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Abstract

In this paper, a simulated annealing algorithm is presented for the Bandwidth Min-
imization Problem for Graphs. This algorithm is based on three distinguished fea-
tures including an original internal representation of solutions, a highly discriminat-
ing evaluation function and an effective neighborhood. The algorithm is evaluated
on a set of 113 well-known benchmark instances of the literature and compared
with several state-of-the-art algorithms, showing improvements of some previous
best results.
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1 Introduction

The Bandwidth Minimization Problem for Graphs (BMPG) was originated at
the Jet Propulsion Laboratory at Pasadena in 1962, in the study to minimize
the maximum absolute errors of six-bit picture codes that were represented
by edge differences in a hypercube [14].

The BMPG can be defined formally as follows. Let G = (V, E) be a finite
undirected graph, where V (|V | = n) defines the set of vertices and E ⊆ V ×V
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= {{i, j} | i, j ∈ V } is the set of edges. Given a one-to-one labeling function
τ : V → {1, 2, .., n}, the bandwidth β of G for τ is defined according to the
Equation 1.

βτ (G) = max{|τ(i) − τ(j)| : (i, j) ∈ E} (1)

Then the BMPG consists in finding a labeling τ ∗ for which βτ∗(G) is minimum,
in mathematical terms:

βτ∗(G) = min{βτ (G) : τ ∈ T } (2)

where T is the set of all possible labeling functions. Please observe that a
labeling can also be seen as a permutation. Thus, it is easy to verify that a
labeling τ can be transformed into any other labeling τ ′ by applying to it at
most n − 1 exchanges between two labels.

Since there are n! possible labelings for a graph with n vertices, the BMPG
is a highly combinatorial problem. Papadimitriou has shown that finding the
minimum bandwidth of a graph is NP-Complete [23]. This means that it is
highly unlikely that there exists an algorithm which finds the minimum band-
width in time polynomial in the size of the graph. Later, it was demonstrated
that the BMPG is NP-Complete even for trees with a maximum degree of
three [9]. Only in very special cases it is possible to find the optimal ordering
in polynomial time (see for example [9, 17, 26]).

The BMPG is also known under the name of Matrix Bandwidth Minimization
Problem (MBMP) [20], which is defined as follows: Given a 0-1 matrix A =
{aij}n×n, then the problem consists in finding a permutation of the rows and
columns that keeps all the non-zero elements of A in a band that is as close as
possible to the main diagonal. The equivalence between the BMPG and the
MBMP can be easily observed, given that a graph can be transformed into
an incidence matrix A = {aij}n×n where aij equal 1 if the vertices i and j are
adjacent and 0 otherwise [4].

The bandwidth minimization problem for matrices and graphs has been found
to be relevant to a wide range of applications. For instance, in solving large
linear systems, the Gaussian elimination can be performed in O(nβ2) time on
matrices with bandwidth β, which is faster than the normal O(n3) algorithm if
β � n. Other applications include problems in finite element methods for ap-
proximating solutions of partial differential equations, large-scale power trans-
mission systems, circuit design, chemical kinetics and numerical geophysics.
Recently Berry et al. [2] applied bandwidth minimization to the information
layout and retrieval in hypertext.

Given its importance, the bandwidth minimization problem has been the ob-
ject of extensive research (see [4] for a survey up to the early 1980s) and several
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algorithms for the BMPG have been reported. They can be divided into two
classes: exact and heuristic algorithms. Exact algorithms guarantee always to
discover the optimal bandwidth. In [12] is presented an algorithm which solves
the BMPG in O(Nβ) steps, where β is the bandwidth searched for that graph.
Del Corso and Manzini proposed in [5] two other exact algorithms. Both meth-
ods solve problems up to 100 vertices, for randomly generated graphs.

On the other hand, heuristic algorithms try to find good solutions as fast
as possible, but they do not guarantee the optimality of the solution found.
Examples of heuristics are: the Cuthill–McKee algorithm [6] and the Gibbs
Poole and Stockmeyer algorithm (GPS) [10]. More recently, metaheuristics
have been applied to the BMPG: Simulated Annealing [7], Tabu Search [22], an
improved version of the Cuthill–McKee algorithm [8], Genetic Algorithms [18],
and GRASP with path relinking [24]. These algorithms are highly successful
in solving large instances.

In this paper, we present an improved Simulated Annealing algorithm for the
BMPG. This algorithm integrates several important features such as an orig-
inal internal representation of solutions, a highly discriminating evaluation
function called δ and a rotation-based neighborhood function. The perfor-
mance of this algorithm is assessed with a set of 113 benchmark instances
taken from the literature. The computational results are reported and com-
pared with previously published ones, showing that our algorithm is able to
improve on some previous best results.

The rest of the paper is organized as follows. In Section 2, a brief review is
given to present four most representative solution procedures for the BMPG.
In Section 3, the components of our Simulated Annealing algorithm are dis-
cussed in detail. The issue of parameter tuning is studied in Section 4. Section
5 is dedicated to computational experiments and comparisons with previous
results. Influences of some important parameters are also discussed and ana-
lyzed here. The last section summarizes the main contributions of this work.

2 Relevant Existing Procedures

Because of the importance of the bandwidth minimization problem, much re-
search has been carried out in developing effective algorithms for it. The pur-
pose of this section is to give a brief review of four representative algorithms,
which are also used for our comparison. For a more detailed description of
these algorithms we refer the reader to the corresponding articles.
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2.1 GPS

In 1976 Gibbs, Poole and Stockmeyer developed a constructive heuristic, called
GPS, for the bandwidth minimization problem [10]. This method is based on
a level structure L, generated by breadth first search. The GPS procedure has
the following phases:

• The algorithm starts by finding the shortest path connecting two vertices
(u, v) of maximal distance apart (the diameter of G). Then it creates two
level structures rooted at these endpoints. These level structures are created
in the following way: The root node is inserted in level L1, the rest of the
nodes are inserted in such a way that: a) all the adjacent vertices are in the
same level or in contiguous levels, and b) The maximum cardinality of all
the levels is minimum. By using these endpoints as roots the resulting level
structures will have a small width and therefore a maximal depth.

• The two level structures previously created are combined into a new one,
whose width usually is smaller than that of the original structures.

• Finally, it assigns consecutive integers to the vertices of the graph by fol-
lowing the resulting level structure and starting at each level by the vertex
with the smaller degree. In this way the vertex from L1 who has the smallest
degree will have the number 1 and the vertex with the highest degree in the
last level will have the number n.

