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Abstract

This paper presents an adaptive neighborhood search method (ANS) for
solving the nurse rostering problem proposed for the First International
Nurse Rostering Competition (INRC-2010). ANS uses jointly two distinct
neighborhood moves and adaptively switches among three intensification
and diversification search strategies according to the search history. Com-
putational results assessed on the three sets of 60 competition instances show
that ANS improves the best known results for 12 instances while matching
the best bounds for 39 other instances. An analysis of some key elements
of ANS sheds light on the understanding of the behavior of the proposed
algorithm.

Keywords: Nurse rostering; intensification and diversification; adaptive switch-
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1. Introduction

Nurse rostering is a research topic of increasing interest in recent decades
that is encountered by many large modern hospitals around the world [23].
As a specific personnel scheduling problem, nurse rostering problem consists
in generating daily schedules for nurses by assigning a number of daily de-
manding shifts to nurses with different skills subject to certain predefined
(hard and soft) constraints. The general objective of the problem is to ef-
fectively utilize limited resources such that the hospitals’ efficiency can be
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Lü), hao@info.univ-angers.fr (Jin-Kao Hao)

Preprint submitted to European Journal of Operational Research September 9, 2012



improved without sacrificing the well-being and job satisfaction of nurses
[26].

Due to the presence of many constraints and requirements of conflicting
nature, nurse rostering in the real world are often complex and difficult to
solve and present a great challenge for researchers in universities and per-
sonnel managers in hospitals. As described in [19], nurse rostering must
consider issues like coverage demand, workload of nurses, consecutive as-
signments of shifts, day-off/on requirements, weekend-related requirements,
preference or avoidance of certain shift patterns, etc.

Over the last few decades, nurse rostering has been extensively studied
and a wide range of effective approaches have been reported in the literature.
These techniques can be roughly classified into two main categories: exact
algorithms and heuristics. Among the first category are several methods
using mathematical programming techniques [6, 7, 20]. However, the high
computational complexity of nurse rostering problems limits the application
of exact methods only to small size instances. For larger instances, various
effective metaheuristic algorithms have been designed to find suboptimal
solutions of good quality in a reasonable time.

Burke et al [16] developed two hybrid tabu search algorithms, respec-
tively with diversification and greedy shuffling heuristics, where several neigh-
borhoods were defined: Moving a shift from one nurse to another on the same
day, exchanging a part of the schedule of nurses and moves for exchang-
ing assignments among every pair of nurses. Bellanti et al [8] introduced
a tabu search procedure and an iterated local search for tackling a nurse
rostering problem with various hard and soft constraints. They used four
different neighborhoods operating on partial solutions completed by means
of a greedy procedure so as to avoid the generation of infeasible solutions. In
[15], Burke et al applied a Variable Neighborhood Search (VNS) on highly
constrained real world nurse rostering data and they observed that VNS
could help the search to effectively jump out of the local optima. Burke
et al [13] proposed a hybrid heuristic ordering and variable neighborhood
search method by combining heuristic ordering, VNS and back-tracking.
The VNS is based on two types of neighborhood moves, which respectively
assign a shift to a different nurse and swap the nurses assigned to each of a
pair of shifts. The proposed algorithm significantly outperforms an existing
genetic algorithm on commercial data. Valouxis and Housos [29] applied
an approximate integer linear programming model to generate the initial
solution of their nurse rostering problem and then further optimize it using
a ‘2-opt’ neighborhood local search procedure. Other representative ap-
proaches to solving nurse rostering problems also include simulated anneal-
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ing [10], genetic algorithms [1, 2, 22], scatter search [14], memetic method
[11], evolutionary algorithm [5] and estimation and distribution algorithm
[3]. Interested readers are referred to [17] for a comprehensive survey of the
advanced approaches for nurse rostering presented in recent decades.

The study reported in this paper concerns the nurse rostering problem
recently presented in the First International Nurse Rostering Competition
(INRC-2010). Building on the previous two timetabling competitions—ITC-
2002 and ITC-2007 [24]—INRC-2010 competition aims to further develop
interest in timetabling and rostering by providing more challenging problems
with an increased number of real world constraints. Moreover, the INRC-
2010 nurse rostering problem integrates additional real world constraints
that were also missed in the previous nurse rostering literatures [19]. For this
challenging problem, a number of solution procedures have been proposed
by the participants of the competition. We now briefly review the methods
proposed by the INRC-2010 competition finalists.

Valouxis et al [28] tackled the problem by partitioning the original prob-
lem into sub-problems. Each sub-problem size is solved using mathematical
programming. The approach consists of two phases: One is to assign nurses
to working days and the other is to schedule the nurses assigned to each day
to certain shifts. For the Medium and Long tracks of the competition, three
additional local search techniques were incorporated into the first phase. It
is noteworthy that this algorithm won all the three tracks of the INRC-2010
competition. Burke and Curtois [12] applied two algorithms to solve the
problem: The first algorithm is an ejection chain based method and it was
applied to the Sprint instances. The second algorithm is a branch and price
method which was applied to the Medium and Long instances. It has been
shown that the second algorithm was generally able to solve many of the
competition instances to optimality within the competition time limit. This
algorithm was ranked the 2nd place for theMedium and Long tracks and the
4th place for the Sprint track. Nonobe [27] first modeled the problem into
a constraint optimization problem (COP) and then used a general-purpose
COP solver based on tabu search to solve it. The algorithm got the 2nd, 3rd
and 4th places for the Sprint, Medium and Long tracks, respectively. Bil-
gin et al [9] proposed a hybrid algorithm which employs a hyper-heuristic
followed by a greedy shuffle heuristic. In addition, the authors provided
the computational results of integer linear programming (ILP) using IBM
CPLEX. They got one 3rd place for the Long track and two 5th places for
the Sprint and Medium tracks of the competition.

In this paper, we present ANS, an adaptive neighborhood search algo-
rithm for solving the nurse rostering problem of the INRC-2010. Our ANS
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algorithm incorporates an adaptive search mechanism which automatically
switches among three search strategies, respectively called intensive search,
intermediate search and diversification search. As such, the tradeoff between
intensification and diversification is achieved in a flexible manner. The main
contribution of the proposed algorithm can be summarized as follows:

• Compared with the top-ranked solvers of the INRC-2010 competition
like [9, 12, 28], the proposed algorithm, which is a pure neighborhood
heuristic, remains conceptually simple. Indeed, while the reference
solvers often apply hybrid methods (ILP, branch-and-price and heuris-
tics) to tackle different tracks of the competition, our solver is based
on a unified local search algorithm which is applied to solve all the
competition instances.

• The proposed algorithm achieves a good performance by improving
the previous best known results for 12 instances while matching the
best known solutions in 39 other cases.

The remaining part of the paper is organized as follows. Section 2
presents the problem description and a mathematical formulation of the
nurse rostering problem addressed in this paper. In Section 3, the main
idea, framework and each component of our ANS algorithm for solving the
nurse rostering problem are described. Sections 4 is dedicated to the com-
putational results under both competition and relaxed timeout conditions.
Section 5 investigates several essential components of the proposed ANS
algorithm and concluding remarks are given in Section 6.

