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Abstract

The multiple-choice multidimensional knapsack problem (MMKP) is a well-known
NP-hard combinatorial optimization problem with a number of important appli-
cations. In this paper, we present a ”reduce and solve” heuristic approach which
combines problem reduction techniques with an Integer Linear Programming (ILP)
solver (CPLEX). The key ingredient of the proposed approach is a set of group
fixing and variable fixing rules. These fixing rules rely mainly on information from
the linear relaxation of the given problem and aim to generate reduced critical sub-
problem to be solved by the ILP solver. Additional strategies are used to explore
the space of the reduced problems. Extensive experimental studies over two sets of
37 MMKP benchmark instances in the literature show that our approach competes
favorably with the most recent state-of-the-art algorithms. In particular, for the
set of 27 conventional benchmarks, the proposed approach finds an improved best
lower bound for 11 instances and as a by-product improves all the previous best
upper bounds. For the 10 additional instances with irregular structures, the method
improves 7 best known results.
Keywords: Knapsack; Fixing heuristics; Linear relaxation; Hybridization.

1 Introduction

The multiple-choice multidimensional knapsack problem (MMKP) can be in-
formally described as follows. We are given a set of items that are divided into
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several groups and different types of limited resources. Each item requires a
certain amount of each resource and generates a profit. The purpose of the
MMKP is to select exactly one item from each group such that the total profit
of the selected items is maximized while the consumption of each resource
does not exceed the given limit (knapsack constraints).

Formally, givenG = {G1, G2, ..., Gn} the set of n disjoint groups (i.e.,Gi∩Gj =
∅ for each i, j, 1 ≤ i 6= j ≤ n). Let I = {1, 2, ..., n} be the group index set,
gi = |Gi| the number of items of group Gi ∈ G, m the number of resource
types, bk the capacity of resource k (1 ≤ k ≤ m), pij ≥ 0 the profit of the

jth item of Gi, w
k
ij the consumption for resource k of the jth item of Gi.

Additionally, let xij be the decision variable such that xij = 1 if the jth item
of group Gi is selected; xij = 0 otherwise. Then the MMKP can be stated as
follows:

max
∑

i∈I

∑

j∈{1,...,gi}

pijxij (1)

subject to:

∑

i∈I

∑

j∈{1...gi}

wk
ijxij ≤ bk, k ∈ {1, ...,m} (2)

∑

j∈{1...gi}

xij = 1, i ∈ I (3)

xij ∈ {0, 1}, i ∈ I, j ∈ {1, ..., gi} (4)

The MMKP is tightly related to the conventional multidimensional knapsack
problem (MKP) [2, 16, 19, 23, 24, 29] since the MMKP can be reduced to the
MKP by restricting each group to a single item and dropping constraint (3).
Like the MKP, the MMKP is known to be NP-hard. In addition to its theoret-
ical importance, the MMKP is notable for its capacity of modeling a number
of practical applications such as logistics [1], resource allocation [5], capital
budgeting [18], and telecommunications [28].

Compared with the conventional MKP, the MMKP is somewhat less stud-
ied until recently. Yet, given both its theoretical and practical relevance, the
MMKP is receiving increasing attention in recent years and a number of ef-
fective solution approaches have been proposed in the literature. For instance,
exact methods based on the branch and bound framework were reported
in [6,15,21]. These algorithms have the advantage of guaranteeing the optimal-
ity of the solution found. Unfortunately, due to the very high computational
complexity of the MMKP, exact approaches apply only to instances of lim-
ited sizes (i.e., n=100 and m=10 for the instances we used). To handle larger
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instances, several heuristic approaches were developed to seek sub-optimal
solutions (corresponding to lower bounds) in an acceptable computing time.

For instance, in [10], the authors introduced a reactive local search algorithm
and showed much better results than those reported in [17], which was the
first paper dealing directly with the MMKP. Later, the authors of [4] pro-
posed an efficient hybrid heuristic combining local branching with column
generation techniques, which improved the lower bounds for many benchmark
instances. In [9] an iterative relaxation-based heuristic was applied to solve the
MMKP, where a series of small sub-problems are generated by exploiting in-
formation obtained from a series of relaxations. In [3], the authors employed a
similar but more general approach called semi-continuous relaxation heuristic
approach where variables are forced to take values close to 0 or 1. More re-
cently, again based on the iterative relaxation-based heuristic framework, the
authors of [20] explored a new strategy, consisting of a family of new cuts and
a reformulation procedure used at each iteration to improve the performance
of the heuristic and to define the reduced problem. This method reported
most of the current best known results over the set of conventional MMKP
benchmark instances, which will be used as one of our references for perfor-
mance assessment and comparison. In [22], the authors proposed an original
parameterized compositional pareto-algebraic heuristic (CPH) which explores
incremental problem solving and parallelization. They reported interesting re-
sults on the well-known MMKP benchmark instances and introduced a set of
new instances that we will use in our work. Finally, there are several other
recent and interesting studies based on general approaches like ant colony
optimization combined with local search [14], strategic oscillation exploring
surrogate constraint information [13], Lagrangian neighborhood search [11]
and tabu search [12].

In this paper, we present a ”reduce and solve” heuristic approach that jointly
makes use of problem reduction techniques and the state-of-the-art CPLEX
ILP solver. The basic idea of the proposed approach is to employ some dedi-
cated heuristics to fix a number of groups and variables in order to obtain a
reduced critical subproblem which is then solved by the ILP solver. The key
issue is how to choose the groups and variables to fix. For this purpose, we
first define general fixing rules based on information from linear relaxation.
To better explore the space of the reduced problems and achieve improved
results (lower bounds), we additionally introduce specific strategies to enlarge
progressively the reduced subproblems which are to be solved by CPLEX. No-
tice that our group and variable fixing techniques are in connection with the
notion of strongly determined and consistent variables [7,8]. Similar strategies
for temporary or definitive variable fixing are explored in other contexts like,
for instance, 0-1 mixed integer programming and binary quadratic program-
ming [26,27,29].
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To assess the merit and limit of the proposed approach, we carry out extensive
computational experiments based on two sets of benchmark instances from
the literature. These experiments show that the proposed approach competes
favorably with the state-of-the-art methods and is able to discover 11 improved
lower bounds and in passing to improve all the current best upper bounds
reported in the literature for the set of 27 conventional benchmark instances.
Moreover the proposed approach improves 7 best known results for the 10
additional benchmarks with irregular structures.

The paper is organized as follows. In Section 2, we present in detail the pro-
posed approach. We begin with the introduction of the group and variable
fixing rules and then introduce two solution procedures for the exploration of
different reduced problems. Section 3 is dedicated to an extensive computa-
tional assessment in comparison with the state-of-the-art approaches. We also
show an analysis of the effect of the group and variable fixing techniques in
Sections 4. Conclusions are given in the last section.