In [10], computational experiments were performed over 19 matrices with dif-
ferent sizes ranging from 68 to 918. These matrices were taken from the so-
lution of several differential equations and variational problems in structural
engineering applications of the finite element method. The authors compared
GPS against another constructive heuristic, the reverse Cuthill-McKee (RCM)
algorithm [6]. These experiments have shown that on average GPS gives a
slightly smaller (better) bandwidth than RCM. Although GPS is actually
better than RCM only in 9 out of the 19 cases, it is much faster than RCM.

2.2 Simulated Annealing

In 1995, Dueck and Jeffs implemented the first Simulated Annealing (SA)
algorithm for the BMPG [7]. This algorithm represents a labeling of the graph
by a permutation of the vertices {1, 2, ..., n}. The algorithm begins with an
initial labeling and carries out a series of iterations to visit the search space
T according to a neighborhood. At each iteration, a neighboring labeling τ ′ is
generated by exchanging randomly two values in the current permutation τ .
The cost of τ ′ is then directly calculated by using Equation 3.

∆C = βτ ′(G) − βτ (G) (3)
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If ∆C is negative or equal to zero then the neighboring labeling τ ′ is ac-
cepted. Otherwise, it is accepted with probability P (∆C) = e−∆C/T where T
is determined by a cooling schedule.

In their implementation, Dueck and Jeffs use a simple linear function Tn =
0.95Tn−1 with an initial temperature fixed at Ti = 1.0. At each tempera-
ture, a maximum number max moves = 4 |E| of neighboring labelings are
allowed to be accepted and a maximum number max attempted moves =
80 ∗ max moves of neighboring labelings can be generated. The algorithm
stops either if the current temperature reaches a limit (Tf = 0.0001), or if the
number of accepted configurations at each temperature falls below the limit of
max frozen = 50. The authors justify their choice of these parameter values
based on experimental tuning and on their own experience.

Dueck and Jeffs tested their implementation (SA-DJ) using 18 graphs with the
number of vertices ranging from 13 to 255. This set includes 8 different types
of graphs. Their experiments show that the SA-DJ implementation is inferior
to the GPS algorithm in terms of solution quality on structured graphs (grids,
paths, circles, etc.). However, SA-DJ outperforms GPS in terms of solution
quality on ternary trees and random graphs. It is important to remark that
even if SA-DJ finds better labelings than GPS for 11 graphs, it employs longer
CPU times. The authors argue that although the computational effort of SA-
DJ limits its applicability, it can be used as a reference tool to compare the
performance of other procedures.

2.3 Tabu Search

In 2001, Mart́ı et al. [22] proposed a Tabu Search (TS) algorithm for the
BMPG. It is based on move operations that exchange the labels of a pair of
vertices. The operator move(u, v) assigns the label τ(u) to vertex v and the
label τ(v) to vertex u. These moves are based on the elimination of critical
vertices to reduce the current value of βτ (G). The list of critical and near-
critical vertices C(τ) is defined by Equation 4.

C(τ) = {v : max{|τ(v) − τ(u)| : u ∈ A(v)} ≥ αβτ (G)} (4)

where A(v) is the set of vertices adjacent to v and 1 > α > 0. In order to create
a set of suitable swapping vertices S(v) the authors introduce the following
three quantities for a vertex v and a labeling τ :

max(v) = max{τ(u) : u ∈ A(v)} (5)

min(v) = min{τ(u) : u ∈ A(v)} (6)
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mid(v) =

⌊
max(v) + min(v)

2

⌋
(7)

The best label for v in the current labeling τ then is given by mid(v), therefore
S(v) is defined as follows:

S(v) = {u : |mid(v) − τ(u)| < |mid(v) − τ(v)|} (8)

The candidate list of moves associated with a vertex v ∈ C(τ) is defined as:

CL(v) = {move(u, v) : u ∈ S(v)} (9)

In their implementation Mart́ı et al. calculate the value of a move(u, v) as the
number of vertices adjacent to v or u (including u) whose bandwidth increases
due to the move. The basic TS implementation consists of a short-term mem-
ory. Specifically, after a move(u, v) is executed, the labels of vertices v and u
are not allowed to change until the Tabu tenure expires. A longer-term diversi-
fication based on frequency information is added to this basic implementation.
The method incorporates a memory structure to record information about pre-
viously found solutions. This information is used to restart the search with a
new labeling, which is built considering both diversity and quality criteria.

The authors presented a computational comparison of the GPS procedure, the
SA-DJ method and two versions of their TS algorithm (with and without the
restarting mechanism). For this comparison they have used 113 standard test
matrices taken from the Harwell–Boeing Sparse Matrix Collection 1 , which
includes matrices produced from a wide variety of scientific and engineering
disciplines.

The experiments have shown that their TS algorithm yields better solutions
than SA-DJ both in terms of quality and speed. The basic implementation of
TS is superior to GPS in terms of solution quality and competitive in terms of
speed in the small instances. The TS version with restarting is robust in terms
of solution quality, with an average deviation from the best-known solutions
of 5% for the longer runs.

2.4 GRASP with Path Relinking

Very recently, Piñana et al. [24] presented the results of applying a greedy ran-
domized adaptive search procedure combined with a path relinking strategy
(GRASP-PR) to the BMPG.

1 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
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The GRASP-PR procedure starts with the creation of an initial elite set of
labelings. The GRASP method is used to build a large set of labelings from
which the n elite bests are stored in the elite set. The relinking process then
explores all pairs of elements in the elite set using a lexicographical order.
Each time the relinking process replaces the worst element in the elite set
with the improved labeling generated. The GRASP-PR procedure ends when
no more improvements can be done to the elite set.

The GRASP method has two main steps: the construction phase and the
improvement phase. During the construction phase a level structure, similar
to the one used by the GPS procedure, is created. The improvement phase
typically consists of a local search procedure and in this implementation is
partially based on the Tabu Search algorithm proposed in [22]. The authors
consider a set of critical vertices C(τ), the operator move(u, v) and a candidate
list of moves CL(v) associated with a vertex v ∈ C(τ).

The main differences with the TS proposed by Mart́ı et al. are the following:
The near-critical vertices in the set C(τ) are not considered and the value
of a move is defined as the difference between the number of critical vertices
before and after the move, i.e.: move value(u, v) = C(τ) − C(τ ′), where τ ′

is the labeling obtained when applying move(u, v) to the current labeling τ .
Thus, a positive move value indicates that the solution improves in the sense
that the number of critical vertices decreases, although the βτ (G) value may
or may not be reduced.

