 7). As soon as PairSet is
constructed, all the Tag are marked FALSE (line 8).

4

Algorithm 1 Outline of the path relinking procedure
1: Input: matrix Q

2: Output: the best binary n-vector x∗ found so far and its objective value f∗

3: repeat

4: Initialize RefSet = {x1, . . . , xb}
5: Identify the best solution x∗ and the worst solution xw in RefSet and record the

objective value f∗ of solution x∗

6: Tag(i) = TRUE, (i = {1, . . . , b})
7: PairSet←− {(i, j) : xi, xj ∈ RefSet, xi 6= xj, Tag(i) ∪ Tag(j) = TRUE}
8: Tag(i) = FALSE, (i = {1, . . . , b})
9: while (PairSet 6= ∅) do
10: Pick solution pair (xi, xj) ∈ RefSet with index pair (i, j) in PairSet

11: Apply the Relinking Method to produce the sequence xi = x(1), . . . , x(r) = xj

12: Select x(m) from the sequence and apply the improvement method to x(m)
13: if f(x(m)) > f∗ then

14: x∗ = x(m), f∗ = f(x(m))
15: end if

16: if (Update RefSet(RefSet, x(m)) then
17: RefSet ← RefSet ∪ {x(m)} \ {xw}
18: Tag(w) = TRUE
19: Record the new worst solution xw in RefSet

20: end if

21: Apply the Relinking Method to produce the sequence xj = y(1), . . . , y(r) = xi

22: Select y(n) from the sequence and apply the improvement method to y(n)
23: if (f(y(n)) > f∗) then
24: x∗ = y(n), f∗ = f(y(n))
25: end if

26: if (Update RefSet(RefSet, y(n)) then
27: RefSet ← RefSet ∪ {y(n)} \ {xw}
28: Tag(w) = TRUE
29: Record the new worst solution xw in RefSet

30: end if

31: PairSet←− PairSet \ (i, j)
32: end while

33: until the stopping criterion is satisfied

The inner while loop (lines 9-32) generates new solutions by building paths
for each pair of solutions of PairSet and updates RefSet with specific new
solutions. First, one index pair (i, j) is selected from PairSet according to
lexicographical order (line 10) to designate two solutions xi, xj ∈ RefSet.
The Relinking Method is then applied to these two solutions to generate two
paths connecting xi and xj (lines 11, 21, see Sect. 3.5). Secondly, one solution
x(m) on each path is selected to be further improved by the Improvement
Method (lines 12, 22, see Sect. 3.3). The next step tests Update RefSet to
decide if the new improved solution is used to update RefSet (lines 16, 26, see
Sect. 3.4). If the update is confirmed, the new solution is inserted in RefSet
to replace the worst solution xw with its Tag set to be TRUE (lines 16-18,

5

26-28, see Sect. 3.4). The current selected pair (i, j) is then deleted from the
set PairSet (line 31). This while-loop procedure continues until all the pairs
in PairSet are examined, i.e., PairSet becomes empty.

Our path relinking algorithm has the following characteristics. First, consider-
ing the path generation procedure, each solution pair originating from RefSet
undergoes a relinking phase and two paths are considered for each pair (xi, xj):
one from xi to xj and the other from xj to xi. Secondly, each new high-quality
solution derived by path relinking is a candidate to take part in a subsequent
relinking process as an initiating or guiding solution, using a probabilistic se-
lection process that assures the solution will eventually get selected. Thirdly,
upon the completion of the path relinking phase that ultimately examines all
pairs of solutions in RefSet, we rebuild RefSet to restart the path-relinking
procedure, and repeat this restarting process until the stopping criterion is
satisfied.

3.2 The RefSet Initialization Method

The initial RefSet contains b different locally optimal solutions and is con-
structed as follows. Starting from scratch, we randomly assign a value of 0 or
1 to each variable to produce an initial solution, and then subject this solu-
tion to our improvement method to obtain a local optimum (see Sect. 3.3).
The resulting improved solution is added to RefSet if it does not duplicate
any solution currently in RefSet. This procedure is repeated until the size of
RefSet reaches the cardinality b.

When PairSet becomes empty, RefSet is recreated. The best solution x∗ previ-
ously found becomes a member of the new RefSet and the remaining solutions
are generated in the same way as in constructing RefSet in the first round.

3.3 The Improvement Method

The improvement method employs a basic tabu search procedure that is im-
plemented in the same way as the tabu search component of the hybrid meta-
heuristic approach (HMA) [27]. Specifically, it employs a simple one-flip move

neighborhood, which consists of changing (flipping) the value of a single vari-
able xi to its complementary value 1−xi. Each time a move is carried out, the
reverse move is forbidden for the next TabuTenure iterations [13]. In prac-
tice, we elected to set the tabu tenure by TabuTenure(i) = ttc + rand(10),
where ttc is a selected constant and rand(10) takes a random value from 1
to 10. Once a move is performed, we update a subset of move values affected
by the move using a fast incremental evaluation technique introduced in [18].

6

Accompanying this rule, a simple aspiration criterion is applied that permits
a move to be selected in spite of being tabu if it leads to a solution better than
the current best solution. By convention we speak of “better” and “best” in
relation to the objective function value f(x). (Similarity, we refer to the ob-
jective function value when speaking of solution quality.) The TS procedure
stops when the best solution cannot be improved within a given number µ of
moves that called improvement cutoff.

3.4 The RefSet Update Method

The updating procedure of RefSet is invoked each time a newly constructed
solution is improved by tabu search. The improved solution is permitted to
be added into RefSet if it is distinct from any solution in RefSet and better
than the worst solution xw in RefSet. Once this condition is satisfied, the
worst solution xw is replaced by the improved solution and the position w is
indicated as referring to a new solution.

3.5 The Relinking Method

The relinking method is used to generate new solutions by exploring trajec-
tories (strictly confined to the neighborhood space) that connect high-quality
solutions. The solution that begins the path is called the initiating solution
while the solution that the path leads to is called the guiding solution [15–
17]. We propose two ways to generate such a path: One is based on a dedi-
cated greedy function (whose evaluations are given by the objective function
of UBQP problem) while the other operates in a random manner. Algorithms
2 and 3 describe these two methods in details.