2. Problem Formulation of Nurse Rostering Problem

The nurse rostering problem considered in this paper consists of assigning
shifts to nurses in accordance with a given set of constraints [19]. Usually,
two types of constraints are defined: Those which must be strictly satisfied
under any circumstances (hard constraints) and those which are not nec-
essarily satisfied but whose violations should be desirably minimized (soft
constraints). A schedule that satisfies all the hard constraints is called a
feasible assignment. The objective of the nurse rostering problem is to min-
imize the total weighted soft constraint violations in a feasible assignment.
Interested readers are referred to [19] for a detailed problem description of
the INRC-2010 problem .

We present below a mathematical formulation of the problem which is
missing in the literature.
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To introduce the hard and soft constraints, we state:

• a set D of days, during which nurses are to be scheduled, |D| = D.
Usually D is composed of four weeks, i.e., D = 28;

• a set S of nurses, each being associated with a set of available skills
and working under exactly one contract, |S| = S;

• a set H of shifts, each being characterized by a set of required skills,
|H| = H;

• a set P of patterns, each being the shift series that the nurse may not
want to work in a row, |P| = P ;

• a set C of contracts, each being characterized by a number of regu-
lations that should be respected by all the nurses working under this
contract, |C| = C.

We choose a direct solution representation for simplicity reasons. A can-
didate solution is represented by an S×D matrix X where xi,j corresponds
to the shift type assigned for nurse si at day dj . If there is no shift assigned
to nurse si at day dj , then xi,j takes the value “-1”. With this representation
we ensure that a nurse can only work at most one shift per day, meaning
that the second hard constraint H2 will never be violated.

A number of constant and variable symbols are presented in Table 1,
where the constants are predefined by the problem instance or regulated by
the working contract of nurses while the variables may take different values
according to the current solution X . The second column indicates in which
constraint the corresponding constants or variables occur.

The 2 hard constraints are:

• H1. Coverage requirement: For each day all demanded shifts must
be assigned to nurses. ∀d ∈ D, h ∈ H,

S
∑

s=1

χ(xs,d = h) = sc(d, h)

where χ is the truth indicator function which takes values of 1 if the
given proposition is true and 0 otherwise.

• H2. Single shift per day: A nurse can only work one shift per day,
i.e., no two shifts can be assigned to the same nurse on a day. This
hard constraint is always satisfied using our solution representation.
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For any nurse s ∈ S, the 18 soft constraints are:

• S1. Maximum assignment: The maximum number of shifts that
can be assigned to nurse s.

fs,1 = max(
∑

d∈D

χ(xs,d 6= −1)− shift(s)+, 0)

• S2. Minimum assignment: The minimum number of shifts that can
be assigned to nurse s.

fs,2 = max(shift(s)− −
∑

d∈D

χ(xs,i 6= −1), 0)

• S3. Maximum consecutive working days: The maximum number
of consecutive days on which a shift has been assigned to nurse s.

fs,3 =

n wksect(s)
∑

i=1

max(len wksect(s, i) − work(s)+, 0)

• S4. Minimum consecutive working days: The minimum number
of consecutive days on which a shift has been assigned to nurse s.

fs,4 =

n wksect(s)
∑

i=1

max(work(s)− − len wksect(s, i), 0)

• S5. Maximum consecutive free days: The maximum number of
consecutive days on which nurse s has no shift assigned.

fs,5 =

n frsect(s)
∑

i=1

max(len frsect(s, i)− free(s)+, 0)

• S6. Minimum consecutive free days: The minimum number of
consecutive days on which nurse s has no shift assigned

fs,6 =

n frsect(s)
∑

i=1

max(free(s)− − len frsect(s, i), 0)
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• S7. Two free days after a night shift: Nurse s should not be
assigned any shift except a night shift during the following two days
after a night shift.

fs,7 =

∑D−2
i=1 χ(xs,i = Night ∧ ((xs,i+1 6= Night ∧ xs,i+1 6= −1) ∨ (xs,i+2 6= Night ∧ xs,i+2 6= −1)))

+χ(xs,D−1 = Night ∧ xs,D 6= Night ∧ xs,D 6= −1)

• S8. Maximum consecutive working weekends: The maximum
number of consecutive weekends on which at leat one shift is assigned
to nurse s.

fs,8 =

n wkdsect(s)
∑

i=1

max(len wkdsect(s, i) − wkd(s)+, 0)

• S9. Minimum consecutive working weekends: The minimum
number of consecutive weekends on which at leat one shift is assigned
to nurse s.

fs,9 =

n wkdsect(s)
∑

i=1

max(wkd(s)− − len wkdsect(s, i), 0)

• S10. Maximum number of working weekends: The maximum
number of weekends in four weeks in which at least one shift is assigned
to nurse s.

fs,10 = max(

n wkd
∑

i=1

χ(nwd(s, i) > 0)− n wkd(s)+, 0)

• S11. Complete weekends: Nurse s should work on all days of a
weekend if nurse s works at least one day of the weekend.

fs,11 =
n wkd
∑

i=1

CompWkdCost(s, i)

where

CompWkdCost(s, i) =







4, if nd(s) = 3 ∧ nwd(s, i) = 2 ∧ h wkd(s, i, 2) = −1;
nd(s) − nwd(s, i), else if 0 < nwd(s, i) < nd(s);
0, otherwise.
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The first condition indicates that a higher penalty is raised if the work-
ing days at the weekend are not consecutive (this may happen when
the weekend has 3 days according to the instance definition), i.e., if the
working pattern of the weekend is X0X (X=working, 0=not working),
the cost is equal to 4. In this case, only the patterns 000 and XXX
do not incur any violation of this constraint. Note that the work-
ing pattern of a weekend is the shift series that the nurse works at a
weekend.

• S12. Identical complete weekend shift type: Nurse s should work
the same shift types on the days of a complete working weekend.

fs,12 =

n wkd
∑

i=1

IdentWkdCost(s, i)

where

IdentWkdCost(s, i) =

{ ∑

h∈H,nh(s,i,h)>0(nd(s) − nh(s, i, h)), if nwd(s, i) = nd(s);

0, otherwise.

• S13. Requested day on: Nurse s requests to work on a specific day.

fs,13 =
∑

d∈D

χ(day req(s, d) = on ∧ xs,d = −1)

• S14. Requested day off : Nurse s requests not to work on a specific
day.

fs,14 =
∑

d∈D

χ(day req(s, d) = off ∧ xs,d 6= −1)

• S15. Requested shift on: Nurse s requests to work a specific shift
on a specific day.

fs,15 =
∑

d∈D

∑

h∈H

χ(sh req(s, d, h) = on ∧ xs,d 6= h)

• S16. Requested shift off : Nurse s requests not to work a specific
shift on a specific day.

fs,16 =
∑

d∈D

∑

h∈H

χ(sh req(s, d, h) = off ∧ xs,d = h)
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• S17. Alternative skill: Nurse s should work a shift for which all the
required skills of the shift are possessed by nurse s

fs,17 =
∑

d∈D

χ(xs,d 6= −1 ∧ qual(s, xs,d) = false)

• S18. Unwanted shift patterns: Nurse s should not work a specific
unwanted pattern in a row.

fs,18 =
∑

p∈unwantp(s)

n unwp(s, p)

With the above formulation, we can then calculate the total soft con-
straint cost for a given candidate feasible solution X according to the cost
function f(X ) defined in Formula (1).

f(X ) =

S
∑

s=1

18
∑

i=1

ws,i · fs,i (1)

where ws,i is the weight associated to the soft constraint Si for nurse s,
regulated by the contract of nurse s. Note that different weights may be
assigned to different soft constraints in an attempt to produce solutions
that are more appropriate for their particular needs. ws,i could be 0 if the
corresponding soft constraint is not considered. The objective is then to
find a feasible solution X ∗ such that f(X ∗) ≤ f(X ) for all X in the feasible
search space.