On the other hand the Path Relinking approach is used to generate new so-
lutions (i.e. labelings) by exploring trajectories that connect high-quality so-
lutions, by starting from one of these solutions, called an initiating solution,
and generating a path in the neighborhood space that leads toward the other
solutions, called guiding solutions. This is accomplished by selecting moves
that introduce attributes contained in the guiding solutions.

The authors present an extensive computational comparison of the GPS pro-
cedure, the TS method and two versions of their GRASP algorithm (with and
without the path relinking mechanism). For this comparison they have used
113 instances from the Harwell–Boeing Sparse Matrix Collection. The experi-
ments shown that the best solution quality is obtained by GRASP-PR, which
was able to match 81 out of the 113 best known solutions, and outperforms
thus the TS heuristic that was only able to find 41 best solutions.
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3 An Improved Simulated Annealing Algorithm

In this section a SA implementation for solving the BMPG is presented. This
SA has the merit that it improves three key features that have a great impact
in this heuristic search: the internal representation, the evaluation function,
and the neighborhood function. Next all the details of the new implementation
proposed, called SA-δ, are presented.

3.1 Internal Representation

Given a graph G = (V, E) with vertex set V (|V | = n) and edge set E. A
potential labeling τ is defined as: τ : V → {1, 2, ..., n}. Then a labeling τ is
represented as an array l of integers of length n, which is indexed by the labels
and whose i-th value l[i] denotes the vertex with the label i (see Fig. 2(a)). This
representation is different from the one reported by other authors [7, 18, 22, 24]
which also uses an array of n integers, but with another interpretation where
the i-th element represents the label assigned to the vertex i.

The new representation proposed in this work has an important characteristic:
given that the contiguous positions in the array represent labels in the graph
with an unitary difference, an interchange of two adjacent elements produces
smooth changes in the configuration, because the contribution of these labels
to the graph bandwidth will change at maximum in one unit.

This concept will be best understood with the following example. Consider the
graph in Fig. 1(a). It consists of 5 vertices, identified with letters. The current
labeling τ is represented as a number inside each vertex and over each edge
the absolute difference between the labels of adjacent vertices is indicated.
Suppose that we take the contiguous labels 2 and 3 (i.e. the second and third
elements in the new representation) and we interchange them. Then, the label
2 will be assigned to the vertex e and the label 3 will be assigned to the vertex

(a) (b) (c)

Fig. 1. (a) Labeling τ with β=3. (b) Labeling τ ′ with β=3. (c) Labeling τ ′′ with
β=4.
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b. The resulting labeling τ ′ is presented in Fig. 1(b). It is important to note
that the changes in the absolute differences between the labels of adjacent
vertices have been changed at maximum in one unit (see for example the
edges {c, b} and {c, e}), even if it is recognized that the change is maximum
in the extremes that limit the rotation.

In contrast, if the classical representation for the BMPG is used and we take
the contiguous vertex b and c (i.e. also the second and third elements in the
classic representation) and we interchange them. Then, the vertex b will have
the label 5 and the vertex c will have the label 2. As a result the labeling
τ ′′, shown in Fig. 1(c), is produced. Observe that the changes in the absolute
differences between labels of adjacent vertices have been strongly changed.
They have even increased the bandwidth of the graph (see edge {a, b}).

3.2 Neighborhood Function

The search space T for the BMPG is composed of all possible labelings from
V to {1, 2, ..., n}. It is easy to see then, that there are n! possible labelings
for a graph with n vertices. From this search space, a neighborhood function
can be then introduced. Let τ be a labeling in T , the neighborhood N(τ) of a
labeling in our SA implementation is such that for each τ ′ ∈ T , τ ′ ∈ N(τ) if
and only if τ ′ can be obtained by rotating the labels of any group of vertices
from τ . Let swap(τ(i), τ(j)) be a function allowing to exchange two labels
of τ , then a rotation between two labels τ(i) and τ(j) can be expressed as a
product of (j − i) swaps with the Formula 10.

rotation(τ(i), τ(j)) = swap(τ(i), τ(j)) ∗ swap(τ(i), τ(j − 1)) ∗ (10)

swap(τ(i), τ(j − 2)) ∗ ... ∗
swap(τ(i), τ(i + 1))

where 0 ≤ τ(i) ≤ n−1, 0 ≤ τ(j) ≤ n−1 and τ(i) < τ(j). In this way a rotation
can be seen as a compound move. We have decided to use the rotation move
because it is well known that compound moves can lead to better local search
methods than those using only simple movements [3, 11, 19]. Experimental
studies presented in Section 5.3.2 also allow to confirm the superiority of the

(a) (b)

Fig. 2. (a) Original labeling τ . (b) The resulting neighboring labeling τ ′ generated
by applying rotation(τ(3), τ(7)) over τ .
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rotation move over the conventional swap move.

Let us present a graphical example of rotation to better understand the con-
cept. In Fig. 2(a) a labeling τ for a graph with 9 vertices is presented using the
representation proposed above. Suppose that we select τ(3) and τ(7) as the
parameters for the rotation. Then by applying the definition, each label τ(y)
where 4 ≤ y < 7 is displaced one position to the left in the representation.
Finally the element that occupied the place τ(3) is moved to the position τ(7).
The resulting neighboring labeling τ ′ is presented in Fig. 2(b).

3.3 Evaluation Function

The choice of the evaluation function is a very important aspect of any search
procedure. Firstly, in order to efficiently test each potential solution, the eval-
uation function must be as simple as possible. Secondly, it must be sensitive
enough to locate promising search regions on the space of solutions. Finally,
the evaluation function must be consistent: a solution that is better than oth-
ers must return a better value.

The most common practice in the algorithms for the BMPG reported in the
literature [6, 8, 10, 18] is to evaluate the quality of a configuration as the
change in the objective function β. This, however, provides little or no infor-
mation during the search process because β only takes into consideration the
maximum absolute difference between labels of adjacent vertices in the graph
(see Equation 1). In this sense β is not sufficiently discriminating because
there is no way to make distinctions between solutions with the same β value.
For example, the two labelings for the graph showed in Fig. 3 have the same
bandwidth (β = 3). However, a closer look allows one to confirm that the
labeling in Fig. 3(b) is intrinsically better than the one in Fig. 3(a). Indeed it
is better because it has only one absolute difference with value two.