In order to describe our relinking procedure, we first give some primary def-
initions, denoting the initiating solution by xi and the guiding solution by
xj :

• NC: the set of variable indices for which xi and xj have different values.
• ∆t: a vector that stores the objective value deviation of the current solution
from the resulting solution after flipping the tth variable.
• PV : the path vector that stores the selected flip variable at each step
throughout the transiting from xi to xj (Consequently, by knowing either
the initiating solution or the current terminal solution, each solution gener-
ated on the path can be recovered by referring to PV).
• FI: a vector that records the difference f(x) − f(xi) for each solution x
generated when transiting from xi to xj .

7

Algorithm 2 Pseudo-code of Relinking Method 1

1: Input: A pair of solutions xi and xj

2: Output: Path solution x(1), . . . , x(r) from xi to xj

3: Identify the set NC between xi and xj

4: Initialize the ∆t assignments for t ∈ NC

5: PV = ∅, FI0 = 0, r = |NC| − 1
6: for k = 1 to r do

7: Find a t ∈ NC with the best ∆t value
8: PV ← PV ∪ {t}
9: x(k) = {xu : xu = x

j
u, u ∈ PV ;xu = xiu, u ∈ N \ PV }

10: FIk = FIk−1 +∆t

11: f(x(k)) = f(xi) + FIk
12: Update all ∆t values (t ∈ NC) affected by the move
13: NC ← NC\{t}
14: end for

Algorithm 2 shows the first relinking method. Initially, we identify the set
NC of variables whose values differ between the initiating solution and the
guiding solution. The ∆ value of each element in NC is also precalculated.
At each step toward the guiding solution, we select the variable with the best
∆ value and then add it into the path vector PV . Moreover, we record the
current increment FI value and the objective value f(x) of the current gen-
erated solution x. Finally, the vector ∆ is updated using the fast incremental
evaluation technique of [18]. Since two adjacent solutions on the path differ
from each other in the assignment of only one variable, this relinking proce-
dure accomplishes the path construction from the initiating solution to the
guiding solution after exactly |NC| − 1 steps.

Algorithm 3 Pseudo-code of Relinking Method 2

1: Input: A pair of solutions xi and xj

2: Output: Path solution x(1), . . . , x(r) from xi to xj

3: Identify the set NC between xi and xj

4: Initialize the ∆t assignments for t ∈ NC

5: PV = ∅, FI0 = 0, r = |NC| − 1
6: for k = 1 to r do

7: Select a t ∈ NC at random
8: PV ← PV ∪ {t}
9: x(k) = {xu : xu = x

j
u, u ∈ PV ;xu = xiu, u ∈ N \ PV }

10: FIk = FIk−1 +∆t

11: f(x(k)) = f(xi) + FIk
12: Update all ∆t values (t ∈ NC) affected by the move
13: NC ← NC\{t}
14: end for

The second relinking method, shown in Algorithm 3, is based on the rule of
selecting an element in NC randomly at each step (line 7). The remained
components of the method are the same as in Algorithm 2.

8

3.6 Path Solution Selection

Since two consecutive solutions on a relinking path differ only by flipping a
single variable, it is not productive to apply an improvement method to each
solution on the path since many of these solutions would lead to the same local
optimum. In addition, the improvement method is a time-consuming process,
so we restrict its use to being applied to only a single solution on the path,
which we select by reference both to its solution quality and to the hamming
distance of this solution to the initiating and guiding solutions. Specifically, we
set up a candidate solution list (CSL), consisting of the path solutions having
a distance of at least γ · |NC| from both the initiating and guiding solutions
(where γ ∈ (0, 1] is a parameter). The solution with the highest quality in
CSL is picked for further amelioration by the improvement method.

4 Computational Results

In this section, we report extensive computational results of our two path re-
linking algorithms on a large collection of various benchmark instances and
compare our results with those of several state-of-the-art methods in the lit-
eratures.

4.1 Test Instances

Five sets of test problems are considered in the experiments, amounting to
134 instances. The first set of benchmarks is composed of 10 largest instances
of size n = 2500 from the ORLIB [3]. They all have a density of 0.1 and are
named by b2500.1,. . .,b2500.10. These instances are frequently used in the
literature by many authors, see for instance [4,22,30–32,34,19,27].

The second set of benchmarks consists of 21 randomly generated large problem
instances named p3000.1,. . .,p7000.3 with sizes ranging from n=3000 to 7000
and with densities from 0.5 to 1.0. 1 Experiments reported in [32,34,19,27,37,38]
show that these large instances are particularly challenging UBQP problems,
especially in the case of instances with more than 5000 variables.

The third set of benchmarks includes 69 instances derived from the Max-
Cut problem, named G1,. . .,G72, with variable sizes ranging from n=800 to

1 The sources of the generator and input files to replicate these problem instances
can be found at: http://www.soften.ktu.lt/∼gintaras/ubqop its.html

9

Table 1
Settings of Important Parameters

Values
Parameters Section Description

UBQP MaxCut

b 3.2 RefSet size 10 10

ttc 3.3 tabu tenure constant n/100 n/10

µ 3.3 improvement cutoff of TS 5 n 10000

γ 3.6 distance scale 1/3 1/3

10000. 2 These instances are created by using a machine-independent graph
generator, composed of toroidal, planar and random weighted graphs with
weight values 1, 0 or -1. The first 54 instances have been employed by nu-
merous authors to test their algorithms [8,12,29,33,36] and the results for the
remaining 15 larger instances are reported in [10].

The fourth set of benchmarks contains 30 instances with size n=128 (named
G54100,. . .,G541000), n=1000 (named G10100,. . .,G101000) and n=2744 (named
G14100,. . . ,G141000), respectively. 3 These instances are created from cubic
lattices modeling Ising spin glasses with weight values 1, 0 or -1. Computa-
tional results on these instances were reported in [8,12,29,33,36].

The last set is composed of 4 DIMACS instances containing from 512 to 3375
vertices and 1536 to 10125 edges. 4

4.2 Experimental Protocol

Our path relinking (PR) algorithms are programmed in C and compiled using
GNU GCC on a PC running Windows XP with Pentium 2.83GHz CPU and
8GB RAM. The computational results reported in this section were obtained
with the parameter values shown in Table 1, where the last two columns
respectively denote the settings for the 31 random UBQP instances and the
103 MaxCut instances. Given the stochastic nature of our PR algorithms, each
instance is independently solved 20 times by each algorithm.