2 A ”reduce and solve” approach for the MMKP

2.1 General approach

The ”reduce and solve” approach proposed in this paper can be summarized
as a three-step method.

(1) Group fixing: This step aims to identify some variables which are highly
likely to be part of the optimal solution and fixes them to the value of 1.
Given the constraint (3), once a group has a variable assigned the value
of 1, the remaining variables of the group must be assigned the value of
0. We remove then the group (the group is said fixed) from the initial
problem P , leading to a first reduced problem P ′. Let q be the number
of fixed groups.

(2) Variable fixing: For each of the n − q remaining groups of the problem
P ′, we identify some variables that are unlikely to be part of the opti-
mal solution, fix these variables to 0 and remove them from problem P ′,
leading to a further reduced problem P”.

(3) ILP solving: We run CLPEX to solve P”.

Given this general procedure, it is clear that the success of this approach
depends on the methods used for group fixing (step 1) and variable fixing
(step 2). We will explain in Sections 2.3 and 2.4 the heuristic fixing rules
based on linear relaxation of the problem. However, whatever the method we
use, it is possible that some variables are fixed to a wrong value. To mitigate
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this risk, we introduce additional strategies to decrease gradually the number
of fixed variables. By doing so, we explore different and increasingly larger
reduced problems which provides a means to achieve improved solutions. These
strategies are presented in Sections 2.5.2 and 2.5.3.

2.2 Basic definitions and notations

The following notations and definitions will be used in the presentation of the
proposed approach.

- Let G = {G1, G2, ..., Gn} be the given MMKP problem P with its index set
I = {1, 2, ..., n} and let x∗ be an optimal solution of problem P .

- LP (P ) and x̄ denote respectively the linear relaxation of P and an optimal
solution of LP (P ).

- v(P ) and v̄(P ) denote respectively a lower bound and an upper bound of
P .

- (P |c), LP (P |c) and x̄c denotes respectively the problem P with exactly
one additional constraint c, the linear relaxation of (P |c) and an optimal
solution of LP (P |c).

- Integer group: Given the LP-relaxation optimal solution x̄ of LP (P ), a
group Gi of G is called integer group in x̄ if ∃ji ∈ {1, 2, ..., gi} : x̄iji = 1.

- Fractional group: Given the LP-relaxation optimal solution x̄ of LP (P ),
a group Gi of G is called fractional group if ∃J ⊂ {1, 2, ..., gi}, |J | > 1 :
∑

j∈J x̄ij = 1, ∀j ∈ J : 0 < x̄ij < 1. Let nf be the number of fractional
groups in x̄.

- For x ∈ [0, 1]n, we define I1(x) = {i ∈ I : Gi is an integer group, xiji = 1}
as the index set of integer groups.

- For x ∈ [0, 2]n, we define I2(x) = {i ∈ I, ∃ji ∈ {1, 2, ..., gi} : xiji = 2},
I2∗(x) = I \ I2(x), F (x) = {(i, j) : i ∈ I2∗(x), 0 < xij < 2}.

- rij is the reduced cost of xij from the LP-relaxation of P .

2.3 Group fixing

For an ILP problem, it is interesting to consider the relationship between its
(integer) optimum x∗ and its LP-relaxation optimum x̄. When we studied sev-
eral typical small MMKP instances, we observed that the binary optimum and
the LP-relaxation optimum share some selected items (i.e., the corresponding
variables receive the value of 1 in both the binary optimum and the LP opti-
mum). It is thus expected that some groups could be fixed according to the
LP-relaxation optimum x̄.

In order to reduce the risk of fixing wrong groups, we try to identify the
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set of ”strongly determined” groups. For this purpose, we use a double LP-
relaxation strategy. We first solve the LP-relaxation of the given problem P to
identify a set of integer groups. Then we add an effective cut c to the original
problem P and solve again the relaxed linear program LP (P |c). The purpose
of this second LP-relaxation with the cut c is to identify some unpromising
(or unstable) integer groups in the first LP optimum x̄ such that their variable
assignments change in the new optimum x̄c. Those integer groups in x̄ that
”survive” in x̄c are considered to be stable and are likely to be part of the true
optimum x∗. We then fix these groups by assigning their variables to their
LP optimal values. Once these groups are fixed, they are removed from the
problem and will not be further considered.

Formally, our group fixing rule for the given problem P is summarized as
follows.

(1) Solve its LP-relaxation LP (P ) and let x̄ be its optimal solution. Let I1(x̄)
be the index set of the integer groups in x̄.

(2) Define the following cut ck with respect to x̄ (where k is a parameter)
and let (P |ck) be the new problem with the added cut ck.

∑

i∈I1(x̄)

[(1− xiji) +
∑

j∈{1,...,gi},j 6=ji

xij] ≥ 2 ∗ k (5)

Solve the LP-relaxation LP (P |ck) and let x̄ck be the optimal solution.
(3) Define x̃ = x̄ + x̄ck , i.e., the value in each position of x̃ is obtained

by adding the values of the corresponding position of vector x̄ and x̄ck .
According to the definition of I2(x), it holds: ∀i ∈ I2(x̃) : x̄iji = 1∧ x̄ck

iji
=

1.
(4) For each group Gi such that i ∈ I2(x̃), fix the variables of Gi to their x̄

values. As such we fix the groups of I2(x̃) and put aside all their variables.

One notices that given the cut defined in Formula (5), the integer groups in
x̄ck is a subset of the integer groups in x̄. Intuitively, cut ck forces at least k
integer groups in the first LP optimum x̄ to change their status in the second
LP optimum x̄ck . Such a changed group either becomes a fractional group or
remains an integer group where the value of 1 is however assigned to a different
variable. By varying k, we can control the number of groups to be fixed and
as a consequence the size of the reduced subproblems. A large (resp. small)
k fixes a small (resp. large) number of groups. With k = n − nf (nf being
the number of fractional groups in x̄), all the integer groups in x̄ change their
status in x̄ck and consequently, no group will be fixed. Thus, n − nf can be
considered as the maximum value for k. In Section 2.5, we will discuss how
one can (partially) enumerate k in a potential interval, or set it to a promising
value.
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2.4 Variable fixing in unfixed groups

After the group fixing step, though |I2(x̃)| groups of variables are fixed and
removed from the problem, we still have |I2∗(x̃)| groups of variables whose
values are not decided. The associated subproblem might be still too large to
be efficiently solved by the ILP solver. To further reduce the search space,
we need to further fix some variables in the |I2∗(x̃)| unfixed groups. Notice
that contrary to group fixing where exactly one specific variable of each fixed
groups is assigned the value of 1, the variable fixing step tries to identify, for
each unfixed group, some variables that are to be assigned the value of 0 (i.e.,
the corresponding items will not be part of the optimal solution x∗). For this
purpose, we will make use of another type of information from LP-relaxation,
i.e., the reduced costs.