3. Adaptive Neighborhood Search Algorithm

3.1. Main Framework

Starting from an initial feasible solution generated by a constructive
heuristic (see Section 3.2), our ANS algorithm (Algorithm 1), which adap-
tively switches among three search strategies according to a diversification
level dl, is used to optimize the solution as far as possible until the solution
cannot be improved within a certain number of iterations (lines 7-15). When
the local search stops, the search is restarted from an elite solution, where-
upon a new round of adaptive local search is again launched (lines 19-20).
In the following subsections, the main components of our ANS algorithm
are described in detail.
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Algorithm 1 Pseudo-code of the ANS algorithm for nurse rostering
1: Input: Problem instance I
2: Output: The best roster assignment X ∗ obtained
3: X 0 ← Initial Solution( ) (see Section 3.2)
4: X ∗ ← X 0; diversification level parameter dl← 0.0
5: repeat

6: X ← X 0; X ′ ← X 0 //X and X
′

denote the current and the best solution in
the current round of local search, respectively
//Lines 7-15: local search procedure

7: while the improvement cutoff of local search is not reached do

8: mv ← neighborhood move selected from M(X ) (see Alg. 2, Section 3.4)
9: X ← X ⊕mv

10: if f(X ) < f(X
′

) then
11: X

′

← X
12: end if

13: dl ← Parameter Updating(dl) (see Alg. 3, Section 3.5)
14: end while

//Lines 16-18: record the best solution X ∗ found so far
15: if f(X

′

) < f(X ∗) then
16: X ∗ ← X

′

17: end if

//Lines 19-20: restart the search from an elite solution (see Section 3.6)
18: X 0 ← X ∗ or X 0 ← X

′

with equal probability
19: dl ← 1.0
20: until a stop criterion is met

3.2. Initial Solution

Our ANS algorithm generates a feasible initial solution satisfying the
two hard constraints (H1 and H2). As mentioned above, the second hard
constraint H2 is automatically satisfied with our solution representation.
Thus, we consider only the first hard constraint H1, i.e., the daily shift
coverage requirement. This is achieved by a sequential heuristic starting
from an empty roster, from which roster assignments are constructed by
inserting one appropriate shift into the roster at each time. We repeat this
procedure for

∑

d∈D

∑

h∈H sc(d, h) times until all the daily shift coverage
requirements are met.

At the beginning, the unassigned shift h of day d is equal to sc(d, h).
At each step, we carry out two distinct operations: One is to randomly
select an unassigned shift h′ of a specific day d′ where sc(d′, h′) > 0, the
other is to randomly choose a nurse who is free for this shift. After this,
sc(d′, h′) is decreased by one. This procedure repeats until sc(d, h) becomes
zero for any shift h and any day d. In this way, the first hard constraint
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H1 is guaranteed to be satisfied and a feasible roster is constructed. Let
us mention that our algorithm does not consider any soft constraint in this
initial solution generation procedure. Our experiments demonstrated that
the quality of the initial solution has little influence on the performance of
our ANS algorithm.

3.3. Moves and Neighborhood

Given a solution X , a neighboring solution can be obtained by applying
a move mv to X , denoted by X ⊕mv. Let M(X ) be the set of moves which
can be applied to X , then the neighborhood of X is defined by:

N(X ) = {X ⊕mv|mv ∈M(X )} (2)

In this paper, we use a combined neighborhood jointly defined by moving
one shift at a specific day to a different nurse (One-Move) and swapping the
two shifts assigned to a pair of nurses at a specific day (Two-Swap). Notice
that these two moves never break the feasibility of the solutions.

Specifically, a One-Move in solution X , denoted by mv1(d, s1, s2), con-
sists in assigning the value of xs1,d to xs2,d, i.e., xs2,d = xs1,d and xs1,d = −1.
Formally,

M1(X ) = {mv1(d, s1, s2)|∀d ∈ D, xs1,d 6= −1 ∧ xs2,d = −1} (3)

Applying the Two-Swap move, denoted bymv2(d, s1, s2), to two different
shifts xs1,d and xs2,d at day d in solution X consists in assigning the value
of xs1,d to xs2,d and inversely the value of xs2,d to xs1,d. Formally,

M2(X ) = {mv2(d, s1, s2)|∀d ∈ D, xs1,d, xs2,d 6= −1 ∧ xs1,d 6= xs2,d} (4)

In our ANS algorithm, a combination of both M1(X ) and M2(X ) moves
is used. At each local search iteration, M1(X ) is applied with probability
q, while M2(X ) is employed at a (1 - q) rate. In this paper, we empirically

set q = 1 − ϕ · dens, where ϕ = 0.4 and dens =
∑

d∈D

∑

h∈H
sc(d,h)

S·D × 100%
represents the density of the problem instance. This combined neighborhood
M(X ) is defined in Eq. (5), where r[0, 1) represents a random number
between 0 and 1.

M(X ) =

{

M1(X ), if r[0, 1) < q;
M2(X ), otherwise.

(5)
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3.4. Move Selection Strategies

To explore the above combined neighborhood, we introduce three move
selection strategies leading respectively to an Intensive Search, an Inter-
mediate Search and a Diversification Search. The ANS algorithm uses an
adaptive mechanism to switch among them such that a suitable exploita-
tion/exploration balance is reached.
Intensive Search:

In this search strategy, we employ a tabu search (TS) algorithm to ex-
plore the whole neighborhood M(X ). TS typically incorporates a tabu list
as a “recency-based” memory structure to forbid each performed move to
be reconsidered within a certain span of iterations (tabu tenure [21]).

More precisely, when using move mv1(d, s1, s2) ∈ M1(X ), if the shift
xs1,d is moved from nurse s1 to nurse s2, then reassigning shift xs1,d to nurse
s1 at day d is declared tabu and thus forbidden. On the other hand, when
it comes to move mv2(d, s1, s2) ∈ M2(X ), if the two shifts xs1,d and xs2,d
are exchanged by nurses s1 and s2 at day d, it is forbidden to reassign shift
xs1,d (xs2,d) back to nurse s1 (s2) at day d within the next TabuTenure
iterations. In our experiments, we set the tabu tenure as: TabuTenure=tl
+ rand(3) where tl is a given constant and rand(3) takes a random value
from 1 to 3. We empirically set tl = ⌊0.8 · S⌋ for all the tested instances.