4.3 Computational Results on the Random UBQP Instances

Our first experiment undertakes to evaluate the PR algorithms on the 31 ran-
dom instances with 2500 to 7000 variables (the first two sets of benchmarks).
The results are summarized in Tables 2 and 3. Our algorithms use CPU clock
time to give the stopping condition subject to having completed at least one

2 http://www.stanford.edu/∼yyye/yyye/Gset
3 http://www.optsicom.es/maxcut/#instances
4 http://dimacs.rutgers.edu/Challenges/Seventh/Instances/

10

Table 2
Computational Results on Beasley Instances

PR1 PR2
Instance fprev fbest gavr time fbest gavr time

b2500.1 1515944 1515944 0.0 11 1515944 0.0 14

b2500.2 1471392 1471392 0.0 101 1471392 58.4 102

b2500.3 1414192 1414192 13.4 49 1414192 0.0 36

b2500.4 1507701 1507701 0.0 6 1507701 0.0 7

b2500.5 1491816 1491816 0.0 14 1491816 0.0 18

b2500.6 1469162 1469162 0.0 25 1469162 0.0 23

b2500.7 1479040 1479040 0.0 48 1479040 0.0 50

b2500.8 1484199 1484199 0.0 20 1484199 0.0 16

b2500.9 1482413 1482413 0.0 51 1482413 0.0 103

b2500.10 1483355 1483355 0.0 55 1483355 0.0 75

Average 1.34 38 5.84 44.4

round of the PR procedure. The time limit for 10 ORLIB instances for a single
run is set to be 1 minute and for the 21 larger random instances with 3000,
4000, 5000, 6000 and 7000 variables is set at 5, 10, 20, 30 and 50 minutes.
This time cutoff is the same as in [27,32,34].

Tables 2 and 3 respectively show the computational statistics of applying our
PR1 and PR2 algorithms to the 10 ORLIB instances and the 21 large ran-
dom instances. In both tables, columns 1 and 2 respectively give the instance
names and the previous best objective values fprev. These best values were first
reported in [32,34] and recently improved in [19]. The columns under heading
PR1 and PR2 list: the best objective value fbest, the average objective gap
to the previous best objective values gavr (i.e., fprev − favr) (where favr rep-
resents the average objective value over 20 runs) and the average CPU time
in seconds denoted by time for reaching the best objective values fbest over
20 runs. Furthermore, the last row “Average” indicates the summary of our
algorithm’s average performance.

Table 2 discloses that both PR1 and PR2 can stably reach all the previous best
objective values for the 10 largest Beasley instances. Moreover, PR1 performs
slightly better than PR2 when it comes to the criteria of gavr and time to the
previous best result fprev. Table 3 indicates that on the 21 large and difficult
random instances, PR1 produced the same results as PR2 given that both can
reach the previous best known objective values for all of the tested instances.
However, PR1 is superior to PR2 in terms of the average gap (457.1 versus
690.4) although the CPU time to obtain the best solution is slightly longer,
(749.2 versus 665.3 seconds).

In order to further evaluate our PR1 and PR2 algorithms, we compare our
results with those obtained from some of best performing algorithms in the
literature. For this purpose, we restrict our attention to comparisons with 5
methods that have reported the best results for the most challenging problems.
These methods are respectively named ITS [34], MST2 [32], SA [22], D2TS
[19] and HMA [27]. The results for the first 3 of these reference algorithms are

11

Table 3
Computational Results on Palubeckis Instances

PR1 PR2
Instance fprev fbest gavr time fbest gavr time

p3000.1 3931583 3931583 0.0 85 3931583 80.4 81

p3000.2 5193073 5193073 0.0 68 5193073 0.0 64

p3000.3 5111533 5111533 35.8 115 5111533 71.7 155

p3000.4 5761822 5761822 0.0 56 5761822 0.0 97

p3000.5 5675625 5675625 90.2 162 5675625 278.5 226

p4000.1 6181830 6181830 0.0 125 6181830 0.0 159

p4000.2 7801355 7801355 71.2 456 7801355 313.5 302

p4000.3 7741685 7741685 0.0 295 7741685 63.9 436

p4000.4 8711822 8711822 0.0 277 8711822 0.0 392

p4000.5 8908979 8908979 490.8 272 8908979 385.1 327

p5000.1 8559680 8559680 611.8 623 8559680 918.0 387

p5000.2 10836019 10836019 620.3 821 10836019 498.7 609

p5000.3 10489137 10489137 995.4 1285 10489137 317.5 967

p5000.4 12252318 12252318 1257.7 760 12252318 1168.4 767

p5000.5 12731803 12731803 51.3 676 12731803 166.3 726

p6000.1 11384976 11384976 201.0 1820 11384976 822.4 1136

p6000.2 14333855 14333855 221.1 1391 14333855 576.8 1076

p6000.3 16132915 16132915 1743.5 1128 16132915 2017.3 1053

p7000.1 14478676 14478676 935.4 2275 14478676 1523.1 1917

p7000.2 18249948 18249948 1942.4 1793 18249948 2986.1 1591

p7000.3 20446407 20446407 331.9 1251 20446407 2310.5 1503

Average 457.1 749.2 690.4 665.3

Table 4
Best Results Comparison on Palubeckis Instances

best solution gap (i.e., fprev − fbest)
Instance fprev PR1 PR2 ITS [34] MST2 [32] SA [22] D2TS [19] HMA [27]

p5000.1 8559680 0 0 700 325 1432 325 0

p5000.2 10836019 0 0 0 582 582 0 0

p5000.3 10489137 0 0 0 0 354 0 0

p5000.4 12252318 0 0 934 1643 444 0 0

p5000.5 12731803 0 0 0 0 1025 0 0

p6000.1 11384976 0 0 0 0 430 0 0

p6000.2 14333855 0 0 88 0 675 0 0

p6000.3 16132915 0 0 2729 0 0 0 0

p7000.1 14478676 0 0 340 1607 2579 0 0

p7000.2 18249948 0 0 1651 2330 5552 104 0

p7000.3 20446407 0 0 0 0 2264 0 0

Average 0 0 585.6 589.7 1394.3 39 0

directly extracted from [34] and those for D2TS and HMA come from [19,27].