According to the LP theory, variables with small absolute reduced costs have
more potential to be changed without affecting too much the objective value.
It is then interesting to fix the variables with a large absolute reduced cost to
their LP optimal values and leave the variables with a small absolute reduced
cost to form the reduced problem to be solved by the ILP solver. In order to
determine the number of the variables to fix (and thus the size of the reduced
problem), we use an overall ”threshold” of the absolute reduced costs.

Precisely, the ”threshold” is given by the highest absolute reduced cost among
all the variables that receive different values in the previous double LP-relaxation
optima:

RCmax(x̃) = max(i,j)∈F (x̃){|rij|}

where rij is the reduced cost of variable xij in the first linear relaxation and
F (x̃) is the index set of variables whose values are greater than 0 and less than
2 in x̃.

Obviously, RCmax(x̃) is related to the results of the two linear programs LP (P )
and LP (P |ck), and more precisely it is related to the parameter k (see cut (5),
Section 2.3). Generally, a small k gives a smaller threshold RCmax(x̃) which
allows to fix more variables, leading thus to a smaller reduced problem. The
reverse is also true.

Given RCmax(x̃), our variable fixing step can be summarized as follows. In each
group, variables with an absolute reduced cost greater than RCmax(x̃) are set
to the value of the LP-relaxation optimal solution. The remaining variables
form the reduced problem.

Formally, let S = {(i, j) : i ∈ I, j ∈ {1, ..., gi}} be the index set of all variables
in the original problem P , Sfree(x̃) = {(i, j) : i ∈ I2∗(x̃), j ∈ {1, ..., gi} : |rij| ≤
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RCmax(x̃)} be the index set of the unfixed variables in the unfixed groups, the
reduced problem associated to x̄, x̃ , S and Sfree(x̃) is defined as follows:

P (x̄, x̃, S, Sfree(x̃)) = {P |(i, j) ∈ (S\Sfree(x̃)) : xij = x̄ij}

When k is small enough, the reduced problem can be solved to optimality
within a very short time by means of the ILP solver. In practice, depending
on the size of problem instances, the reduced problems are either solved to
optimality or stopped due to a given CPU time limit.

2.5 Exploring the space of reduced problems: the PEGF and PERC algorithms

As group fixing and variable fixing are two relatively separated procedures, we
propose two different ways of combining these two procedures to devise the
MMKP algorithms. The first algorithm (named PEGF) partially enumerates
the parameter k for group fixing and for each k uses RCmax(x̃) for variable
fixing and constructing the reduced problem. For the second algorithm (named
PERC), we set k to a promising value (identified in an empirical manner)
and partially enumerate the absolute reduced cost threshold by increasing
RCmax(x̃) progressively. Before presenting our PEGF and PERC algorithms
in Sections 2.5.2 and 2.5.3, we first recall some known results which are used
in our algorithms.

2.5.1 Known results

The Mixed Integer Programming (MIP) relaxation has been used in [29] to
strengthen the bound of the LP relaxation, which was previously explored
by the authors in [3] to design their algorithms for solving the MMKP. To
introduce this technique, we consider a more general case of the MMKP. Let
p and b be two vectors of coefficients, W be a matrix of coefficients, N be the
set of binary variables. The MIP relaxation of problem P which is related to
a subset J of the set N of items is expressed as follows:

MIP (P, J)























































max px

s.t.

Wx ≤ b

xj ∈ {0, 1} j ∈ J

xj ∈ [0, 1] j ∈ N \ J

(6)
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The following proposition shows the MIP relaxation of a problem provides
stronger bounds than the linear relaxation (the proof can be found in [29]).
This proposition is used in both PEGF and PERC to obtain an upper bound
for the problem P .

Proposition 1. Let v(P ) be the optimal value of P , J and J
′

be two subsets
of N with J

′

⊆ J ⊆ N , yields:

v(MIP (P,N)) = v(P ) ≤ v(MIP (P, J)) ≤ v(MIP (P, J
′

)) ≤ v(MIP (P,Ø)) = v(LP (P ))(7)

Another result is the so-called ”reduced cost constraint” which was introduced
for the MKP in [25]. We observe that it also holds for the MMKP since the
MMKP is different from the MKP only by some additional choice constraints.
This reduced cost constraint was used to solve the MMKP in [3] as a variable
fixing technique, and was also used in [20] as a cut which is progressively added
to the original problem to further strengthen the model and to improve the
quality of the subsequent upper bounds. Given the v(P ) value of a feasible
solution for problem P and the optimal solution value v̄(P ) of its continuous
relaxation, each current solution better than v(P ) needs to satisfy the following
relation:

v̄(P ) +
∑

j∈N−

rjxj −
∑

j∈N+

rj(1− xj) +
∑

i∈M

uisi ≥ v(P ) (8)

where si are the slack variables, and rj and uj are the reduced costs associ-
ated to the nonbasic variables. N− (resp. N+) represents the set of indexes
associated to nonbasic variables with a value equal to their lower bound(resp.
upper bound). Reduced costs are positive for items in N+ and negative in N−.
M is the index set of slack variables. Since ui ≤ 0 and si ≥ 0, we can remove
∑

i∈M uisi and rewrite the ”reduced cost constraint” as follows:

∑

j∈N+

rj(1− xj) +
∑

j∈N−

|rj|xj ≤ v̄(P )− v(P ) (9)

This constraint implies that only the nonbasic variables with an absolute re-
duced cost smaller than or equal to v̄(P )− v(P ) can change their values with
respect to the LP-relaxation optimal value if we are looking for a higher lower
bound. Given the fixing rules of our proposed approach, this constraint ensures
that including those variables in the unfixed groups whose absolute reduced
costs are higher than the difference of an upper bound and a lower bound
to the reduced problem gives no benefit of improving the lower bound. Our
PERC algorithm thus uses the reduced cost constraint as one of its stopping
criteria.
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2.5.2 The PEGF algorithm

Algorithm 1 shows the basic steps of the PEGF algorithm. In the preprocessing
step, we solve the LP-relaxation of the original problem P , generating an
optimal solution x̄ and the reduced costs of all the variables. At each iteration,
the algorithm obtains x̄ck by solving the LP-relaxation of the current problem
noted (P |ck). x̃ can then be computed by summing up x̄ and x̄ck .