Two exceptions are reported in the literature concerning the evaluation func-
tion for the BMPG. In [7], the authors take into account the five maximum

(a) (b)

Fig. 3. (a) Labeling τ with β=3. (b) Labeling τ ′ with β=3.
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absolute differences to evaluate a configuration. In [28], an evaluation function,
called γ, is presented. It takes into consideration all the edges of the graph.
Unfortunately due to its nature it can only be calculated efficiently for graphs
with less than 150 vertices.

Given the negative features of using β as an evaluation function and following
the ideas presented in [7, 28] it has been developed a new evaluation function,
called δ, which takes into account all the edges of the graph [25]. The proposed
evaluation function for a labeling τ is defined by the Equation 11 where dx

refers to the number of absolute differences with value x between adjacent
vertices, and β the bandwidth for the labeling τ .

δ(τ) = β +
β∑

x=1

⎛
⎝ dx

(n+β−x+1)!
n!

⎞
⎠ (11)

To illustrate the computation of this new evaluation function, let us consider
the graph in Fig. 3(a). For this particular graph: d1 = 1, d2 = 2, d3 = 2,
d4 = 0; additionally it is easy to observe that β = 3 and n = 5. Then, by
making the substitution of these values in the Formula 11 and simplifying we
obtain: δ(τ) = 3 + 1

336
+ 2

42
+ 2

6
= 3.3839.

In contrast if δ is computed for the labeling τ ′ showed in Fig. 3(b) we obtain
a different and smaller value δ(τ ′) = 3 + 2

336
+ 1

42
+ 2

6
= 3.3631.

The main idea of the new evaluation function δ is to penalize the absolute
differences dx with small values of x and to favor the absolute differences with
values of x near to β. The logic behind this is that it is easier to reduce the
absolute differences with value β to values close to β. In this sense the δ func-
tion is much more discriminating than β and leads to smoother landscapes
during the search process. This is possible because δ has the ability to create
more equivalence classes with a lower cardinality. This is an important char-
acteristic which allows to capture even the smallest improvement that orients
the searching process of solutions and permits to find configurations where all
the absolute differences between labels of adjacent vertices are minimized; and
not only the maximum one as it happens with β. Experimental studies pre-
sented in Section 5.3.3 allow to confirm the superiority of δ over β. A detailed
comparative study between β and δ can be found in [25].

3.4 Initial Solution

The initial solution is the starting labeling used for the algorithm to begin the
search of better configurations in the search space T . In this implementation
the starting solution is generated randomly.
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3.5 Annealing Schedule

The annealing schedule determines the degree of uphill movement permitted
during the search and is, thus, critical to the algorithm’s performance. The pa-
rameters that define an annealing schedule are: an initial temperature, a final
temperature or a stopping criterion, the maximum number of neighboring so-
lutions that can be generated at each temperature, and a rule for decrementing
the temperature.

The literature offers a number of cooling schedules, see for instance [1, 13, 15,
29] for several examples. In the SA-δ implementation we preferred a geometri-
cal cooling scheme mainly for its simplicity. It starts at an initial temperature
Ti and, at each round, decrements the current temperature by a factor of α
using the relation Tk = αTk−1. For each temperature, the maximum number
of neighboring labelings accepted is NAmax = µ|E|, while the maximum num-
ber of visited neighboring labelings is NVmax = µNAmax. Both NAmax and
NVmax depend directly on the number of edges (|E|) of the graph and on the
numeric constant µ, that we call moves factor. This is because more moves
are required for denser graphs. We will see later that thanks to the three main
original features presented previously, SA-δ using this simple cooling scheme
gives remarkable results.

3.6 Termination Condition

The algorithm stops either if the current temperature reaches Tf , or when it
ceases to make progress. In the proposed implementation a lack of progress
exists when the number of accepted configurations at each temperature goes
below the limit φ (frozen factor).

All the parameters of this SA algorithm were chosen experimentally, and tak-
ing into account some related work reported in [16, 28]. In the next section
the computational experiments performed to identify these parameter values
are presented. Additional experiments are reported in Section 5.3.1.

4 Parameter Tuning

It is well known that the performance of the SA algorithm is sensitive to
parameter tuning. Next we present the experimentation methodology used
consistently throughout the tuning process, to obtain good values for the key
parameters.
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First, a subset of 10 representative instances was selected from well-known
benchmark problems. All the experiments showed in this section were executed
over this set of instances.

For each parameter, an interval of reasonable size is determined based on some
preliminary experiments. Then 20 executions with each values combination
are performed for each problem instance. Finally, the data generated by these
tests is analyzed to obtain the parameter combination which yields the best
performance for the algorithm, both in solution quality and in execution time.

Next, the key parameters used in this study are presented. For each one of
them we indicate also its interval and step S:

• Initial temperature 4.0E−4 ≤ Ti ≤ 1.2E−2 with S = 2.0E−3

• Final temperature 8.0E−10 ≤ Tf ≤ 1.6E−9 with S = 2.0E−10

• Cooling rate 0.88 ≤ α ≤ 0.96 with S = 0.02
• Moves factor 10 ≤ µ ≤ 14 with S = 1
• Frozen factor 10 ≤ φ ≤ 30 with S = 5

These intervals and steps give a total of 3125 parameter value combinations
that we have tested. In Fig. 4(a) the average bandwidth reached over the
10 representative instances for each of these combinations is presented, while
in Fig. 4(b) the average CPU time expended is shown. From these graphics
we have selected the 10 best combinations. Their average bandwidth and the
average CPU time in seconds over the 10 problem instances are presented in
Table 1. From these results we have selected the parameter combination that
gives the best trade-off between solution quality and computational effort.
The best average bandwidth with an acceptable speed is reached when Ti =
1.0E−2, Tf = 1.0E−9, α = 0.92, µ = 12 and φ = 25. These values are thus
used in the experimentation reported in the next section.

Table 1
Average results from the 10 best parameter value combinations in the tuning ex-
periments.

Ti Tf α µ φ βτ (G) t

4.0E−3 8.0E−10 0.94 13 15 17.72 2.314

4.0E−3 8.0E−10 0.94 13 20 17.28 2.730

8.0E−3 1.4E−9 0.90 11 20 17.24 2.109

8.0E−3 1.2E−9 0.94 12 15 17.36 2.210

8.0E−3 1.0E−9 0.90 12 25 16.84 3.332

8.0E−3 8.0E−10 0.92 12 25 17.64 3.211

1.0E−2 1.2E−9 0.90 11 15 17.20 1.558

1.0E−2 1.0E−9 0.92 12 25 16.68 3.297

1.0E−2 8.0E−10 0.90 13 20 16.92 3.561

1.0E−2 1.4E−9 0.94 13 25 16.76 4.245
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Fig. 4. Graphics showing the average results obtained in the tuning experiments
using 3125 parameter value combinations over a set of 10 problem instances.