Tables 4 and 5 show the best solution gap and average solution gap to the best
known objective value of the 7 algorithms used for comparison, including PR1
and PR2. In these two tables, the last row presents the averaged results over
the listed instances. Note that the results of all these algorithms are obtained
almost under the same time limit. Since best known values can be easily
reached for the small size instances by all these state-of-the art algorithms, we
only list larger instances, consisting of 11 instances in Table 4 and 21 instances
in Table 5.

12

Table 5
Average Results Comparison on Palubeckis Instances

average solution gap (i.e., fprev − favr)
Instance fprev PR1 PR2 ITS [34] MST2 [32] SA [22] D2TS [19] HMA [27]

p3000.1 3931583 0 80 0 0 0 0 0

p3000.2 5193073 0 0 97 97 97 0 0

p3000.3 5111533 36 72 344 287 535 0 33

p3000.4 5761822 0 0 154 77 308 0 0

p3000.5 5675625 90 279 501 382 459 0 145

p4000.1 6181830 0 0 0 0 734 0 0

p4000.2 7801355 71 314 1285 804 1887 0 142

p4000.3 7741685 0 64 471 1284 79 0 6

p4000.4 8711822 0 0 438 667 536 0 38

p4000.5 8908979 491 385 572 717 984 0 546

p5000.1 8559680 612 918 971 581 2455 656 507

p5000.2 10836019 620 499 1068 978 2101 12533 512

p5000.3 10489137 995 318 1266 1874 2451 12876 332

p5000.4 12252318 1258 1168 1952 2570 1134 1962 1228

p5000.5 12731803 51 166 835 1233 1172 239 284

p6000.1 11384976 201 822 57 34 2248 0 140

p6000.2 14333855 221 577 1709 1269 2067 1286 526

p6000.3 16132915 1744 2017 3064 2673 3845 787 2311

p7000.1 14478676 935 1523 1139 2515 5504 2138 819

p7000.2 18249948 1942 2986 4301 3814 7837 8712 1323

p7000.3 20446407 332 2311 3078 7868 8978 2551 1386

Average 457.1 690.4 1109.6 1415.4 2162.4 2082.9 489.4

Table 4 indicates that both PR1 and PR2 outperform ITS, MST2 and SA in
terms of the best solution values. PR1 and PR2 achieve the best known results
for the 11 most challenging instances while ITS, MST2, SA fail for 5, 5, 10
out of 11 instances. In addition, D2TS performs slightly worse since it fails to
reach the best known result for one instance p7000.2. However, it is difficult
to conclude which algorithm among PR1, PR2 and HMA performs the best
based on the evaluation criterion of the best solution found.

In order to further discriminate among the compared algorithms, Table 5
presents the average solution gap to the best known value of each algorithm.
Firstly, we notice that over the first 10 instances with 3000 and 4000 variables,
D2TS outperforms all the other 6 compared algorithms with an average gap
of 0 to the best known values, meaning that D2TS is quite robust over 20
runs for these 10 instances. PR1 and PR fail to reach the gap of 0 for 4 and 6
instances, respectively. Secondly, considering the overall set of 21 instances, we
find that PR1 performs the best with a gap of 457.1. HMA performs slightly
worse than PR1 with a gap of 489.4. PR2 takes the third place with a gap of
690.4. In conclusion, this experiment demonstrates that both PR1 and PR2
also perform quite well with regard to the average solution quality.

13

Table 6
Computational Results on small and medium MaxCut Instances of Set1

PR1 PR2 SS [29] CirCut [8]
Instance fprev fbest favr time fbest favr time fbest time fbest time

G1 11624 11624 11624.0 2 11624 11624.0 1 11624 139 11624 352
G2 11620 11620 11620.0 6 11620 11620.0 9 11620 167 11617 283
G3 11622 11620 11620.0 17 11620 11620.0 2 11622 180 11622 330
G4 11646 11646 11646.0 3 11646 11646.0 2 11646 194 11641 524
G5 11631 11631 11631.0 3 11631 11631.0 4 11631 205 11627 1128
G6 2178 2178 2178.0 9 2178 2178.0 6 2165 176 2178 947
G7 2003 2006 2006.0 2 2006 2006.0 7 1982 176 2003 867
G8 2003 2005 2005.0 8 2005 2005.0 6 1986 195 2003 931
G9 2048 2054 2054.0 16 2054 2054.0 10 2040 158 2048 943
G10 1994 2000 2000.0 22 2000 1999.8 29 1993 210 1994 881
G11 564 564 564.0 4 564 564.0 1 562 172 560 74
G12 556 556 556.0 17 556 556.0 15 552 242 552 58
G13 582 582 582.0 28 582 582.0 22 578 228 574 62
G14 3064 3063 3062.1 44 3064 3062.6 1188 3060 187 3058 128
G15 3050 3050 3049.3 49 3050 3049.3 51 3049 143 3049 155
G16 3052 3052 3051.3 27 3052 3051.4 47 3045 162 3045 142
G17 3043 3047 3045.5 235 3047 3046.4 110 3043 313 3037 366
G18 988 992 992.0 16 992 992.0 12 988 174 978 497
G19 903 906 906.0 11 906 906.0 14 903 128 888 507
G20 941 941 941.0 13 941 941.0 9 941 191 941 503
G21 931 931 931.0 11 931 931.0 19 930 233 931 524
G22 13359 13359 13353.5 1652 13359 13354.5 943 13346 1336 13346 493
G23 13342 13342 13333.0 517 13342 13331.6 879 13317 1022 13317 457
G24 13337 13337 13327.3 1257 13333 13325.3 1876 13303 1191 13314 521
G25 13326 13338 13328.0 957 13339 13328.2 1078 13320 1299 13326 1600
G26 13314 13324 13313.7 710 13326 13312.3 333 13294 1415 13314 1569
G27 3318 3337 3327.3 851 3336 3326.9 753 3318 1438 3306 1456
G28 3285 3296 3286.0 1723 3296 3288.9 1512 3285 1314 3260 1543
G29 3389 3404 3395.2 861 3405 3391.9 1618 3389 1266 3376 1512
G30 3403 3412 3404.6 1655 3411 3404.8 843 3403 1196 3385 1463
G31 3288 3306 3299.7 624 3306 3299.5 752 3288 1336 3285 1448
G32 1410 1408 1400.9 893 1410 1404.6 450 1398 901 1390 221
G33 1382 1382 1373.9 1019 1382 1376.1 986 1362 926 1360 198
G34 1384 1382 1375.4 1608 1384 1378.2 1747 1364 950 1368 237
G35 7684 7674 7663.3 1372 7679 7670.8 959 7668 1258 7670 440
G36 7677 7666 7653.1 316 7671 7658.7 1790 7660 1392 7660 400
G37 7689 7673 7663.3 1736 7682 7667.9 965 7664 1387 7666 382
G38 7681 7674 7663.4 614 7682 7670.4 1775 7681 1012 7646 1189
G39 2395 2402 2391.3 526 2407 2391.1 1588 2393 1311 2395 852
G40 2387 2394 2381.2 1748 2399 2383.3 879 2374 1166 2387 901
G41 2398 2402 2380.0 1181 2404 2388.9 529 2386 1017 2398 942
G42 2469 2475 2462.3 1177 2478 2466.2 1575 2457 1458 2469 875
G43 6660 6660 6660.0 22 6660 6659.9 19 6656 406 6656 213
G44 6650 6650 6649.9 18 6650 6649.9 32 6648 356 6643 192
G45 6654 6654 6653.9 43 6654 6653.9 50 6642 354 6652 210
G46 6645 6649 6648.2 18 6649 6648.8 36 6634 498 6645 639
G47 6656 6657 6656.6 99 6657 6656.8 20 6649 359 6656 633
G48 6000 6000 6000.0 3 6000 6000.0 3 6000 20 6000 119
G49 6000 6000 6000.0 3 6000 6000.0 2 6000 35 6000 134
G50 5880 5880 5880.0 2 5880 5880.0 2 5880 27 5880 231
G51 3846 3848 3844.6 312 3848 3846.4 158 3846 513 3837 497
G52 3849 3851 3847.6 610 3851 3848.4 373 3849 551 3833 507
G53 3846 3849 3846.9 151 3850 3847.7 88 3846 424 3842 503
G54 3846 3852 3848.6 522 3851 3847.8 318 3846 429 3842 524