Algorithm 1 Pseudo-code of the PEGF algorithm for the MMKP
1: Input:

P : an instance of the MMKP ;

kstart: first value of k;

Tmax: limit on total computing time;

tmax: time limit for solving the reduced problem;

∆: step length to increase k;

2: Output: the best lower bound v(P ) found so far;

3: Solve LP (P ); keep an optimal solution x̄ and the reduced cost rij , ∀(i, j) ∈ S;

4: Let TI be the temporary index set of fixed groups, tcur be the current elapsed CPU

time;

5: v(P ) = −∞, v̄(P ) = pT x̄, nf = n− |I1(x̄)|, k = kstart, TI = ø;
6: while (⌊v̄(P )− v(P )⌋ ≥ 1) ∧ (k ≤ n− nf ) ∧ (tcur < Tmax) do
7: Solve LP (P |ck) ; keep an optimal solution x̄ck ;

8: x̃ = x̄+ x̄ck ;

9: if I2(x̃)! = TI then

10: TI = I2(x̃);
11: else

12: skip to 23;

13: end if

14: Solve MIP (P, Sfree(x̃)); keep an optimal solution x̄mip;

15: if pT x̄mip < v̄(P ) then
16: v̄(P ) = pT x̄mip;

17: end if

18: Compute RCmax(x̃) and construct reduced problem P (x̄, x̃, S, Sfree(x̃));
19: Run CPLEX with min{tmax, Tmax − tcur} to solve the reduced problem

P (x̄, x̃, S, Sfree(x̃)); keep a best solution x0;

20: if pTx0 > v(P ) then
21: v(P ) = pTx0;

22: end if

23: k ← k +∆;

24: end while

To avoid redundant computations, at each iteration, we check whether the
current set of fixed groups is the same as that of the last iteration; and if
this is the case, we increase k by a step length ∆ and move to the next iter-
ation. v̄(P ) is updated each time a better upper bound is obtained by solv-
ing MIP (P, Sfree(x̃)). By reference to x̃, the absolute reduced cost threshold
RCmax(x̃) can be decided by comparing the values of all the ”shakable” vari-
ables. After that, the reduced problem P (x̄, x̃, S, Sfree(x̃)) is constructed and
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solved with time limit min{tmax, Tmax − tcur} by the ILP solver. The so far
best lower bound v(P ) is updated when a new best solution is encountered.

The process stops when one of the following three stopping criteria is met: the
upper bound equals the lower bound, or k exceeds the maximum value n−nf ,
or the current execution time reaches the total time limit.

Notice that the first value of k, namely kstart, could be set to 0 from a gen-
eral algorithmic viewpoint. However in practice, when an overall time limit is
imposed, kstart is not suggested to be too small since too many groups would
be fixed wrongly and it is a waste of computational resources to solve the
related reduced problems. According to our experimental experience, we set
kstart = 13 for the instances we used, which can be regarded as a good start
point for our PEGF algorithm.

2.5.3 The PERC algorithm

Another way of exploring different reduced problems is to fix k to a specific
value k0 and then vary the absolute reduced cost threshold. Our PERC algo-
rithm is based on this idea (see Algorithm 2).

To specify k0, we devise the following empirical formula which is based on
some characteristics of the given instance under consideration.

k0 = min{n− nf , kstart + ⌈lg1.2
n + 0.5m⌉} (10)

To enumerate different thresholds for the absolute reduced costs, we rely
again on information from LP-relaxation. Precisely, we solve first LP (P ) and
LP (P |ck0) in the preprocessing phase to get the RCmax(x̃) value (see Section
2.4). This value is then used as the first absolute reduced cost threshold rd.
At each iteration of the PERC algorithm, the upper bound and the lower
bound are updated respectively by solving the MIP (P, Sfree(x̃)) and the re-
duced problem P (x̄, x̃, S, Sfree(x̃)) (see Section 2.5.1). rd is then increased by a
small value δ to expand the reduced problem to be solved in the next iteration
of the algorithm.

The algorithm stops either when rd becomes larger than or equal to the gap
between the upper bound and the lower bound, or the execution time reaches
the total time limit. The rationale of the first stopping criterion is that ac-
cording to the reduced cost constraint (see Section 2.5.1), including nonbasic
variables whose absolute reduced costs are higher than the gap to the reduced
problem cannot further improve the lower bound. Note that variables with an
absolute reduced cost larger than RCmax(x̃) are all nonbasic variables, because
basic variables having fractional values in the LP-relaxation optimal solution
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are those variables whose absolute reduced costs are smaller than RCmax(x̃)
and are already included in the reduced problem.

Algorithm 2 Pseudo-code of the PERC algorithm for the MMKP
1: Input:

P : an instance of the MMKP ;

k0: chosen value for k;

Tmax: limit on total computing time;

tmax: time limit for solving the reduced problem;

δ: step length to increase reduced cost threshold rd;

2: Output: the best lower bound v(P ) found so far;

3: Solve LP (P ); keep an optimal solution x̄ and the reduced cost rij , ∀(i, j) ∈ S;

4: Solve LP (P |ck0), keep an optimal solution x̄ck0 ;

5: x̃ = x̄+ x̄ck0 ;

6: Compute RCmax(x̃);
7: rd = RCmax(x̃),v(P ) = −∞, v̄(P ) = pT x̄; let tcur be the current elapsed CPU

time;

8: while (rd < v(P )− v(P )) ∧ (tcur < Tmax) do
9: Solve MIP (P, Sfree(x̃)); keep an optimal solution x̄mip;

10: if pT x̄mip < v̄(P ) then
11: v̄(P ) = px̄mip;

12: end if

13: Construct reduced problem P (x̄, x̃, S, Sfree(x̃));
14: Run CPLEX with min{tmax, Tmax − tcur} to solve the reduced problem

P (x̄, x̃, S, Sfree(x̃)); keep a best solution x0;

15: if pTx0 > v(P ) then
16: v(P ) = pTx0;

17: end if

18: rd← rd+ δ;

19: end while

3 Computational Experiments

3.1 Benchmark instances

To evaluate the efficiency of the proposed heuristics, we carry out extensive ex-
periments on two sets of 37 benchmark instances. The first set of 27 instances 1

(7 instances named I07-I13 and 20 instances named INST01-INST20) is very
popular in the literature and frequently used to test recent MMKP algorithms
like [3, 4, 10, 20, 22]. The results on the instances of this set are reported in
Sections 3.3 and 3.4. The second set (10 instances named INST21-INST30) is

1 available at: http://www.laria.u-picardie.fr/hifi/OR-Benchmark/
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introduced very recently in [22]. The results on the second set of instances are
provided in Sections 3.5.