At each iteration, our TS algorithm then restricts consideration to moves
which are not forbidden by the tabu list, and selects a move that produces
the largest improvement in terms of the objective f(X ), breaking ties ran-
domly. Together with this rule, a simple aspiration criterion is applied which
allows a move to be performed in spite of being tabu if it leads to a solution
better than the current best solution.
Intermediate Search:

As mentioned above, Intensive Search systematically chooses the best
move among all the feasible moves in the neighborhood, while our Interme-
diate Search picks a move from those limited to a subset of nurses. Specif-
ically, at each iteration our ANS algorithm randomly selects a subset S∗

of nurses (S∗ ⊆ S) and all the moves concerning the nurses in S∗ are con-
sidered. That is to say, we only take into account a subset of the whole
neighborhood M(X ) defined by Eq. (5), represented by

M(X )(S∗) = {mv(d, i, j)|mv(d, i, j) ∈M(X ) ∧ i ∈ S∗ ∧ j ∈ S∗} (6)

where we empirically set |S∗| = ⌊S/2⌋ in our experiments.1

1This is the main difference to the INRC-2010 competition version of our solver where
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At each iteration, we select the best move in M(X )(S∗) to perform.
However, if the best move is the most recently visited move, we select the
second best move (in terms of solution quality) with a probability 0.5. This
strategy of selecting the second best move is borrowed from SAT solvers [4]
and it can help the search to avoid traversing already visited search regions
and improve the search robustness to some extent. In our implementation,
we utilize a memory structure called recency to record the iteration at which
a move is recently performed. More precisely, each time a shift type h
is moved away from nurse s at day d, the current local search iteration
index (the iter number in Algorithm 1) is assigned to the associated record
recency(s,d,h). Thus, we could easily identify whether the best move in
M(X )(S∗) is the recently performed one by retrieving the value of recency.
This strategy is used to increase the diversification of the algorithm when
the best move in M(X )(S∗) cancels a recent move. Let us comment that the
Intermediate Search can be considered as a search strategy lying between
the Intensive Search and the Diversification Search described below.
Diversification Search:

The objective of this search strategy is to diversify the search when a
stagnation behavior is detected. Similar to the Intermediate Search, at each
iteration a subset S∗ of nurses are randomly selected and all the moves con-
cerning these nurses are considered. In other words, from the neighborhood
defined in Eq. (7), we identify a subset of promising moves M ′(X )(S∗) of
M(X )(S∗) such that each move in M ′(X )(S∗) can improve at least one of
the soft constraints S1 to S18.

M ′(X )(S∗) = {mv|mv ∈M(X )(S∗) ∧ ∃j,∆fj(mv) < 0} (7)

where ∆fj(mv) denotes the objective difference for the jth soft constraint Sj
incurred by the move mv. We call a move in M ′(X )(S∗) the sub-promising
move, i.e., this kind of move improves at least one of the 18 soft constraints.
If there exist such sub-promising moves for the subset S∗ of nurses, i.e.,
|M ′(X )(S∗)| > 0, our algorithm randomly selects one of such moves to
perform. Otherwise, our algorithm picks a move from M(X )(S∗) at random.

Given the three search strategies with different intensification and diver-
sification capability, we choose one of these three search strategies according
to a parameter dl called “diversification level”. This parameter is dynam-

we set |S∗| = 2. Our experiments show that the Intermediate Search with |S∗| = 2 has
much less intensification capability than |S∗| = ⌊S/2⌋. In addition, we employ somewhat
different parameter settings in the current version.
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ically adjusted to allow the search to adaptively switch among the three
search strategies, as described in Algorithm 2. Specifically, if dl ∈ [0, β1)
meaning a strong exploitation is needed, we perform the Intensive Search
(lines 3-9), while the Intermediate Search is employed if dl ∈ [β1, β2) (lines
10-17) (0 < β1 < β2 < 1). Otherwise (dl ∈ [β2, 1)), the Diversification
Search is used (lines 18-27). In our experiments, we empirically set β1 = 0.3
and β2 = 0.7 for all the benchmark instances.

Algorithm 2 Neighborhood move selection for ANS (dl)

1: Input: Current solution X and feasible moves M(X ), diversification level dl
2: Output: The selected neighborhood move mv
3: if dl ∈ [0, β1) then
4: if the TS aspiration criterion is satisfied then

5: mv ← the best move in M(X )
6: else

7: mv ← the best move in M(X ) except those forbidden by the tabu list
8: end if

9: end if

10: if dl ∈ [β1, β2) then
11: Randomly choose a subset S∗ of nurses (|S∗| = ⌊S/2⌋)
12: if the best move in M(X )(S∗) is the most recent and rand[0, 1) < 0.5 then

13: mv ← the second best move in M(X )(S∗)
14: else

15: mv ← the best move in M(X )(S∗)
16: end if

17: end if

18: if dl ∈ [β2, 1) then
19: Randomly choose a subset S∗ of nurses (|S∗| = ⌊S/2⌋)
20: Identify the set M ′(X )(S∗) of sub-promising moves in M(X )(S∗)
21: if |M ′(X )(S∗)| > 0 then

22: mv ← a randomly selected move in M ′(X )(S∗)
23: end if

24: if |M ′(X )(S∗)| = 0 then

25: mv ← a randomly selected move in M(X )(S∗)
26: end if

27: end if

28: return mv

3.5. Adaptive Diversification Level Adjustment

ANS employs a mechanism firstly proposed in [4] to adaptively adjust
the diversification level dl according to the search history. dl is first set at a
level low enough (dl = 0.0) such that the objective function can be quickly
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improved. When the search process cannot improve the solution quality
during a given number of iterations, dl is increased to reinforce the diversi-
fication until the search process overcomes the stagnation. Meanwhile, the
diversification level is gradually decreased when the search begins to improve
the current objective value (Algorithm 3).

Specifically, we record at each adaptive step the current iteration number
iter and the objective value of the current solution. Then, if this objective
value is not improved over the last θ steps (empirically set θ = ⌊S·H10 ⌋ for all
our experiments), the search is supposed to be stagnating (line 4). At this
point, the diversification level parameter dl is increased (line 5). Similarly,
dl is kept unchanged until another stagnation situation is detected or the
objective value is improved (line 8). In the latter case, dl is decreased (line
9). Note that the values 6 and 10 in lines 5 and 9 are directly borrowed from
[4] and it is observed that they are very appropriate for our solver too.

Algorithm 3 Adaptive adjustment mechanism for diversification level dl
1: iter = 0; adap iter = 0;
2: repeat

3: iter← iter + 1
4: if iter − adap iter > θ then

5: dl ← dl + (1− dl)/6
6: adap f = f ; adap iter = iter
7: else

8: if f < adap f then

9: dl ← dl − dl/10
10: adap f = f ; adap iter = iter
11: end if

12: end if

13: until Stop condition is satisfied

3.6. Elite Solution Restarting Mechanism

When the current local search cannot improve the solution quality within
a given number of iterations, we employ an elite based restart mechanism
to diversify the search. Precisely, we restart our local search either from the
best solution found so far (X ∗) or the best solution of the current round of
local search (X

′

) (lines 18-19 in Algorithm 1). The purpose of alternating
between X ∗ and X

′

for restarts is to favor a diversified intensification search.
For each restart, we set the diversification level at a high value (dl = 1.0)

in order to allow the search to perform a series of Diversification Search
moves during the first iterations of the new round of local search. Our
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experiments demonstrate that this simple restarting mechanism is quite ef-
fective for our problem studied in this paper.