Average 469.3 490.6 621.0 616.7

Better 24 25 0 0
Equal 22 24 22 20
Worse 8 5 32 34

14

4.4 Computational Results on the MaxCut Instances

In this section, we test our PR algorithms on 3 sets of benchmarks with a
total of 103 instances derived from MaxCut problem. In Tables 6-9, columns 1
and 2 respectively give the instance name and the previous best solution value
fprev from references [8,29,33,36] which are dedicated MaxCut algorithms. The
columns under the headings PR1 and PR2 list the best objective value fbest,
the average objective value favr and the CPU time in seconds denoted by
time for reaching the best results fbest. The columns under the headings SS
and CirCut report the best objective value fbest and the required CPU time
to reach fbest. We focus on comparing our algorithms with the SS and CirCut
algorithms, which yield best results in the literature on many test instances.
The results of SS and CirCut algorithms are directly extracted from [29]. The
last three rows summarize the comparison between these algorithms and ours.
The rows better, equal and worse respectively denote the number of instances
for which each algorithm gets results that are better, equal and worse than
the previous best known results. We mark in bold those results that are the
updated best known values obtained by PR1 and PR2.

Table 6 reports the results on 54 instances of the third set of benchmarks
within a time limit of 30 minutes. From this table, we first notice that our
algorithms are able to find better objective values than the best known values
in the literature. Meanwhile, PR2 slightly outperforms PR1 in terms of the
best objective values. Specifically, PR1 can improve the previous best known
objective values for 24 instances and match the previous best for 22 instances,
while PR2 can improve the previous best known objective values for 25 in-
stances and match the previous best for 24 instances. Moreover, PR1 and PR2
fail to reach the best known results for 8 and 5 instances respectively, while SS
and CirCut fail on 32 and 34 instances, respectively. Additionally, PR1 and
PR2 reaches its best results in a shorter CPU time than the time taken by
SS and CirCut to reach their best results. These outcomes provide evidence
of the efficacy of our path relinking approach.

Table 7 reports the results of 15 largest instances from the same set of bench-
mark as above with variables ranging from 5000 to 10000. For instances with
5000, 7000, 8000, 9000 and 10000 variables, we report the results for a time
limit of 1, 2, 4, 4 and 4 hours, respectively. The previous best objective values
fprev are cited from [10], which is the only paper, to the best of our knowl-
edge, that reports the results on these instances. As can be seen from Table
7, both PR1 and PR2 obtain new best known results on 13 out of these 15
large instances and obtains results inferior to the best known results only on 2
instances. Moreover, PR2 outperforms PR1 by obtaining better solutions for
14 instances.

15

Table 7
Computational Results on large MaxCut Instances of Set1

PR1 PR2
Instance fprev fbest favr time fbest favr time

G55 9960 10253 10233.7 3996 10265 10234.0 3231

G56 3649 3975 3958.0 3991 3981 3959.2 3842

G57 3220 3448 3436.0 3656 3472 3462.0 4403

G58 — 19183 19159.3 3979 19205 19182.0 3715

G59 — 6027 5989.2 3876 6027 6006.2 5194

G60 13658 14109 14077.5 7738 14112 14091.8 6300

G61 5273 5716 5688.8 7782 5730 5695.7 5381

G62 4612 4804 4785.7 8110 4836 4830.2 6114

G63 8059 26876 26845.8 4826 26916 26879.3 5867

G64 7861 8623 8569.5 8790 8641 8594.1 6974

G65 13286 5482 5468.7 16248 5526 5515.9 15004

G66 — 6272 6257.8 16031 6314 6302.4 15191

G67 — 6856 6832.0 17213 6902 6884.6 12372

G70 9499 9405 9378.6 15202 9463 9434.0 14531

G72 6644 6892 6876.2 14422 6946 6933.8 15898

Better 13 13

Equal 0 0

Worse 2 2

The results of the 30 instances from the fourth set of benchmarks are shown in
Table 8. For the instances with variables numbering 128, 1000 and 2744, the
results are reported with a time limit of 1 second, 10 minutes and 30 minutes.
Table 8 shows that our PR1 and PR2 algorithms once again outperform the
two reference algorithms. Both PR1 and PR2 can match the best known results
on 21 and 20 out of 30 instances, respectively. By contrast, SS and CirCut
can match the previous best results on 10 instances. PR1 and PR2 fail to
match the best known results on 9 and 10 out of 30 instances, respectively.
By contrast, both SS and CirCut fail to match the previous best results on 20
instances.