• Instances I07-I13 belong to the instance set generated and used in [15] (We
do not consider the first 6 instances (I01-I06) because they can be eas-
ily solved by state-of-art MMKP exact algorithms and CPLEX). INST01-
INST20 which are introduced in [10] according to the procedure proposed
in [15], are large sized and more difficult. Thus in total, we consider 27 in-
stances for our first experiments. These instances have a number of groups
from 50 to 400, a number of items from 10 to 30 per group and 10 constraints.
Except for the two smallest ones (INST01 and INST02), optimal solutions
are still unknown for the remaining 25 instances. The best known results
of the literature listed in different tables of this section are reported in [20]
(algorithm MACH), [22] (algorithm CPH) and [4] (algorithm CH). Notice
that in [20], the authors present results of three algorithm variants named
MACH1, MACH2 and MACH3. And for MACH3, results corresponding to
three different parameter settings are also provided. Here for each instance,
we select the best results from all these MACH variants as the reference
results. Also in [22], results obtained by the serial version and parallel ver-
sion(executed on 10 processors) of the proposed algorithm were provided
and we select those results obtained by the serial version as reference for
our comparative study.
• Instances INST21-INST30 are new benchmarks introduced in [22]. Com-
pared to the previous instances, these new instances have irregular struc-
tures such that the number of items per group varies and an item does not
necessarily has resource consumption in all the resource dimensions. These
instances have a number of groups from 100 to 500, a maximum number of
items from 10 to 20 per group and a number of constraints from 10 to 40.
The optimal solutions are unknown and the best known results are reported
in [22] with the Compositional Pareto-algebraic Heuristic (CPH). We use
these results as our reference for our experimental assessment.

3.2 Experiment settings

Our PEGF and PERC algorithms are coded in C++ 2 and compiled using
GNU G++ on a PC running Ubuntu Linux V12.04 with an Intel Xeon E5440
processor (2.83GHz and 2G RAM). We use CPLEX 12.4 to solve both the
LP-relaxation of the problem and the reduced problems.

For the set of 27 conventional benchmark instances (I07-I13, INST01-INST20),
we report our results respectively with a total time limit of 500 seconds and 1

2 The source code of our algorithms and the best solution certificates are available
at http://www.info.univ-angers.fr/pub/hao/mmkp.html.

13



hour. These stopping conditions were previously used by the state-of-the-art
algorithms to report their computational results [3,4,9,20]. With the time limit
of 500 seconds which is considered to be relatively short in the literature, the
time limit for a reduced problem (tmax) is set to be 75 seconds for PEGF and
500 seconds for PERC. With the time limit of 1 hour, the CPU time allowed
to solve a reduced problem is set to 400 seconds for PEGF and 900 seconds
for PERC.

For the set of 10 new benchmark instances (INST21-INST30), we adopt the
time limit used in the reference paper [22], i.e., a total of 1200 seconds and 1
hour respectively. For the case of 1200 seconds, the time limit for a reduced
problem (tmax) is set to be 200 seconds for PEGF and 600 seconds for PERC.
With the time limit up to 1 hour, the CPU time allowed to solve a reduced
problem is set to 400 seconds for PEGF and 900 seconds for PERC.

In all the cases, the step length to increase k (∆) in PEGF is set to 3, and the
step length to increase the reduced cost threshold (δ) in PERC is set to 1.

We mention that it is not a straight-forward task to make a full comparison
between our results and those reported in the literature due to the differences
in computing hardware, the version of CPLEX, programming language, etc.
However, we hope the experimental studies shown in this section provide some
useful indications about the performance of the proposed algorithms relative
to the current best MMKP procedures.

3.3 Comparative results on 27 classical instances with a limit of 500 seconds

In this section, we report our results obtained by the PEGF and PERC algo-
rithms with the time limit of 500 seconds, and compare them with the best
known results over the set of the 27 classical benchmark instances. We also
show a comparative study with respect to the best state-of-art algorithms.

Table 1 shows the results of our two algorithms together with the best known
results in the literature. In Table 1, the best known lower bounds (column
BKLB≤1200s) are given by several MACH variants [20] (with a time limit
of more than 500 seconds), CPH [22] (with a time limit of 1200 seconds)
and CH [4] (with a time limit of 1200 seconds), while the best known upper
bounds (column BKUB) are only provided by MACH [20]. Column v(P ) and
v̄(P ) respectively indicate the lower bound and upper bound obtained by the
corresponding algorithms, where the best known value is highlighted in bold
while a ’*’ symbol indicates an improved best result. cpu gives the time when
the algorithm encounters the best solution for the first time.

From Table 1, we observe that our PEGF and PERC algorithms attain respec-
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Table 1
Computational results of the PEGF and PERC on the set of 27 classical MMKP
benchmark instances with a time limit of 500 seconds. A value highlighted in bold
denotes a best known result and a starred value indicates an improved lower bound.

PEGF PERCInstance BKLB≤1200s BKUB
v(P ) v̄(P ) cpu v(P ) v̄(P ) cpu

I07 24592CPH 24605.2 24588 24604.5 214 24590 24605.1 75

I08 36894CH 36902.9 36894 36900.6 397 36892 36901.1 74

I09 49182MACH 49192.8 49181 49190.6 393 49185
∗ 49191.0 466

I10 61480MACH 61485.4 61473 61483.5 144 61474 61483.6 145

I11 73789MACH 73797.1 73787 73795.6 253 73787 73795.9 205

I12 86094MACH 86099.8 86090 86098.8 206 86091 86098.8 479

I13 98440MACH 98447.9 98436 98446.7 212 98439 98446.7 403

INST01 10738MACH 10748.7 10738 10744.3 97 10738 10747.3 196

INST02 13598MACH 13619.3 13598 13614.0 38 13598 13616.5 147

INST03 10955CPH 10977.7 10947 10975.4 7 10943 10977.0 101

INST04 14456MACH 14474.0 14447 14472.2 121 14456 14473.5 215

INST05 17061HMW 17075.2 17057 17072.7 227 17055 17074.0 127

INST06 16838MACH 16853.5 16832 16850.7 76 16833 16852.6 369

INST07 16442MACH 16456.2 16440 16455.0 241 16444
∗ 16456.7 474

INST08 17510MACH 17530.8 17507 17528.4 105 17503 17529.5 20

INST09 17761CH 17777.3 17760 17776.1 124 17760 17776.7 394

INST10 19316MACH 19334.7 19314 19333.1 275 19312 19333.7 365

INST11 19441MACH 19459.9 19437 19457.9 114 19449
∗ 19459.5 330

INST12 21738MACH 21754.9 21738 21753.4 4 21738 21754.5 175

INST13 21577MACH 21591.3 21577 21590.1 198 21575 21591.0 15

INST14 32875MACH 32886.4 32873 32884.5 427 32873 32884.9 209

INST15 39161MACH 39173.5 39161 39172.8 311 39161 39172.9 146

INST16 43366MACH 43378.6 43367
∗ 43376.4 98 43362 43377.1 157

INST17 54363MACH 54371.3 54360 54370.2 128 54360 54370.3 50

INST18 60467MACH 60477.9 60467 60476.1 219 60466 60476.1 22

INST19 64932MACH 64943.0 64932 64941.1 150 64931 64941.1 352

INST20 75618MACH 75626.4 75613 75625.4 317 75614 75625.4 51

tively 9 and 8 best known results for 9 out of the 27 instances among which 4
corresponds to improved best lower bounds (1 from PEGF and 3 from PERC).
The best solutions provided by both PEGF and PERC are slightly different
according to the instances, showing some complementarity of the two algo-
rithms. The two algorithms attain together 14 best known results. For those
instances where they fail to reach the best known results, the gaps between
our results and the best known ones are very small. The largest gap is 0.01%
for I10 (calculated by (OurResult-BestKnown)/BestKnown×100) .
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Moreover, the values reported in columns v̄(P ) show that our algorithms gen-
erate strong upper bounds. Compared to the best known upper bounds (col-
umn BKUB) provided by MACH, PEGF produces better results for all the
instances. The same performance is observed for PERC with only one excep-
tion (i.e. INST07). Recall that the upper bounds are obtained by solving the
MIP-relaxation of the original problem P (see equation (6)), where a subset
of variables is forced to be binary. In our two algorithms, the variables forced
to be binary are those in the reduced problem and they show to be ”critical”
ones as confirmed by both the strong upper bounds and the favorable lower
bounds. In addition, column cpu shows that our algorithms visit most of their
best solutions in less than 400 seconds, far before reaching the given time
limit.