Finally, we have also tried the conventional pure random restart strategy
and tested our algorithm without restart at all. It is observed that the
proposed elite solution restart strategy slightly outperforms these variants
in almost all the cases.

3.7. Discussion

Our ANS algorithm is mainly based on a combined neighborhood struc-
ture and a adaptive switching mechanism among three different search strate-
gies. Like our ANS algorithm, many studies on the nurse rostering problem
in the literature take into account the issues of intensification and diversifi-
cation. On the one hand, our combined neighborhood shares some common
features with the Variable Neighborhood Search approach [25], which uses
a transition scheme that progressively cycles through higher level neighbor-
hoods and always returns to the simplest neighborhood when improvement
occurs. Our ANS algorithm nevertheless randomly transits between two
neighborhoods at each search step.

On the other hand, our adaptive search strategy switching mechanism
borrows some ideas from hyper-heuristics [18] which are high level search
strategies manipulating a number of low level heuristics. Like hyper-heuristics,
our switching mechanism utilizes the strengths of different search heuristics
in order to reach a tradeoff between exploration and exploitation. However,
there is an obvious difference that ANS adopts an adaptive noise updat-
ing strategy utilized in the SAT problem [4] to the nurse rostering problem
which seems missing in the previous hyper-heuristic algorithms for nurse
rostering and other problems.

4. Computational Results

In this section, we report intensive experimental results of the ANS algo-
rithm on 60 instances used in the first nurse rostering competition (INRC-
2010) and compare them with the best known results found so far2 and the
results obtained by the INRC-2010 competition finalists.

2Our best results: http://www.info.univ-angers.fr/pub/hao/ANS NRP.html
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4.1. INRC-2010 Competition and Test Instances

The INRC-2010 competition is composed of three tracks, respectively
called Sprint, Medium and Long tracks (also called tracks 1, 2 and 3, re-
spectively). Although the problem formulation for all the three tracks is
the same throughout the competition, these tracks differ from each other
in terms of the allowed CPU time and the size and the characteristics of
the proposed instances. The three tracks require a solution within approxi-
mately 10 seconds, 10 minutes and 10 hours on a modern PC, respectively,
corresponding to different computational environments in real applications.

Each track has three sets of instances, called Early, Late and Hidden
instances. The Early instances are published when the competition begins.
The Late instances are available two weeks prior to the deadline of the
competition. The Hidden instances are kept unavailable to competitors
until the end of the competition. The three tracks consist of 30, 15 and 15
instances and named as Sprint, Medium and Long, respectively. All these
competition instances3 and the best known results found so far by all the
competitors and researchers4 are available at the competition web site. Note
that the preliminary version of our solver ranks the third and fourth places
in the Sprint and Medium tracks of INRC-2010 competition, respectively.

4.2. Experimental Protocol

Our algorithm is programmed in C and compiled using GNU GCC on a
Cluster with each node running Linux with Intel(R) Xeon(R) E5440 (4 cores)
2.83GHz CPU and 2.0Gb RAM. We report the computational results of our
ANS algorithm under two timeout conditions: One is the INRC-2010 com-
petition timeout condition; the other is a relaxed time condition for the first
two tracks. For the INRC-2010 competition timeout condition, the timeout
following the competition on our computer is about 15.86, 1051.6 and 51295
seconds for tracks 1, 2 and 3, respectively. This time out is obtained by
running a benchmark program available at the INRC-2010 competition web
site. Under the relaxed timeout condition, we employ a time limit of 1000
seconds, 5000 seconds and 20 hours for tracks 1, 2 and 3, respectively.

All the computational results of our ANS algorithm were obtained with-
out special tuning of the parameters. The only parameter that varies its
value is the local search improvement cutoff α. Under the competition time-
out condition, we empirically set α = 500, 1000 and 10000 for the three

3Competition instances: http://www.kuleuven-kortrijk.be/nrpcompetition/instances
4Best known results: http://www.kuleuven-kortrijk.be/nrpcompetition/instances-

results (up to April 10th, 2010)
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tracks, respectively. Under the relaxed timeout condition, we set α = 1000,
3000 and 20000 for tracks 1, 2 and 3, respectively. Table 2 gives the descrip-
tions and settings of the other parameters used in ANS, where the last two
columns respectively denote the values used in this paper and the preferable
value regions.

Given the stochastic nature of the ANS algorithm, each problem instance
is independently solved 1000, 200 and 20 times for instances of the Sprint,
Medium and Long tracks, respectively, under the competition timeout con-
dition and 200, 50 and 5 times for instances of the Sprint, Medium and Long
tracks, respectively, under the relaxed timeout condition.

4.3. Results Under INRC-2010 Competition Timeout Condition

Table 3 shows the computational statistics of the ANS algorithm on the
INRC-2010 competition instances of the Sprint, Medium and Long tracks.
Column 2 gives the previous best known solutions (BKS) uploaded to the
INRC-2010 competition web site by all the researchers. The remaining
columns give the results of the ANS algorithm according to five criteria:
(1) the best objective value (fbest), (2) the average objective value (favr),
(3) the standard deviation, σ, over multiple runs, (4) the number of local
search iterations, iter, for reaching the best objective value fbest and (5) the
CPU time, tbest (in seconds), for reaching the best result fbest. The previous
best solutions are indicated in bold and the new best solutions found in this
paper are indicated in italic.

Table 3 discloses that our ANS algorithm obtains quite competitive re-
sults on the set of Sprint track instances. Specifically, ANS can stably reach
the previous best known solutions for all the 30 instances under the competi-
tion timeout condition. In particular, our ANS algorithm improves the pre-
vious best known results for 5 instances (sprint late04 and sprint hidden01,
04, 06 and 08). Furthermore, ANS can reach high quality solutions very sta-
bly (with a standard deviation σ less than 2.0 for 23 out of the 30 instances)
and the CPU time to reach the best solution is within 5.0 seconds for 27
out of the 30 instances. It shows that only the last five hidden instances
(sprint hidden06∼10) present some challenge for ANS (with a relative large
standard deviation σ). However, ANS can even improve the previous best
known results for two of these five instances while equalling the other three
best ones, demonstrating the efficacy of our algorithm.

For the Medium track instances, one finds that our ANS algorithm also
reaches competitive results on this set of benchmark instances. Specifi-
cally, except for 5 Late and one Hidden instances out of the 15 ones, ANS
reaches or improves the previous best known results for the left 9 ones.
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Particularly, ANS can obtain new best solutions for 3 Hidden instances
(medium hidden01, 03 and 05). In addition, ANS obtains high quality so-
lutions with a relative small standard deviation value (less than 2.0) for 10
out of the 15 instances.