Comparing PR1 and PR2 to each other, the PR2 algorithm achieves better
results for 4 instances (G14100, G14400, G14800 and G141000) while PR1
obtain better results for 2 instances (G14300 and G14500). In addition, PR2
obtains its best solutions faster than PR1, 377.5 vs 473.2 seconds on average.
We note that CirCut consumes less CPU time than ours, though the quality
of its solutions does not measure up.

The results of the fifth set of benchmarks using a time limit of 30 minutes are
shown in Table 9. For the instance pm3-15-50, both PR1 and PR2 are able to
improve the previous best known result from a value of 3000 to the value of
3010 and 3014, respectively. For the instance pm3-8-50, PR1 and PR2 match
the previously best known result but the other refered algorithms fail to do so.
(We note that an algorithm fail to obtain a number of best known results and
still qualify as a top performing algorithm in the literature, given that other
algorithms may generally obtain still fewer best known results.) Moreover,
both of our algorithms and CirCut can reach the best known result on instance

16

Table 8
Computational Results on MaxCut Instances of Set2

PR1 PR2 SS [29] CirCut [8]
Instance fprev fbest favr time fbest favr time fbest time fbest time

G54100 110 110 110.0 0 110 110.0 0 110 1.9 110 16.2

G54200 112 112 112.0 0 112 112.0 0 112 1.9 112 18.6

G54300 106 106 106.0 0 106 106.0 0 106 2.1 106 15.8

G54400 114 114 114.0 0 114 114.0 0 114 2.1 114 16.0

G54500 112 112 112.0 0 112 112.0 0 112 2.3 112 15.8

G54600 110 110 110.0 0 110 110.0 0 110 2.1 110 15.4

G54700 112 112 112.0 0 112 112.0 0 112 2.0 112 14.8

G54800 108 108 108.0 0 108 108.0 0 108 2.1 108 15.4

G54900 110 110 110.0 0 110 110.0 0 110 1.8 110 15.5

G541000 112 112 112.0 0 112 112.0 0 112 1.4 112 16.4

G10100 896 896 894.3 99 896 894.6 24 882 406.1 880 106.0

G10200 900 900 900.0 1 900 900.0 1 894 302.4 892 116.0

G10300 892 892 890.5 342 892 891.3 71 884 410.4 882 112.0

G10400 898 898 898.0 3 898 898.0 1 892 485.9 894 103.0

G10500 886 886 885.4 48 886 885.4 36 880 400.9 882 106.0

G10600 888 888 888.0 1 888 888.0 1 870 461.8 886 119.0

G10700 900 900 898.1 400 900 898.2 414 890 386.2 894 115.0

G10800 882 882 881.3 39 882 881.2 31 880 466.9 874 104.0

G10900 902 902 900.9 143 902 901.5 63 888 493.6 890 121.0

G101000 894 894 893.5 27 894 893.7 8 886 352.8 886 111.0

G14100 2446 2442 2437.1 581 2444 2437.6 1682 2428 1320.6 2410 382.0

G14200 2458 2456 2452.1 985 2456 2452.4 361 2418 1121.1 2416 351.0

G14300 2442 2440 2432.9 491 2438 2435.5 551 2410 1215.8 2408 377.0

G14400 2450 2446 2440.2 1739 2448 2440.0 1036 2422 1237.2 2414 356.0

G14500 2446 2446 2437.9 877 2444 2438.7 1193 2416 1122.5 2406 388.0

G14600 2450 2448 2441.2 1163 2448 2442.3 884 2424 1213.9 2412 331.0

G14700 2444 2440 2431.5 1829 2440 2435.0 1384 2404 1230.6 2410 381.0

G14800 2448 2442 2436.9 1725 2444 2438.9 1055 2416 1132.0 2418 332.0

G14900 2426 2422 2414.7 1605 2422 2417.3 1185 2412 1213.9 2388 333.0

G141000 2458 2452 2445.8 2097 2454 2448.8 1345 2430 1125.8 2420 391.0

Average 473.2 377.5 537.3 163.2

Better 0 0 0 0

Equal 21 20 10 10

Worse 9 10 20 20

Table 9
Computational Results on MaxCut Instances of Set3

PR1 PR2 SS [29] CirCut [8]

Instance fprev fbest favr time fbest favr time fbest time fbest time

g3-15 283206561 279830931 277345801.1 3000 276903146 273564256.6 1272 281029888 1023 268519648 788

g3-8 41684814 41684814 41508934.7 292 41684814 41521529.9 258 40314704 66 41684814 54

pm3-
15-50

3000 3010 3006.6 1602 3014 3007.3 1890 2964 333 2895 427

pm3-8-
50

458 458 458.0 2 458 458.0 2 442 49 454 39

Average 1224.0 855.5 367.7 326.9

Better 1 1 0 0

Equal 2 2 0 1

Worse 1 1 4 3

17

Table 10
Computational Results on MaxCut with longer CPU time

Instance fbest time Instance fbest time Instance fbest time

G25 13340 3539 G27 3341 3040 G28 3298 17482

G30 3413 4795 G31 3310 10801 G37 7686 3903

G38 7688 17230 G39 2408 3087 G40 2400 11947

G41 2405 945 G42 2481 5580 G55 10274 31764

G56 3993 11727 G57 3484 4968 G58 19225 20499

G59 6039 28790 G60 14131 62466 G61 5748 29056

G62 4854 59568 G63 26941 45136 G64 8693 66851

G65 5544 94934 G66 6340 74375 G67 6928 114438

G70 9529 135572 G72 6978 141167 G14100 2446 2105

G14200 2458 1657 G14600 2450 1476 G14700 2442 2824

G14800 2446 3543 G14900 2426 7165 G141000 2458 8929

g3-8 with CPU time 292, 258 and 54 seconds, respectively. However, both PR
algorithms perform slightly worse than SS on instance g3-15.