In this experiment, PEGF realizes on average 9 iterations across the instance
set. The reduced problems can be solved to optimality within 37 seconds for
all the instances when k is small enough (i.e., k = kstart). As k increases, the
reduced problems become larger and thus harder to solve. For PERC, given
the value of k calculated by Equation (10), the induced reduced problems
cannot be optimally solved for most of the instances even if we impose a time
limit of 500 seconds for each of them. So we observed only 1 iteration for all
the instances except INST02 where there are two iterations. The encouraging
results presented in Table 1 show that these reduced problems are promising
and additionally confirm the merit of our fixing rules. Indeed, a decrease of
tmax (the time limit for a reduced problem) allows the method to explore
more different reduced problems and introduces some diversities on the final
results. However, the peak performance of PERC is achieved by adopting the
parameter settings introduced in Section 3.2.

To further evaluate the performance of our algorithms, we show a comparison
with CPLEX, and 5 recent algorithms that achieve state-of-art performances:

• A Hybrid heuristic approach [20]. The best version MACH3 of the 5 al-
gorithm variants is used for comparison (column MACH3). The reported
results were performed on a Dell computer 2.4GHz and CPLEX 11.2 with
an overall CPU limit > 500 seconds 3 .
• A compositional pareto-algebraic heuristic method [22]. The best results
obtained by the serial version of their approach (i.e., CPH+OptPP) are
listed (column CPH). The tests were performed with an overall CPU limit
of 1200 seconds on a PC with an Intel processor (2.8Ghz and 12G RAM).
• A column generation method [4]. We list its best reported results (column
CH). The tests were performed on an UltraSparc10 2.5GHz with an overall
CPU limit of 1200 seconds.

3 The paper [20] indicates a limit of 500 seconds, however one observes that Table
2 of [20] includes computing times greater than 500 for several cases.
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Table 2
Comparative results of PEGF and PERC (with a time limit of 500s) with CPLEX
and 5 state-of-art approaches (MACH3 [20] (2013), CPH [22] (2013), CHMW [3]
(2012), CH [4] (2009), HMW [9] (2009)) on the set of 27 classical MMKP benchmark
instances. The comparison focus on solution quality. A value in bold indicates a
best known lower bound or an improved lower bound. The row ”♯Bests” indicates
the number of best lower bounds (values in bold) obtained by the corresponding
algorithm, ”Sum.” denotes the sum of the best solution values over the instance set.

Instance BKLB≤1200s PEGF PERC CPLEX MACH3 CPH CH HMW CHMW

I07 24592CPH 24588 24590 24584 24586 24592 24587 24586 24585

I08 36894CH 36894 36892 36873 36888 36885 36894 36883 36885

I09 49182MACH 49181 49185 49162 49180 49179 49179 49172 49172

I10 61480MACH 61473 61474 61474 61480 61464 61464 61465 61460

I11 73789MACH 73787 73787 73765 73783 73780 73780 73770 73778

I12 86094MACH 86090 86091 86077 86094 86081 86080 86077 86077

I13 98440MACH 98436 98439 98425 98438 98433 98433 98428 98429

INST01 10738MACH 10738 10738 10709 10724 10727 10738 10714 10732

INST02 13598MACH 13598 13598 13598 13598 13598 13598 13597 13598

INST03 10955CPH 10947 10943 10935 10938 10955 10944 10943 10943

INST04 14456MACH 14447 14456 14439 14456 14452 14442 14442 14445

INST05 17061HMW 17057 17055 17043 17053 17055 17055 17061 17055

INST06 16838MACH 16832 16833 16813 16832 16827 16823 16827 16823

INST07 16442MACH 16440 16444 16419 16442 16440 16440 16434 16440

INST08 17510MACH 17507 17503 17492 17508 17507 17510 17503 17505

INST09 17761CH 17760 17760 17753 17760 17757 17761 17751 17753

INST10 19316MACH 19314 19312 19299 19311 19314 19316 19311 19306

INST11 19441MACH 19437 19449 19417 19437 19441 19441 19430 19434

INST12 21738MACH 21738 21738 21723 21738 21738 21732 21738 21738

INST13 21577MACH 21577 21575 21571 21577 21577 21577 21574 21574

INST14 32875MACH 32873 32873 32866 32872 32872 32872 32869 32869

INST15 39161MACH 39161 39161 39158 39161 39160 39160 39160 39160

INST16 43366MACH 43367 43362 43359 43366 43363 43362 43363 43363

INST17 54363MACH 54360 54360 54353 54363 54360 54360 54356 54352

INST18 60467MACH 60467 60466 60461 60467 60465 60460 60462 60463

INST19 64932MACH 64932 64931 64924 64931 64931 64925 64925 64924

INST20 75618MACH 75613 75614 75605 75614 75613 75612 75609 75609

♯Bests 9 8 1 9 5 6 2 2

Sum. 1018684 1018614 1018618 1018297 1018597 1018566 1018548 1018437 1018461

• An iterative relaxation-based heuristic approach [9]. The best version of
the 3 algorithm variants is compared in this paper (column HMW). The
evaluations were performed with a CPU limit of 300 seconds on a Pentium
IV 3.4GHz, but the version of CPLEX is not indicated.
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• An iterative semi-continuous relaxation heuristic approach [3]. We select
the best version among the 4 algorithm variants for comparison (column
CHMW). The tests were performed on a Pentium IV 3.4GHz, using CPLEX
11.2 with a CPU limit of 400 seconds.

Table 2 summarizes the results of our PEGF and PERC algorithms along with
those reported by the 5 reference algorithms and those obtained by CPLEX
with a time limit of 500 seconds. The last two rows (♯Bests and Sum.) indicate
respectively the number of best known results and the total objective value
over the 27 instances reached by an algorithm. From Table 2, we can observe
that our two algorithms attain respectively 9 (PEGF) and 8 (PERC) best
known results (♯Bests) and their total objective values are higher (better)
than those of the reference algorithms (Sum.) and CPLEX.