Finally, we test the ANS algorithm on the set of 15 large Long track
instances. Our ANS algorithm can reach or improve the previous best known
results for 10 out of the 15 instances while reaching worse results for 5
other ones. Moreover, ANS can obtain new best results for 2 instances
(long hidden01,02). These results further provide evidence of the benefit of
our ANS approach.

4.4. Comparison with the INRC-2010 Competition Finalists

In this section, we compare our ANS algorithm with other INRC-2010
competition finalists under the competition time limit. Table 4 shows the
best results obtained by ANS and five reference algorithms on the 40 Early
and Late instances. These reference algorithms include a two-phase hybrid
solver by the competition winner [28], a branch and price algorithm by Burke
and Curtois [12], a general COP solver by Nonobe [27], a hyper-heuristic
algorithm by Bilgin et al [9] and an ILP algorithm using ILOG CPLEX by
Bilgin et al [9]. Note that the results in the last column marked with ∗ are
proven to be optimal. As before, column 2 also indicates the best known
results uploaded to the INRC-2010 web site.

Table 4 discloses that the best results obtained by our ANS algorithm
are quite competitive with respect to those of the reference algorithms (best
results for each instance are indicated in bold). For the 23 instances whose
optimal solutions are known, ANS can match 22 of them. One finds that only
the solver by Burke and Curtois [12] can reach all of them. The competition
winner’s solver can obtain 21 of them.

For the 20 hidden instances, the comparison is based on the best known
objective values and the winner’s solutions which are the only results avail-
able to us. From Table 4, one observes that our algorithm improves the
previous best known results for 9 out of 20 instances while matching the
best known results in 9 other cases, which shows the advantage of our algo-
rithm on these hidden instances.

4.5. Results Under Relaxed Timeout Condition

In this section, we report computational results of our ANS algorithm
for the Sprint and Medium tracks under the relaxed timeout condition, as
shown in Table 5. The notations are the same as those in previous tables.
In this experiment, only the results of the Late and Hidden instances are
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listed, since the best known solutions for the Early instances can be easily
and stably obtained under the competition time limit and cannot be further
improved even with more computational resource since all the 20 Early
instances have been solved to optimality by ILP as shown in Table 4.

For the 20 Sprint track instances, our best results cannot be improved
with more computational resource. However, both the average solution
quality (favr) and the standard deviation value (σ) are significantly im-
proved. For the 10 Medium track instances, our results can be further
improved in 6 cases (medium late04, 05 and medium hidden01, 02, 04, 05),
showing the search potential of our ANS algorithm under this relaxed time
limit condition. Particularly, we obtain new upper bounds for 4 instances
(medium hidden01, 02, 04, 05) under this relaxed timeout condition.

Finally, we mention that with a relaxed time limit of 20 hours for the
long instances, our algorithm can still improve our result for one instance
(long late03), matching the current best bound.

5. Analysis and Discussion

We now turn our attention to discussing and analyzing several important
features of the proposed ANS algorithm.

5.1. Importance of Neighborhood Combination
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Figure 1: Comparison between different q values (Left: the combined neighborhood and
single neighborhoods; Right: different q values from 0.4 to 0.7)

As indicated in Section 3.3, the ANS algorithm employs a neighbor-
hood combination strategy to probabilistically select a one-move or two-swap
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move to perform at each iteration. In order to be sure this combination strat-
egy makes a meaningful contribution, we conduct additional experiments to
compare this strategy with the one-move and two-swap neighborhoods alone.

We keep other ingredients unchanged in the ANS algorithm and set the
value q in Eq. (5) to be q = 1.0 and q = 0.002 to represent the single one-
move and two-swap neighborhoods, respectively. The stopping criterion
is the number of local search iterations which is limited to 20,000. The
experiments are presented on the medium size instance medium hidden02
(which seems to be one of the most difficult instances). Similar results are
observed on other instances. The three algorithms are denoted by ANS,
One-Move and Two-Swap, respectively. The reason why we use q = 0.002
instead of q = 0.0 to represent the two-swap neighborhood lies in the fact
that the pure two-swap neighborhood (q = 0.0) works much worse than with
q = 0.002.

Figure 1 (left) shows how the best objective value (averaged over 10
independent runs) evolves with the local search iterations. We see that
ANS converges more quickly towards high quality solutions than with the
One-Move or Two-Swap neighborhood alone. In addition, ANS preserves
better results than the One-Move and Two-Swap neighborhoods when the
search progresses. This experiment provides an empirical justification of the
joint use of the two move operators in the ANS algorithm.

In addition, we further compare different values of the important param-
eter q chosen from 0.4 to 0.7, as shown in Figure 1 (right). The experimental
protocol is the same as above. This figure shows that when the search pro-
gresses, there is no clear difference between these different q values, imply-
ing that q can be arbitrarily chosen from a long range and the performance
of ANS will not fluctuate drastically. More generally, we observed that
whenever q is not close to 0, ANS performs similarly. This shows that
the One-Move operator plays a more critical role than the Two-Swap move
even though a joint use of both moves leads to a better performance. As
described in Section 3.3, q is set to be 1− 0.4 · dens which has shown to be
robust enough for all the tested instances in this paper.

5.2. Significance of Adaptive Switching Mechanism

In order to evaluate the importance of the adaptive switching mechanism,
we compare it with the Intensive Search and Intermediate Search strategies
alone, by setting β1 = β2 = 1.0 and β1 = 0.0, β2 = 1.0, respectively. The
experimental protocol is the same as above.

Figure 2 shows how the current objective value (left) and the best ob-
jective value (right) evolve with the number of local search iterations. We

21



observe that ANS obtains higher quality solutions than both Intensive and
Intermediate Searches during the first iterations in terms of both the current
and the best objective values. Furthermore, ANS can continuously improve
the solution quality when the search progresses, while both Intensive and
Intermediate Searches can only slightly improve the solution quality after
the first iterations.

It is noteworthy that there are a lot of “big jumps” during the searching
process of the ANS algorithm (left figure), which represents the Diversifi-
cation moves in our approach. One observes that it is these “big jumps”
(or noises) that allow our ANS algorithm to jump out of the local optimum
traps, thus guiding the search to explore new search areas. In other words,
the diversification process introduced in our approach allows the algorithm
to benefit from a better exploration of the search space and prevents the
search from stagnating in poor local optima. This experiment also con-
firms the importance of introducing “noises” to enhance the search power
of traditional local search algorithms.

5.3. Tradeoff between Local Search and Restarting Mechanism

We study now another important aspect of the proposed algorithm, i.e.,
the tradeoff between local search and the restarting mechanism. In fact,
the performance and the behavior of ANS are influenced by the value of
the improvement cutoff α of the local search procedure. Under a limited
computational resource, the improvement cutoff α reflects the relative pro-
portion of restarting and local search in the algorithm. In this section, we
analyze the influence of the parameter α on the performance of the ANS
algorithm. To implement this experiment, we consider 4 different values of
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Figure 2: Significance of the adaptive switching mechanism
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the parameter α: α = 1000, 2000, 5000 and 20000. Figure 3 shows the av-
erage evolution of the best solutions during the search obtained with these
different values for α.