To verify whether the proposed PR algorithms are able to further improve
the results by allowing longer computational time, we re-ran PR1 and PR2
on the MaxCut instances using 10 times longer time than before, as shown in
Table 10. Surprisingly, both PR1 and PR2 can further improve its best results
on a total of 33 instances. Although we only show the better results without
differentiating whether they come from PR1 or PR2, we find that PR1 and
PR2 obtain the same results on 7 instances of set 2, while better results come
from PR2 for the 25 instances of set 1 (except the instance G31).

4.5 Additional Comparisons

In order to further compare the proposed path relinking algorithms and the
HMA algorithm in [27], we apply the time-to-target (TTT) analysis to show
the empirical probability distribution of the needed time to attain a given
target value [1]. For this experiment, we also include a multistart tabu search
algorithm (MSTS) which is the tabu search procedure used in the path relink-
ing algorithms reinforced with a random restart procedure.

We carry out the TTT experiment on a random UBQP instance (p5000.5) and
a structured MaxCut instance (G25) with the PR1, PR2, HMA and MSTS
algorithms. We perform 200 independent runs for each algorithm and each
graph and record the time needed to attain an objective value at least as good
as a given target value for each run. Then we sort the recorded times in an
increasing order so that ti represents the ith lowest time and a probability
pi = (i − 1/2)/200 is associated to each time ti. Finally, the points (ti, pi)
are plotted. Figure 1 shows the results of the TTT experiment for PR1, PR2,

18

HMA and MSTS on the two tested instance p5000.5 (Left) and G25 (Right).

0 1000 2000 3000 4000 5000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to target value

pr
ob

ab
ili

ty

PR1
PR2
HMA
MSTS

Instances: p5000.5
Target: 12731803

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Time to target value

pr
ob

ab
ili

ty

PR1
PR2
HMA
MSTS

Instances: G25
Target: 13316

Fig. 1. Empirical probability distribution for the time to achieve a target value

From the left part of Figure 1, we first observe that for the first 400 seconds,
PR1, PR2, HMA and MSTS almost perform the same with a low probability
of 17% to reach the target value. Afterwards, PR1 and PR2 are obviously
superior to HMA and MSTS. Specifically, at the moment of 2000 seconds,
both PR1 and PR2 reach the target value with a probability of 100% against
a probability of 60% for HMA and a probability of 38% for MSTS.

From the right part of Figure 1, we notice that MSTS performs much worse
than the other algorithms with a probability less than 5% to reach the target
value during the overall time span of 500 seconds while PR1, PR2 and HMA
only need 50 seconds to yield an equal or a better performance. In addition,
after 50 seconds PR2 always has a higher probability to achieve the target
value than HMA and PR1. However, HMA is superior to PR1 from the moment
of 100 seconds, which reverses the observation on instance p5000.5 where HMA
is generally inferior to PR1. Therefore, this experiment shows that the path
relinking procedure, as one of the important components of the proposed PR1
and PR2 algorithms, does play a key role for the good performance of our
algorithms, especially in comparison with the MSTS algorithm.

5 Discussion

In the previous section, we showed that the proposed path relinking algo-
rithms are able to achieve very competitive results on the UBQP and MaxCut

19

benchmark instances. In this section, we discuss the results obtained on two
other well-known combinatorial problems: set packing and graph k-coloring.

For the set packing problem, we first recast the problem into the UBQP model
as shown in [2]. This experiment is based on a set of 16 large random bench-
mark instances with up to 2000 variables used in [2,11]. The experimental
results (within a time limit of 30 minutes) show that our path relinking al-
gorithms can match the best known results on 10 of the 16 instances. Re-
markably, PR2 is able to improve the best known results ever reported in
the literature for 2 instances. This performance can be considered to be very
competitive in comparison with the state of the art methods like the GRASP
algorithm of [11] which is specially designed for the set packing problem.

For the graph k-coloring problem, we recast the problem to the UBQP model
according to the transformation shown in [24]. For each graph, we set k to
be equal to the smallest known number ever reported in the literature and
ran PR2 to check whether PR2 can find a feasible coloring. On the one hand,
for the 21 small graph instances considered in [24] with up to 450 vertices
and 1000 edges, PR2 can find a feasible coloring for each tested instance. On
the other hand, tests on 20 challenging DIMACS graphs indicate that it is
very difficult for PR2 to find feasible colorings with k set to be the smallest
color number reported in the literature. Indeed, PR2 only found the feasi-
ble coloring on 2 out of 20 instances. This experiment indicates that though
our path relinking algorithms are able to find good approximate solutions for
the k-coloring problem, they can not compete with the current best coloring
algorithms.

6 Conclusion

In this paper, we proposed two effective path relinking algorithms for the
unconstrained binary quadratic programming problem. The proposed algo-
rithms are composed of a reference set initialization method, an improvement
method by tabu search, a reference set update method, a relinking method
and a path solution selection method. The proposed algorithms differ from
each other mainly on the way they generate the path, one employing a greedy
strategy (PR1) and the other employing a random strategy (PR2). The ex-
periments suggest that PR1 is more appropriate for random instances while
PR2 is preferable for structured instances.

Computational experiments on five sets of 134 well-known random and struc-
tured benchmark instances have demonstrated that both algorithms are ca-
pable of attaining highly competitive results in comparison with the previous
best-known results from the literature. In particular, for three sets of bench-

20

marks with a total of 103 instances derived from the MaxCut problem, our
algorithms can improve the previous best known results for almost 40 per-
cent of these instances whose optimum solutions are still unknown. We also
indicated that the path relinking algorithms perform quite well on 16 large
set packing benchmark instances, but their performance on k-coloring is more
moderate. It would be interesting to verify the performance of the proposed
algorithms in solving other combinational problems that can be reformulated
into the UBQP model.

There are several issues for future consideration. First, more elaborate methods
can be used to better manage the reference set by considering both the the
quality of solution and its distance to the previously found solutions, given
the fact that a good diversity of the reference set is important for the path
generation. Second, it would be interesting to verify if selecting more than one
solution from a path for improvement is a good strategy. Third, by replacing
the basic tabu search based improvement method with a more advanced tabu
search method, still better outcomes could be expected.

Acknowledgement

We would like to thank the anonymous referees for their helpful comments
and suggestions. The work is partially supported by the regional RaDaPop
(2009-2013) and LigeRo projects (2009-2013).