Compared to MACH3 which is one of the current best performing algorithms
for the MMKP, our algorithms remain very competitive even if the improve-
ment of our algorithms over MACH3 is relatively small. Notice that the overall
qualities of the best known solutions of the benchmark instances are already
very high (see Table 1, the gaps between the upper bounds and the lower
bounds for all the instances are small). As such, even a small improvement
could be difficult to reach and thus can be considered to be valuable. It should
be noted that MACH3 was executed with a time limit of more than 500 sec-
onds on a machine which is slightly faster than our computer according to the
Standard Performance Evaluation Corporation (www.spec.org), though our
CPLEX version is more recent.

This experiment demonstrates that our approach outperforms CPLEX and
most of the reference algorithms and competes well with the best performing
MACH3 algorithm.

3.4 Comparative results on 27 classical instances with a limit of 1 hour

In this section, we investigate the behaviors of our algorithms by extending the
total time limit to 1 hour and comparing our algorithms with both CPLEX
12.4 and the results reported in [3] (see Table 3).

In [3], the authors proposed 4 different variants of a heuristic approach namely
ILPH, IMIPH, IIRH and ISCRH, and they reported the results obtained by
their approaches with a time limit of 1 hour. Table 3 lists for each instance
the best lower bound visited by our PEGF and PERC algorithms, the value of
the best feasible solution of CPLEX 12.4 obtained within 1 hour of computing
time, and the best value of ILPH, IMIPH, IIRH and ISCRH from [3]. A value
in bold means that our algorithms reach the best known result reported in
the literature and a starred value represents a new best lower bound (a record
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Table 3
Comparative results of PEGF and PERC (with a time limit of 1h) with CPLEX
(with a time limit of 1h) and four variant algorithms proposed in [3] on the set of
27 classical MMKP benchmarks. The row ”♯Bests” indicates the number of best
lower bounds (values in bold) obtained by the corresponding algorithm, ”♯RLB”
represents the number of improved lower bounds (lower bounds starred) which can
be obtained by the corresponding algorithm, ”Sum.” denotes the sum of the best
solution values over the instance set.
Instance BKLB≤1200s PEGF PERC CPLEX ILPH IMIPH IIRH ISCRH

I07 24592CPH 24590 24592 24595
∗ 24591 24587 24592 24584

I08 36894CH 36894 36892 36886 36888 36889 36888 36882

I09 49182MACH 49185
∗

49185
∗ 49173 49174 49183 49179 49173

I10 61480MACH 61477 61478 61472 61469 61471 61466 61465

I11 73789MACH 73791
∗ 73789 73783 73784 73779 73779 73780

I12 86094MACH 86095
∗ 86091 86088 86091 86083 86091 86081

I13 98440MACH 98441 98441 98435 98435 98445
∗ 98433 98424

INST01 10738MACH 10738 10738 10738
◦

10738 10728 10728 10717

INST02 13598MACH 13598 13598 13598
◦

13598 13598 13598 13598

INST03 10955CPH 10947 10947 10944 10949 10943 10949 10943

INST04 14456MACH 14447 14456 14442 14442 14445 14446 14445

INST05 17061HMW 17057 17061
∗ 17053 17058 17055 17057 17053

INST06 16838MACH 16840
∗

16840
∗ 16832 16835 16832 16832 16823

INST07 16442MACH 16444
∗

16444
∗ 16440 16440 16440 16440 16429

INST08 17510MACH 17508 17514
∗ 17510 17510 17511 17510 17505

INST09 17761CH 17763
∗

17763
∗ 17753 17760 17760 17753 17757

INST10 19316MACH 19314 19316 19316 19320
∗

19320
∗ 19314 19316

INST11 19441MACH 19449
∗

19449
∗ 19441 19446 19446 19446 19437

INST12 21738MACH 21738 21741
∗ 21732 21733 21738 21738 21729

INST13 21577MACH 21578 21578 21576 21577 21580
∗ 21577 21573

INST14 32875MACH 32875 32875 32872 32873 32872 32872 32870

INST15 39161MACH 39161 39162 39163
∗ 39161 39160 39162 39156

INST16 43366MACH 43367
∗ 43366 43365 43366 43363 43363 43362

INST17 54363MACH 54363 54363 54360 54361 54360 54358 54356

INST18 60467MACH 60467 60467 60465 60467 60467 60465 60461

INST19 64932MACH 64932 64931 64929 64930 64932 64929 64929

INST20 75618MACH 75616 75614 75615 75613 75611 75613 75610

♯Bests 15 14 4 4 6 1 1

♯RLB 8 8 2 1 3 0 0

Sum. 1018684 1018675 1018691 1018576 1018609 1018598 1018578 1018458
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lower bound) for the given instance. In the column ”CPLEX”, the values of
two instances (INST01 and INST02) are marked with ◦ which means they are
proved to be optimal by CPLEX. In the last three rows of Table 3, we indicate
for each algorithm the number of best lower bounds obtained, the number of
improved lower bounds (lower bounds starred) which can be obtained by the
algorithm (♯RLB) and the sum of the best solution values over the instance
set (Sum.).

From Table 3, we observe that our algorithms visit the best known solution for
19 out of the 27 instances. Among these best solutions, 11 were never reported
by previous approaches. PEGF and PERC respectively obtain 15 and 14 best
known lower bounds and their average solution qualities are both very high,
which shows both algorithms are very effective under this stopping condition.
Compared to CPLEX, our algorithms obtain 24 better lower bounds, 1 equal
result and 2 worse results. Compared to the 4 variants proposed in [3], our
algorithms compete favorably by holding more record lower bounds (11 vs 3).
Finally, when we examine the total objective value attained by each algorithm
over the whole set of the 27 instances, we observe that the proposed algorithms
dominate both CPLEX and the four reference algorithms.

3.5 Comparative results on 10 recent instances with irregular structures

The last experiment is dedicated to the set of 10 large irregular benchmark
instances introduced in [22]. Like [22], we adopt a total time limit of 1200
seconds and 1 hour, respectively. We also provide the results obtained by
CPLEX for our comparative study.

In [22], the results of two variants of their proposed CPH approach were re-
ported, namely CPH+OptPP with the default resource usage aggregation and
with the scarcity-aware resource aggregation. We use the best solution values
of their two algorithm variants as our reference. Table 4 shows our results
(PEGF and PERC) as well as those of CPH and CPLEX under the two time
conditions. For each instance, a solution value is highlighted in bold if it is
the best among those results obtained by the four listed algorithms. In the
last two rows of Table 4, we indicate for each algorithm the number of best
lower bounds obtained (♯Bests) and the sum of the best solution values over
the instance set (Sum.).