5 Computational Experiments

In this section, we present the experiments accomplished to evaluate the per-
formance of SA-δ over a set of 113 benchmark instances. 12 more instances
are also used to study the influence of some critical elements of the SA-δ algo-
rithm. For these experiments the SA described in Section 3 is used, together
with the parameter values obtained in Section 4. The algorithm was coded
in C and compiled with gcc using the optimization flag -O2. It was run into
a Pentium 4 at 2.8 GHz. with 1 GB of RAM. Due to the incomplete and
non-deterministic nature of the method 20 independent runs were executed
for each of the selected benchmark instances.
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5.1 Benchmark Instances and Comparison Criteria

The set of 113 problem instances used in our experimentation come from the
Harwell-Boeing Sparse Matrix Collection 2 . This is the same test data used
by Mart́ı et al. [22] and Piñana et al. [24]. These 113 problem instances are
divided into two subsets. The first subset is composed of 33 instances with 30
to 199 vertices. The second subset consists of 80 large instances whose sizes
vary from 200 to 1000.

To assess the performance of our SA-δ, we show comparative results on these
benchmark instances. The main criterion used for the comparison is the same
as the one commonly used in the literature: the minimum bandwidth ob-
tained. Computing time is also given for indicative purpose. Notice that a
finer comparison may be achieved by a new methodology recently proposed
by E. Taillard [27] which is based on success rates. However, this testing is
impossible in our case since we have no access to the success rates of the main
competing algorithms (TS and GRASP-PR). Consequently and like many pre-
vious studies, we make our comparisons based on information such as the best
and average result obtained by each algorithm.

The comparison is carried out in two parts. The first part gives an instance-by-
instance comparison of our SA-δ algorithm with respect to two highly effective
heuristic algorithms i.e. Tabu Search (TS) [22] and GRASP with Path Relink-
ing (GRASP-PR) [24]. Indeed, TS and GRASP-PR held the best results on
the benchmark instances before SA-δ was developed. The second part shows
a global performance comparison using averaged results. This second compar-
ison includes not only SA-δ, TS and GRASP-PR, but also two other well-
known algorithms, i.e. GPS [10] and Dueck and Jeff’s Simulated Annealing
(SA-DJ) [7].

5.2 Comparison Between SA-δ and the Best Known Results

Tables 2 and 3 present the detailed computational results of our SA-δ algo-
rithm as well as those obtained by TS and GRASP-PR over the two subsets
of benchmark instances. In both tables, we indicate the name of the graph,
its number of vertices, the bandwidth found (β) and the execution time in
seconds (t) for the TS and GRASP-PR algorithms 3 . Columns 7 to 11 show
the best (βb), worst (βw), average (Avg.) and standard deviation (Dev.) of
the bandwidth found by SA-δ over 20 independent executions and its average

2 http://math.nist.gov/MatrixMarket/data/Harwell-Boeing
3 The results of TS and GRASP-PR are taken from [21, 24] and correspond to one
single run for each algorithm and each problem instance.
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Table 2
Performance comparison using 33 small instances from the Harwell-Boeing Sparse
Matrix Collection. Results for the TS and GRASP-PR algorithms were taken from
[21, 24] where a K-7 Athlon at 1.2 GHz. was used.

TS GRASP-PR SA-δ
Graph n β t β t βb βw Avg. Dev. t β∗ ∆

arc130 130 63 4.8 63 1.9 63 64 63.8 0.4 23.2 63 0
ash85 85 10 0.7 9 0.4 9 9 9.0 0.0 1.1 9 0
bcspwr01 39 5 0.1 5 0.1 5 6 5.8 0.4 0.4 5 0
bcspwr02 49 7 0.2 7 0.6 7 8 7.8 0.4 0.2 7 0
bcspwr03 118 11 1.7 11 0.9 10 11 10.6 0.5 1.2 11 -1
bcsstk01 48 16 0.9 16 1.0 16 20 18.6 1.4 0.6 16 0
bcsstk04 132 38 16.7 37 5.4 37 42 37.6 1.2 79.2 37 0
bcsstk05 153 23 4.7 20 7.1 20 22 20.8 1.0 10.6 20 0
bcsstk22 110 11 1.1 10 1.6 11 11 11.0 0.0 5.5 10 1
can 144 144 14 1.7 14 3.1 13 13 13.0 0.0 17.6 14 -1
can 161 161 20 4.0 18 0.7 18 19 18.8 0.4 3.0 18 0
curtis54 54 10 0.7 10 0.7 10 10 10.0 0.0 0.5 10 0
dwt 234 117 11 1.2 11 1.9 11 13 12.0 0.9 1.1 11 0
fs 183 1 183 63 32.4 61 11.8 61 66 62.6 2.1 8.7 61 0
gent113 104 27 6.3 27 1.0 27 27 27.0 0.0 3.9 27 0
gre 115 115 25 2.4 24 3.2 23 24 23.6 0.5 1.6 24 -1
gre 185 185 22 6.2 22 6.1 22 24 22.2 0.5 6.8 22 0
ibm32 32 12 0.2 11 0.3 11 13 11.8 0.8 0.3 11 0
impcol b 59 21 1.3 21 1.2 20 23 21.0 1.3 1.2 21 -1
impcol c 137 33 3.5 31 4.5 30 31 30.6 0.5 3.1 31 -1
lns 131 123 21 3.4 22 2.6 20 21 20.6 0.5 1.8 21 -1
lund a 147 25 8.8 23 5.4 23 23 23.0 0.0 40.6 23 0
lund b 147 26 5.3 23 5.5 23 23 23.0 0.0 40.8 23 0
mcca 168 38 23.9 37 10.8 37 38 37.4 0.5 81.8 37 0
nos1 158 7 1.3 3 2.6 3 3 3.0 0.0 1.1 3 0
nos4 100 10 1.1 10 1.4 10 10 10.0 0.0 0.9 10 0
pores 1 30 7 0.3 7 0.3 7 9 8.0 0.9 3.1 7 0
steam3 80 7 0.7 7 1.0 7 7 7.0 0.0 8.9 7 0
west0132 132 36 3.4 35 8.5 33 36 34.0 1.1 5.4 35 -2
west0156 156 39 7.4 37 8.4 36 37 36.8 0.4 2.8 37 -1
west0167 167 35 5.8 35 5.6 34 35 34.4 0.5 4.8 35 -1
will199 199 70 12.0 69 26.9 65 67 65.7 0.8 6.1 69 -4
will57 57 7 0.4 7 0.4 6 6 6.0 0.0 1.1 7 -1

Average 23.33 4.99 22.52 4.03 22.06 23.36 22.62 0.52 11.18 22.48

CPU time in seconds (t) 4 . The last two columns show the previous best-
known solution (β∗) and the difference between the best solution found by
SA-δ (βb) and the previous best-known value (∆).