References

[1] Aiex RM, Resende MGC, Ribeiro CC (2007) TTT plots: a perl program to create
time-to-target plots. Optimization Letters 1: 355-366

[2] Alidaee B, Kochenberger GA, Lewisa K, Lewisc M, Wang HB (2008) A new
approach for modeling and solving set packing problems. European Journal of
Operational Research 186(2):504-512

[3] Beasley JE (1996) Obtaining test problems via internet. Journal of Global
Optimization 8:429–433

[4] Beasley JE (1998) Heuristic algorithms for the unconstrained binary quadratic
programming problem. Working Paper, The Management School, Imperial
College, London, England

[5] Borgulya I (2005) An evolutionary algorithm for the binary quadratic problems.
Advances in Soft Computing 2:3–6

21

[6] Boros E, Hammer PL, Sun R, Tavares G (2008) A max-flow approach to improved
lower bounds for quadratic 0-1 minimization. Discrete Optimization 5(2):501–529

[7] Boros E, Hammer PL, Tavares G (2007) Local search heuristics for Quadratic
Unconstrained Binary Optimization (QUBO). Journal of Heuristics 13:99–132

[8] Burer S, Monteiro RDC, Zhang Y (2001) Rank-two relaxation heuristics for
max-cut and other binary quadratic programs. SIAM Journal on Optimization
12:503–521

[9] Chardaire P, Sutter A (1994) A decomposition method for quadratic zero-one
programming. Management Science 41(4):704–712

[10] Choi C, Ye Y (2000) Solving sparse semidefinite programs using the dual scaling
algorithm with an iterative solver. Working paper, Department of Management
Sciences, The University of Iowa.

[11] Delorme X, Gandibleau X, Rodriques J (2004) GRASP for set packing.
European Journal of Operational Research 153:564-580

[12] Festa P, Pardalos PM, Resende MGC, Ribeiro CC (2002) Randomized heuristics
for the max-cut problem. Optimization Methods and Software 7:1033–1058

[13] Glover F, Laguna M (1997) Tabu search. Kluwer Academic Publishers, Boston

[14] Glover F, Kochenberger GA, Alidaee B (1998) Adaptive memory tabu search
for binary quadratic programs. Management Science 44:336–345

[15] Glover F, Laguna M, Marti R (2000) Fundamentals of scatter search and path-
relinking. Control and Cybernetics 39:654–684

[16] Glover F, Laguna M, Marti R (2003) Scatter search and path relinking: advances
and applications. Handbook of Metaheuristics 57:1–35

[17] Glover F, Laguna M, Marti R (2004) Scatter Search and Path Relinking:
Foundations and Advanced Designs, New Optimization Technologies in
Engineering, eds. G. C. Onwubolu and B. V. Babu, Studies in Fuzziness and
Soft Computing, 141:87–100

[18] Glover F, Hao JK (2010). Efficient Evaluation for Solving 0-1 Unconstrained
Quadratic Optimization Problems. International Journal of Metaheuristics 1(1):3–
10

[19] Glover F, Lü Z, Hao JK (2010) Diversification-driven tabu search for
unconstrained binary quadratic problems. 4OR: A Quarterly Journal of
Operations Research 8(3):239–253

[20] Harary F (1953) On the notion of balanced of a signed graph. Michigan
Mathematical Journal 2:143–146

[21] Helmberg C, Rendl F (1998) Solving quadratic (0,1)-problem by semidefinite
programs and cutting planes. Mathematical Programming 82:388–399

22

[22] Katayama K, Narihisa H (2001) Performance of simulated annealing-based
heuristic for the unconstrained binary quadratic programming problem. European
Journal of Operational Research 134:103–119

[23] Kochenberger GA, Glover F, Alidaee B, Rego C (2004) A unified modeling
and solution framework for combinatorial optimization problems. OR Spectrum
26:237–250

[24] Kochenberger GA, Glover F, Alidaee B, Rego C (2005) An unconstrained
quadratic binary programming approach to the vertex coloring problem. Annals
OR 139(1): 229–241

[25] Krarup J, Pruzan A (1978) Computer aided layout design. Mathematical
Programming Study 9:75–84

[26] Lodi A, Allemand K, Liebling TM (1999) An evolutionary heuristic
for quadratic 0-1 programming. European Journal of Operational Research
119(3):662–670

[27] Lü Z, Glover F, Hao JK (2010) A hybrid metaheuristic approach to solving the
UBQP problem. European Journal of Operational Research 207(3):1254–1262

[28] McBride RD, Yormark JS (1980) An implicit enumeration algorithm for
quadratic integer programming. Management Science 26:282-296

[29] Marti R, Duarte A, Laguna M (2009) Advanced scatter search for the max-cut
problem. INFORMS Journal on Computing 21(1):26–38

[30] Merz P, Freisleben B (1999) Genetic algorithms for binary quadratic
programming. In: Proceedings of the Genetic and Evolutionary Computation
Conference (GECCO99), Morgan Kaufmann, pp 417–424

[31] Merz P, Katayama K (2004) Memetic algorithms for the unconstrained binary
quadratic programming problem. BioSystems 78:99–118

[32] Palubeckis G (2004) Multistart tabu search strategies for the unconstrained
binary quadratic optimization problem. Annals of Operations Research 131:259–
282

[33] Palubeckis G (2004) Application of multistart tabu search to the MaxCut
problem. Information Technology and Control 2(31):29–35

[34] Palubeckis G (2006) Iterated tabu search for the unconstrained binary quadratic
optimization problem. Informatica 17(2):279–296

[35] Pardalos P, Rodgers GP (1990) Computational aspects of a branch and bound
algorithm for quadratic zero-one programming. Computing 45:131–144

[36] Shylo VP, Shylo OV (2010) Solving the maxcut problem by the global
equilibrium search. Cybernetics and Systems Analysis 46(5):744–754

[37] Wang Y, Lü Z, Glover F, Hao JK (2011) Backbone guided Tabu Search for
solving the UBQP problem. Journal of Heuristics (DOI: 10.1007/s10732-011-9164-
4)

23

[38] Wang Y, Lü Z, Glover F, Hao JK (2011) Effective variable fixing and scoring
strategies for binary quadratic programming. P. Merz, J.K. Hao (Eds): EvoCOP
2011, Lecture Notes in Computer Science 6622: 72–83.

24