From Table 4, we observe that our algorithms compete very favorably with
CPH and CPLEX on these instances. Our algorithms discovers improved best
known solutions for 7 out of 10 instances. For the time limit of 1200 seconds,
each of our two algorithms attains 5 best solutions against 2 for CPH and 1 for
CPLEX. Both PEGF and PERC give better results than CPH and CPLEX in
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Table 4
Comparative results on 10 large irregular instances from [22]. Our results are com-
pared with those of CPH from [22] and CPLEX with a time limit of 1200 seconds
and 3600 seconds (1 hour). A value highlighted in bold indicates the best solution
value among the four compared results.

Tmax=1200s Tmax=3600sInstance
PEGF PERC CPH CPLEX PEGF PERC CPH CPLEX

INST21 44280 44280 44262 44260 44280 44280 44270 44260

INST22 41966 41936 41976 41928 41966 41952 41976 41960

INST23 42522 42584 42502 42512 42522 42584 42562 42512

INST24 41820 41852 41918 41864 41876 41860 41918 41878

INST25 44156 44156 44138 44135 44156 44159 44156 44135

INST26 44865 44861 44832 44848 44879 44861 44869 44878

INST27 87630 87630 87616 87594 87630 87630 87616 87616

INST28 134638 134638 134634 134648 134642 134642 134634 134648

INST29 179222 179224 179186 179206 179228 179224 179206 179208

INST30 214216 214210 214198 214192 214216 214230 214198 214192

♯Bests 5 5 2 1 4 5 2 1

Sum. 875315 875371 875262 875187 875395 875422 875405 875287

8 out of 10 cases, while there are only two cases (INST22 and INST24) where
CPH performs better and one case where CPLEX performs better (INST28).
Regarding the total solution value, our two algorithms outperform both CPH
and CPLEX. A similar observation can be made for the case of 1 hour ex-
ecution. One exception is that the total solution value of PEGF is slightly
worse than that of CPH though PEGF obtains better results for more cases
than CPH does (6 vs 3). Moreover, the results show that our two algorithms
are able to achieve further improved best lower bounds for 4 instances when
more time is available. This experiment confirms that our proposed algorithms
perform well on these irregular instances.

4 Discussion

In this section, we provide an analysis about the impact of the group and
variable fixing techniques on the initial model. For this purpose, we focus on
the experiment reported in Table 3 (with a time limit of 1 hour on the set of
27 classical instances). Specifically, for each of our two algorithms and each
problem instance, we record the reduced problem that has led to the best
solution value and calculate the values (as a percentage) of three indicators:
the number of fixed groups (%FG), the number of fixed variables (%FV ) and
the size of the reduced subproblem (%RP ).
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Precisely, the number of fixed groups as a percentage over the total number
of groups is given by %FG = 100 · |I2(x̃)|/n, the number of fixed variables
as a percentage over the total number of variables in the unfixed groups is
defined by %FV = 100 · |Sfixed(x̃)|/(|Sfixed(x̃)|+ |Sfree(x̃)|) where Sfixed(x̃) =
{(i, j)|i ∈ I2∗(x̃), j ∈ {1, ..., gi}, |rij| > RCmax(x̃)}, and the size of the reduced
problem as a percentage over the size of the original problem is defined as
%RP = 100 · |Sfree(x̃)|/|S|.

Moreover, to show a general picture and simplify the presentation, we divide
the whole set of 27 instances into three classes according to the value of groups
n: n ∈ [50, 90], n ∈ [100, 200] and n ∈ [250, 400]. Table 5 displays for each
instance class, the number of the instances in the class (#) and the aggregated
statistics of the above three indicators (%FG, %FV , %RP ) in terms of their
minimum (min.), maximum (max.) and average values (avg.).

From Table 5, we observe that the percentage of the fixed groups increases
generally as n increases for both algorithms. The average value of %FG is less
than 50% for the instance class with n smaller than or equal to 90. Then it
jumps dramatically to 70% for the second larger instance class. This value
even grows up to more than 80% when n is greater than or equal to 250.
A similar trend is also observed for the fixed variables, the average value of
%FV shows a relatively steady rise across the three instance classes with the
smallest value around 70% and the largest value around 84%. In contrast,
the size of the reduced problem shows generally a negative correlation with
the change of n for the two proposed algorithms. The average value of %RP

is around 15% for the first instance class. A sharp drop of this value is seen
for the second instance class where the average percentage is slightly different
for PEGF (4.93%) and PERC (6.36%). For the third large instance class, the
average %RP decreases to around 3%.

Given the above observations, we can conclude that, with the fixing rules
proposed in this paper, the number of fixed groups and fixed variables increases
as the size of problem enlarges, leading to a small and promising reduced
problem whose size increases very slowly. Typically, there are less than 200
variables left in the reduced models for these instances where the size of the
original problems can have up to 7000 variables (INST20).

5 Conclusions

The multiple-choice multidimensional knapsack problem (MMKP) is a highly
useful model in practice and represents nevertheless a real challenge from a
computational point of view. We have presented a ”reduce and solve” approach
for the MMKP which jointly uses problem reduction techniques and the state-
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Table 5
Statistical data on the fixing process

PEGF PERCn # stat
%FG %FV %RP %FG %FV %RP

[50, 90] 11 min. 30.00 66.00 9.75 30.00 58.12 10.44

max. 64.44 76.36 22.00 56.67 75.90 26.80

avg. 48.64 72.41 14.37 48.40 69.58 15.96

[100, 200] 8 min. 60.00 72.05 1.43 61.00 64.87 2.04

max. 81.50 92.25 10.90 77.00 92.20 13.70

avg. 70.07 83.80 4.93 69.38 80.11 6.36

[250, 400] 8 min. 80.67 77.91 1.28 80.00 72.81 1.67

max. 87.43 92.00 4.10 84.75 91.67 5.17

avg. 84.54 84.19 2.52 81.72 83.17 3.05

of-the-art ILP technology. On the one hand, the proposed approach employs
a two-stage fixing method (group fixing and variable fixing) based on LP-
relaxation to generate reduced problems which are solved by the ILP solver.
To better explore the space of the reduced problems, the proposed approach
makes uses of two dedicated strategies to progressively expand the reduced
problems, leading to two algorithm variants (PEGF and PERC).

Using a set of 27 well-known classical MMKP benchmark instances and a set
of 10 recent benchmarks with irregular structures from the literature, we have
assessed the performance of the proposed approach and compared our results
with some current best performing methods. The computational experiments
have shown the proposed approach competes favorably with the state-of-the-
art reference algorithms and dominates the well-known commercial CPLEX
ILP solver. In particular, the proposed approach discovers 11 improved lower
bounds and as a by-product provides 27 improved upper bounds for the set
of classical MMKP instances. And for the set of 10 irregular benchmarks, the
proposed approach is also able to discover 7 improved lower bounds. This
study confirms the merit of a hybrid approach combining heuristics and a
state of the art ILP solver.
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