From Table 2, it can be observed that globally the results of TS and GRASP-
PR, obtained in only one execution, are slightly better than the worst value
(βw) attained by SA-δ (23.33 and 22.52 against 23.36) over 20 runs. This dif-
ference is reduced when the average result (Avg.) of SA-δ (22.62) is compared
with that achieved by GRASP-PR and it is even transformed into an improve-
ment of 3.05% with respect to the TS algorithm. Finally, one observes easily
that the best solution (βb) found by SA-δ, is better than the previous best
known solution (β∗) in 11 out of 33 instances.

4 Computing times are given only for indicative purpose since TS and GRASP-PR
algorithms were run on a K-7 Athlon at 1.2 GHz which is slower than our Pentium
4 at 2.8 GHz.
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On the other hand, the data presented in Table 3 show that globally the worst
quality solution (βw) of SA-δ (97.44) is better than that achieved by TS and
GRASP-PR (100.78 and 99.43), which represents an improvement of 3.31%
and 2.00% respectively. These improvements increase to 5.04% and 3.75%
when the average result (Avg.) of SA-δ (95.70) is considered. Finally, a check
of the best result (βb) obtained by SA-δ shows that in 46 out of 80 cases the
previous best known result is improved. Notice that for several instances the
improvement is relatively important; leading to a significant decrease of the
bandwidth (∆ up to −19) and only in 4 instances, SA-δ has a slightly inferior
result (∆ = 1). Finally, notice that the computing time required by SA-δ to
achieve these results remains competitive.

Table 3
Performance comparison using 80 large instances from the Harwell-Boeing
Sparse Matrix Collection. Results for the TS and GRASP-PR algorithms were
taken from [21, 24] where a K-7 Athlon at 1.2 GHz. was used.

TS GRASP-PR SA-δ
Graph n β t β t βb βw Avg. Dev. t β∗ ∆

494 bus 494 32 29.2 35 13.5 32 37 33.8 1.8 24.4 32 0
662 bus 662 42 113.8 44 32.9 43 44 43.2 0.4 70.4 42 1
685 bus 685 38 90.4 46 12.7 36 38 37.0 1.0 62.0 38 -2
ash292 292 24 7.9 22 8.7 21 21 21.0 0.0 34.4 22 -1
bcspwr04 274 26 9.6 26 5.2 25 25 25.0 0.0 28.0 26 -1
bcspwr05 443 29 24.7 35 16.3 30 32 31.4 0.8 26.8 29 1
bcsstk06 420 47 47.6 50 50.6 45 45 45.0 0.0 247.9 47 -2
bcsstk19 817 20 174.3 16 86.6 15 16 15.2 0.4 222.9 16 -1
bcsstk20 467 21 27.8 19 11.0 14 18 14.9 1.1 44.6 19 -5
bcsstm07 420 50 40.3 48 113.7 48 50 48.4 0.8 215.7 48 0
bp 0 822 252 386.8 258 483.0 240 251 241.7 2.7 140.7 252 -12
bp 1000 822 313 886.7 297 886.2 291 295 292.2 1.4 216.2 297 -6
bp 1200 822 320 674.8 303 897.1 296 299 297.2 1.2 218.2 303 -7
bp 1400 822 327 521.0 313 741.2 300 306 302.8 2.5 217.4 313 -13
bp 1600 822 322 546.8 317 783.7 299 308 300.6 2.8 231.8 317 -18
bp 200 822 281 315.2 271 550.3 267 272 268.7 1.8 168.4 271 -4
bp 400 822 288 355.7 285 560.6 276 282 277.8 2.3 180.0 285 -9
bp 600 822 299 480.9 297 556.8 279 287 281.8 2.9 193.3 297 -18
bp 800 822 305 520.9 307 636.9 286 289 286.9 1.2 219.9 305 -19
can 292 292 41 19.0 42 7.9 41 46 42.5 1.8 61.5 41 0
can 445 445 56 64.5 58 47.2 56 63 57.8 2.7 114.0 56 0
can 715 715 74 183.1 78 14.2 74 78 75.1 1.4 223.0 74 0
can 838 838 91 158.9 88 37.4 88 89 88.2 0.4 384.2 88 0
dwt 209 209 25 10.8 24 1.3 23 27 23.8 0.9 29.2 24 -1
dwt 221 221 15 5.0 13 7.0 13 13 13.0 0.0 23.4 13 0
dwt 245 245 25 7.5 26 14.4 24 25 24.2 0.4 9.3 25 -1
dwt 310 310 13 15.2 12 8.6 12 13 12.2 0.4 13.0 12 0
dwt 361 361 16 11.8 15 0.8 14 14 14.0 0.0 8.3 14 0
dwt 419 419 32 23.7 29 28.0 26 26 26.0 0.0 59.9 29 -3
dwt 503 503 45 99.3 45 7.9 44 47 44.7 0.9 163.5 45 -1
dwt 592 592 33 52.9 33 106.8 32 33 32.4 0.5 123.7 33 -1
dwt 878 878 31 195.0 35 99.6 26 26 26.0 0.0 106.7 27 -1
dwt 918 918 37 290.8 36 12.6 33 36 34.4 1.0 243.0 36 -3
dwt 992 992 64 272.5 49 306.4 35 36 35.6 0.5 116.4 35 0
fs 541 1 541 270 54.4 270 26.5 270 270 270.0 0.0 82.4 270 0
fs 680 1 680 19 43.4 17 33.6 17 19 18.4 0.8 39.8 17 0
fs 760 1 760 40 101.1 39 97.9 38 38 38.0 0.0 95.6 39 -1
gr 30 30 900 44 282.2 58 85.4 45 49 46.6 1.7 370.1 44 1
gre 216a 216 22 7.2 21 9.5 21 21 21.0 0.0 3.5 21 0
gre 343 343 29 16.6 29 21.2 28 28 28.0 0.0 7.4 28 0