300

370

440

510

580

650

720

790

860

930

1000

b
es

t
ob

je
ct

iv
e

va
lu

e
fo

u
n
d

so
fa

r

0 2 4 6 8 10 12 14 16 18 20
local search iterations (×103)

α = 1000
α = 2000
α = 5000
α = 20000

Figure 3: Influence of the improvement cutoff value α

From Figure 3, we notice that these different settings lead to quite sim-
ilar performance. This phenomenon can be explained by the fact that our
local search procedure has very strong diversification capability such that
it can automatically switch to the Diversification Search once it detects a
stagnation behavior, which is equivalent to restarting the search by setting
a high diversification level dl = 1.0. Thus, this experiment shows a clear
advantage that our ANS algorithm itself has reached a relatively strong bal-
ance between intensification and diversification and thus can be considered
as a robust solver.

6. Conclusions

In this paper, we have dealt with the nurse rostering problem which
constitutes the topic of the First International Nurse Rostering Competi-
tion. In addition to providing a mathematical formulation of the problem,
we have presented a unified adaptive neighborhood search algorithm, which
integrates a number of original features, to solve this challenging problem.
The efficacy of the proposed algorithm is demonstrated on three sets of to-
tally 60 instances used in the INRC-2010 competition, in comparison with
the previous best known results and the winner algorithm of the competi-
tion. In particular, we have found new upper bounds for 12 out of the 60
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competition instances, as well as matching the previous best known results
for 39 instances.

Furthermore, several essential parts of our proposed algorithm are in-
vestigated. We have first conducted experiments to demonstrate the sig-
nificance of the random union combination of the two neighborhoods. In
addition, we have carried out experiments to show the importance of the
adaptive mechanism based on three search strategies (Intensive, Intermedi-
ate and Diversification Searches. Finally, we have shown that our solver is
robust and is not very sensitive to the only parameter α.

Given that the adaptive neighborhood search ideas introduced in this
paper are independent of the nurse rostering problem, it would be valuable
to establish a methodology of this mechanism and to examine its application
to other constraint satisfaction and combinatorial optimization problems.
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Table 1: Constant and variable notations used in the mathematical formulation
Symbols Constr. Description
sc(d, h) H1 the total number of required nurses for day d ∈ D and shift type h ∈ H
shift(s)+,− S1,2 the maximum/minimum number of shifts that can be assigned to nurse s

work(s)+,− S3,4 the maximum/minimum number of consecutive working days of nurse s

free(s)+,− S5,6 the maximum/minimum number of consecutive free days of nurse s

Night S7 the night shift type
wkd(s)+,− S8,9 the maximum/minimum number of consecutive working weekends of nurse s

n wkd S10−12 the total number of weekends
n wkd(s)+ S10 the maximum number of working weekends of nurse s

nd(s) S11−12 the total number of days for each weekend of nurse s, which could be 2 or 3
day req(s, d) S13,14 on (off ) if nurse s requests (not) to work any shift at day d; null otherwise
sh req(s, d, h) S15,16 on (off ) if nurse s requests (not) to work shift h at day d; null otherwise
qual(s, h) S17 true if nurse s has all the required skills of shift h; false otherwise
unwantp(s) S18 the set of the unwanted patterns of nurse s

Variables
n wksect(s) S3,4 the number of working sections of nurse s, where a working section is a series

of consecutive working days
len wksect(s, i) S3,4 the length of the ith working section of nurse s

n frsect(s) S5,6 the number of free sections of nurse s, where a free section is a series of
consecutive free days

len frsect(s, i) S5,6 the length of the ith free section of nurse s

n wkdsect(s) S8,9 the number of weekend working sections of nurse s, where a weekend working
section is a series of consecutive working weekends

len wkdsect(s, i) S8,9 the length of the ith weekend working section of nurse s

h wkd(s, i, j) S12 the shift type assignment at the jth day of the ith weekend for nurse s

nwd(s, i) S10−12 the number of working days of nurse s at the ith weekend, i.e.,

nwd(s, i) =
∑nd(s)

j=1 χ(h wkd(s, i, j) 6= −1)

nh(s, i, h) S12 the number of shift type h of nurse s at the ith weekend, i.e.,

nh(s, i, h) =
∑nd(s)

j=1 χ(h wkd(s, i, j) = h)

n unwp(s, p) S18 the total number of occurring patterns of type p for nurse s

Table 2: Settings of important parameters
ValuesParameters Section Description

This paper Preferable
ϕ 3.3 neighborhood selection coefficient 0.4 [0.2, 0.8]
tl 3.4 tabu tenure constant 0.8S [0.6S, 0.85S]
|S∗| 3.4 move size of intermediate search 0.5S [0.45S, 0.7S]
β1 3.4 search strategy selection coefficient 0.3 [0.2, 0.4]
β2 3.4 search strategy selection coefficient 0.7 [0.5, 0.8]

θ 3.5 threshold for adaptive adjustment SH
10

[SH
12

, SH
9

]
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Table 3: Computational results under the INRC-2010 competition time limit
ANS AlgorithmInstance BKS

fbest favr σ iter tbest
sprint01 56 56 56.050 0.219 1111 0.09
sprint02 58 58 58.058 0.234 2486 0.21
sprint03 51 51 51.269 0.604 3613 0.30
sprint04 59 59 59.695 0.683 6535 0.56
sprint05 58 58 58.034 0.180 688 0.06
sprint06 54 54 54.168 0.374 1307 0.11
sprint07 56 56 56.218 0.470 3591 0.30
sprint08 56 56 56.067 0.250 893 0.07
sprint09 55 55 55.412 0.571 3522 0.29
sprint10 52 52 52.235 0.480 2063 0.17

sprint late01 37 37 40.309 1.305 18470 4.37
sprint late02 42 42 43.796 0.947 8565 0.84
sprint late03 48 48 50.464 1.145 7084 1.62
sprint late04 75 73 84.846 5.110 33139 7.71
sprint late05 44 44 46.035 0.921 12517 2.90
sprint late06 42 42 42.289 0.463 1941 0.08
sprint late07 42 42 44.194 1.550 37419 1.62
sprint late08 17 17 17.000 0.000 126 0.00
sprint late09 17 17 17.000 0.000 84 0.00
sprint late10 43 43 46.347 1.993 9332 0.40

sprint hidden01 33 32 34.703 1.652 14388 1.32
sprint hidden02 32 32 33.769 1.400 3153 0.28
sprint hidden03 62 62 65.163 2.172 6305 1.49
sprint hidden04 67 66 68.771 1.536 9906 2.40
sprint hidden05 59 59 62.851 1.950 7176 1.64
sprint hidden06 134 130 146.614 10.992 95327 8.85
sprint hidden07 153 153 173.042 16.978 9179 0.82
sprint hidden08 209 204 232.278 13.576 21450 5.09
sprint hidden09 338 338 358.350 10.620 11139 2.70
sprint hidden10 306 306 339.885 17.242 6898 1.61