Continues in the following page ...
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Table 3 – continued from previous page

TS GRASP-PR SA-δ
Graph n β t β t βb βw Avg. Dev. t β∗ ∆

gre 512 512 37 77.1 36 92.7 36 36 36.0 0.0 14.7 36 0
hor 131 434 60 26.0 64 27.7 55 56 55.4 0.5 154.1 60 -5
impcol a 206 35 5.5 34 3.4 32 33 32.6 0.5 5.4 34 -2
impcol d 425 44 21.9 42 30.5 42 49 43.6 2.8 77.5 42 0
impcol e 225 44 10.7 42 4.0 42 43 42.2 0.4 49.6 42 0
jagmesh1 936 31 150.6 27 107.8 27 27 27.0 0.0 33.8 27 0
jpwh 991 983 94 312.6 96 65.1 94 103 96.6 3.5 104.3 94 0
lns 511 503 48 74.2 49 58.3 44 46 44.8 0.8 123.8 48 -4
mbeacxc 487 270 3409.1 272 5464.5 262 264 263.0 0.9 1774.0 270 -8
mbeaflw 487 270 3409.4 272 5467.8 261 263 261.8 0.8 1744.9 270 -9
mbeause 492 260 2637.6 269 5494.3 255 260 256.6 1.9 1289.5 260 -5
mcfe 731 135 800.2 130 247.2 126 127 126.2 0.4 1868.9 130 -4
nnc261 261 26 8.6 25 22.4 25 25 25.0 0.0 8.7 25 0
nnc666 666 45 138.5 45 55.8 42 43 42.2 0.4 108.5 45 -3
nos2 638 9 43.7 3 15.7 3 5 3.8 0.8 114.5 3 0
nos3 960 76 143.8 79 209.1 62 64 63.0 0.6 811.6 75 -13
nos5 468 67 60.8 69 103.1 64 64 64.0 0.0 121.9 67 -3
nos6 675 21 70.9 16 42.8 16 16 16.0 0.0 12.5 16 0
nos7 729 73 74.5 66 89.9 65 65 65.0 0.0 23.9 65 0
orsirr 2 886 95 203.0 91 42.5 88 89 88.4 0.5 164.5 91 -3
plat362 362 38 24.8 36 3.4 36 39 36.5 1.1 189.4 36 0
plskz362 362 19 27.4 20 7.1 19 24 21.2 2.4 20.9 19 0
pores 3 456 17 16.8 13 3.2 13 15 14.2 1.0 13.0 13 0
saylr1 238 16 4.3 15 8.5 14 14 14.0 0.0 2.3 14 0
saylr3 681 53 107.2 52 77.8 53 57 54.4 1.5 15.6 52 1
sherman1 681 53 107.2 52 78.0 52 57 53.4 1.9 15.6 52 0
sherman4 546 29 33.0 27 4.1 27 27 27.0 0.0 11.5 27 0
shl 0 663 235 153.1 241 110.2 229 231 230.2 0.8 211.5 235 -6
shl 200 663 245 161.3 247 98.4 235 241 238.4 2.0 213.5 245 -10
shl 400 663 243 188.3 242 121.2 235 239 237.0 1.5 221.4 242 -7
steam1 240 50 16.9 46 12.7 44 47 45.2 1.2 79.1 46 -2
steam2 600 80 242.2 65 182.5 65 67 66.0 0.9 687.4 65 0
str 0 363 124 120.8 124 119.1 119 121 120.0 0.9 39.9 124 -5
str 200 363 136 90.9 135 114.1 128 135 132.0 2.7 47.3 135 -7
str 600 363 143 180.3 144 92.0 132 134 132.8 0.8 55.9 143 -11
west0381 381 164 113.0 159 185.4 153 157 154.4 1.4 38.1 159 -6
west0479 479 130 81.2 127 163.0 123 125 123.6 0.8 40.5 127 -4
west0497 497 90 78.3 92 88.7 87 89 88.2 0.8 137.9 90 -3
west0655 655 171 150.1 167 245.8 161 169 162.1 2.0 80.5 167 -6
west0989 989 228 372.7 217 416.9 215 217 216.0 0.9 172.1 217 -2

Average 100.78 263.97 99.43 339.97 94.80 97.44 95.70 0.97 199.25 97.98

In the literature, the BMPG performance evaluation is often based on the form

Table 4
Global performance comparison according to problem size. Results for the GPS, TS
and GRASP-PR algorithms were taken from [24] where a K-7 Athlon at 1.2 GHz.
was used.

33 instances with n = 30, ...,199
GPS SA-DJ TS GRASP-PR SA-δ βb SA-δ Avg.

Average β 31.424 29.364 23.333 22.515 22.061 22.621
Deviation 35.20% 56.20% 9.43% 2.27% 0.30% 3.83%
CPU sec. 0.003 2063.85 4.985 4.025 11.177 11.177

80 instances with n = 200, ...,1000
GPS SA-DJ TS GRASP-PR SA-δ βb SA-δ Avg.

Average β 156.375 164.588 100.775 99.425 94.800 95.699
Deviation 46.52% 221.71% 11.44% 6.28% 1.14% 1.97%
CPU sec. 0.111 26448.83 263.969 339.969 199.252 199.252
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of averaged results over the whole set of the tested instances. Table 4 shows
such a comparison of the best (βb) and average (Avg.) results obtained by SA-
δ with those reached by TS, GRASP-PR, GPS and SA-DJ. We indicate for
each algorithm the average bandwidth over each instance subset along with
the average CPU time in seconds and the average deviation from the best
solutions found by applying all the heuristics (including SA-δ) to the same
instance. Recall that the timings for GPS, TS and GRASP-PR are taken
from [24] where a K-7 Athlon at 1.2 GHz. was used for the experiments. The
results for SA-DJ are obtained by running the original source code in our
computational platform.

From Table 4, one observes that SA-DJ is very slow. Our SA-δ uses a set
of parameters, presented in Section 4, that speeds up the convergence and
allows to reach better solutions in less CPU time. We can also observe that
the performance of the classic GPS algorithm, though very fast, gives inferior
results in comparison with the other heuristics. In particular, it has an average
deviation several orders of magnitude larger than those obtained with SA-δ.
For the subset of small instances the average deviation from the best known
values for GRASP-PR (2.27%) is slightly smaller than that obtained by SA-δ
Avg. (3.83%), but considerably larger than the 0.30% obtained by SA-δ βb. For
the large instances, one observes a clear improvement in the average bandwidth
obtained with our algorithm both in βb and Avg. (i.e., 94.800 and 95.699 versus
99.425 for GRASP-PR). This comparison confirms clearly the competitive
performance of SA-δ with respect to the state-of-the-art algorithms on the
tested problem instances, specially on the large instances.