medium01 240 240 240.943 0.464 90731 22.08
medium02 240 240 240.606 0.521 175726 42.33
medium03 236 236 236.996 0.377 261635 62.83
medium04 237 237 237.976 0.154 277283 66.49
medium05 303 303 303.870 0.674 172359 41.77

medium late01 158 164 174.245 3.743 1343797 648.48
medium late02 18 20 24.968 1.894 1281136 616.91
medium late03 29 30 33.804 1.502 2380850 593.10
medium late04 35 36 40.388 1.841 2113881 996.13
medium late05 107 117 133.791 5.994 1266691 678.04

medium hidden01 130 122 139.965 6.958 1541511 1014.00
medium hidden02 221 224 243.617 9.355 1254666 830.66
medium hidden03 36 35 40.206 1.852 753233 502.75
medium hidden04 80 80 85.617 1.921 1574698 1026.09
medium hidden05 122 120 129.370 4.119 1393978 892.08

long01 197 197 197.933 0.573 22323924 16874.94
long02 219 222 224.650 1.415 28821326 22195.02
long03 240 240 240.000 0.000 49639 35.55
long04 303 303 303.267 0.442 2059272 1456.06
long05 284 284 284.267 0.442 1111975 785.86

long late01 235 237 242.400 2.703 31966257 36327.86
long late02 229 229 239.000 2.859 31467349 35777.50
long late03 220 222 230.783 3.787 9767199 11006.73
long late04 221 227 232.478 3.412 10082982 11366.68
long late05 83 83 84.016 1.175 9758472 11136.71

long hidden01 363 346 348.783 0.720 20298494 24485.10
long hidden02 90 89 90.870 0.899 4385549 5059.59
long hidden03 38 38 38.591 0.834 2995944 3423.21
long hidden04 22 22 22.000 0.000 1957811 2232.43
long hidden05 41 45 50.571 3.417 25735308 29859.56
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Table 4: Comparison with other competition finalists under INRC-2010 time limit
fbestInstance BKS

Ours Winner
[28]

Burke
[12]

Nonobe
[27]

Bilgin
[9]

ILP
[9]

sprint01 56 56 56 56 56 57 56
∗

sprint02 58 58 58 58 58 59 58
∗

sprint03 51 51 51 51 51 51 51
∗

sprint04 59 59 59 59 59 60 59
∗

sprint05 58 58 58 58 58 58 58
∗

sprint06 54 54 54 54 54 54 54
∗

sprint07 56 56 56 56 56 56 56
∗

sprint08 56 56 56 56 56 56 56
∗

sprint09 55 55 55 55 55 55 55
∗

sprint10 52 52 52 52 52 52 52
∗

sprint late01 37 37 37 37 37 40 39
sprint late02 42 42 42 42 42 44 43
sprint late03 48 48 48 48 48 50 54
sprint late04 75 73 76 75 76 81 99
sprint late05 44 44 44 44 45 45 47
sprint late06 42 42 42 42 42 42 42

∗

sprint late07 42 42 43 42 43 46 42
∗

sprint late08 17 17 17 17 17 17 21
sprint late09 17 17 17 17 17 17 35
sprint late10 43 43 44 43 44 46 43

∗

sprint hidden01 33 32 33 – – – –
sprint hidden02 32 32 33 – – – –
sprint hidden03 62 62 62 – – – –
sprint hidden04 67 66 67 – – – –
sprint hidden05 59 59 60 – – – –
sprint hidden06 134 130 139 – – – –
sprint hidden07 153 153 153 – – – –
sprint hidden08 209 204 220 – – – –
sprint hidden09 338 338 338 – – – –
sprint hidden10 306 306 306 – – – –

medium01 240 240 240 240 241 242 240
∗

medium02 240 240 240 240 240 241 240
∗

medium03 236 236 236 236 236 238 236
∗

medium04 237 237 237 237 238 238 237
∗

medium05 303 303 303 303 304 304 303
∗

medium late01 158 164 159 157 176 163 219
medium late02 18 20 20 18 19 21 41
medium late03 29 30 30 29 30 32 37
medium late04 35 36 36 35 37 38 42
medium late05 107 117 113 107 125 122 153

medium hidden01 130 122 131 – – – –
medium hidden02 221 224 221 – – – –
medium hidden03 36 35 38 – – – –
medium hidden04 80 80 81 – – – –
medium hidden05 122 120 122 – – – –

long01 197 197 197 197 197 197 197
∗

long02 219 222 219 219 224 220 219
∗

long03 240 240 240 240 240 240 240
∗

long04 303 303 303 303 303 303 303
∗

long05 284 284 284 284 284 284 284
∗

long late01 235 237 239 235 267 241 241
long late02 229 229 231 229 245 245 237
long late03 220 222 222 220 254 233 229
long late04 221 227 228 221 260 246 232
long late05 83 83 83 83 93 87 90

long hidden01 363 346 363 – – – –
long hidden02 90 89 106 – – – –
long hidden03 38 38 38 – – – –
long hidden04 22 22 22 – – – –
long hidden05 41 45 41 – – – –
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Table 5: Computational results for the Sprint and Medium tracks under relaxed time limit
ANS AlgorithmInstance BKS

fbest favr σ iter tbest
sprint late01 37 37 38.298 0.829 58454 13.64
sprint late02 42 42 42.663 0.481 96489 9.35
sprint late03 48 48 48.797 0.679 92411 21.27
sprint late04 75 73 75.842 1.778 267513 60.94
sprint late05 44 44 44.349 0.494 23195 5.40
sprint late06 42 42 42.000 0.000 2839 0.12
sprint late07 42 42 42.713 0.649 50803 2.16
sprint late08 17 17 17.000 0.000 116 0.00
sprint late09 17 17 17.000 0.000 76 0.00
sprint late10 43 43 44.017 0.785 72709 3.05

sprint hidden01 33 32 32.282 0.459 9441 0.86
sprint hidden02 32 32 32.017 0.128 3361 0.29
sprint hidden03 62 62 62.324 0.600 12897 2.98
sprint hidden04 67 66 66.046 0.228 30894 7.35
sprint hidden05 59 59 59.542 0.694 21307 4.91
sprint hidden06 134 130 132.502 3.679 88936 8.06
sprint hidden07 153 153 156.307 4.808 27007 2.39
sprint hidden08 209 204 211.751 7.286 102836 24.00
sprint hidden09 338 338 343.091 4.971 206956 50.14
sprint hidden10 306 306 319.431 12.882 162436 36.89
medium late01 158 164 172.084 3.810 6980981 3327.11
medium late02 18 20 23.622 1.796 5568298 2634.84
medium late03 29 30 32.958 1.362 16825097 4146.19
medium late04 35 35 39.244 1.782 4925094 2291.98
medium late05 107 112 127.126 5.832 2531760 1327.90

medium hidden01 130 117 133.000 7.301 5038892 3364.43
medium hidden02 221 220 232.235 7.754 1966573 1286.51
medium hidden03 36 35 38.731 1.948 2218753 1456.58
medium hidden04 80 79 84.017 1.923 2668541 1712.39
medium hidden05 122 119 125.513 3.325 4367953 2763.44
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