5.3 Discussions

It is well known that the parameters and some key features play an important
role in the global performance of the SA algorithm. In this sense we have
carried out some experiments to better understand these influences. For this
experimentation a set of 12 structured instances were generated according
to the model proposed in [7]. It consists of six different classes of graphs of
increasing sizes including: grids, paths, cycles, binary trees, ternary trees and
quaternary trees. This test suit was used consistently over all the experiments
presented in the following subsections.

5.3.1 Influence of the Annealing Parameters

The chosen annealing schedule determines the degree of uphill movement per-
mitted during the search process and is, thus, critical to the SA algorithm’s
performance. It has two important parameters: the initial temperature (Ti)
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Fig. 5. Influence of Ti on the solution quality for the SA-δ algorithm. Results ob-
tained on 20 executions at different initial temperatures over a set of 12 structured
instances.

and the maximum number of neighboring solutions that can be generated at
each temperature (NVmax). This point is confirmed in the following study.

In Fig. 5, the influence of the initial temperature (Ti) on the solution quality
for the SA-δ algorithm is presented. The curve represents the average solution
quality obtained over 20 executions at different initial temperatures. We can
observe that the values that give good results are in the interval 4.0E−3 ≤ Ti ≤
1.0E−2. This remark seems to be valid across the multiple problem instances
that we have tested. The other important parameter is the maximum number
of neighboring solutions that can be generated at each temperature (NVmax).
In our SA-δ implementation, it depends directly on the number of edges (|E|)
of the graph and on the moves factor value (µ). In Fig. 6, the influence of
µ on the average solution quality for the SA-δ algorithm is presented. The
curve represents the average solution quality obtained over 20 executions at
different values of µ. A second curve represents the average CPU time needed
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Fig. 6. Influence of µ on the solution quality for the SA-δ algorithm. Results obtained
over 20 executions at different values of µ over a set of 12 structured instances.
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to reach that solutions. We can observe from these curves that the best trade-
off between solution quality and CPU time is obtained when µ equal 12. This
graphic was created using data from our tuning experiments.

5.3.2 Influence of the Neighborhood Functions

The neighborhood functions is another critical element for the performance
of any local search algorithm. In this study we have considered the following
neighborhood functions:

• Swap1 : Two labelings are neighbors if one can go from one to the other by
exchanging the labels of two adjacent nodes in the graph.

• Swap2 : Two labelings are neighbors if one can go from one to the other by
exchanging the labels of any pair of nodes in the graph.

• Rotation: Two layouts are neighbors if one can go from one to the other by
rotating the labels of any group of vertices in the graph according to the
definition given in Subsection 3.2.

Experiments have been carried out to compare the performance of these three
neighborhood functions. Fig. 7 shows the differences in terms of average so-
lution quality for the SA-δ algorithm over 20 executions. For example, with
the same test conditions, the neighborhood function Rotation allows SA-δ to
get a bandwidth of 11.2 while Swap1 and Swap2 lead to a bandwidth of 17.5
and 16.3 respectively. Given this results it is clear that the rotation-based
neighborhood function is much more powerful.
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Fig. 7. Performance comparison of three neighborhood functions for SA-δ. Results
obtained on 20 executions over a set of 12 structured instances.

5.3.3 Influence of the Evaluation Functions

The purpose of this experiment is to compare the new δ evaluation function
and the classical β evaluation function. To do this, we use δ and β within
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our SA algorithm presented in Section 3 (call these SA algorithms SA-δ and
SA-β respectively) and test them on the set of 12 structured instances. These
graphs were selected for this experiment because the optimum bandwidth is
known for all of them.

Both SA-δ and SA-β were run 20 times on each instance and the results are
presented in Table 5. In this table columns 1 to 3 show the name of the graph
and the number of vertices and edges. Columns SA-β and SA-δ represent
the average bandwidth for the 20 runs of the SA algorithm that uses the
evaluation function β and δ respectively. The sixth and seventh columns show
the best bandwidth obtained for each of the SA variants. Finally the last
column presents the improvement obtained when the δ evaluation function
was used.

The results presented in Table 5 show clearly that the SA that uses δ consis-
tently has much better results for many classes of graphs than the one that
uses β. We can observe an average improvement of 42% (see column Improve-
ment). So we could conclude that δ is a better evaluation function than β.

In order to illustrate the behavior of SA-δ and SA-β in Fig. 8 the bandwidth
reduction versus the number of generated moves, over the instance Grid100, is
shown. In this figure it can be seen that the SA-δ reduces the bandwidth almost
continuously while the SA-β gets stuck longer time, and the final bandwidth
reached by SA-δ is significantly smaller than the bandwidth reached by SA-β.
This behavior was valid across the multiple problem instances that we have
tested.

Table 5
Comparison between two SA for the BMPG using the δ and β evaluation functions.
Results obtained on 20 executions.

Average Best
Graph n Edges SA-β SA-δ SA-β SA-δ Improvement
Path100 100 99 10.0 1.2 10 1 90%
Path150 150 149 15.6 1.4 15 1 93%
Cycle100 100 99 10.6 2.2 10 2 80%
Cycle150 150 149 15.8 2.6 15 2 87%
TreeB63 63 62 8.0 7.0 8 7 13%
TreeB127 127 126 15.6 11.0 15 11 27%
TreeT40 40 39 7.0 7.0 7 7 0%
TreeT121 121 120 17.8 15.0 17 15 12%
TreeQ85 85 84 15.0 14.0 15 14 7%
TreeQ205 205 204 30.6 26.0 30 26 13%
Grid100 100 180 15.8 10.0 15 10 33%
Grid225 225 420 31.2 15.0 30 15 50%

Average 15.6 9.3 42%
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6 Conclusions

In this paper, we have introduced an improved Simulated Annealing algorithm
(SA-δ). This algorithm integrates three key features that have a great impact
in the heuristic search:

• The internal representation: it allows us to produces smooth changes in the
configuration because of its intrinsical locality. Moreover, it has enabled the
creation of other neighborhood functions which lead to good solutions.

• The evaluation function: it has two important features: a) It considers all
the edges of the graph and b) It produces more equivalence classes with
lower cardinality. The δ evaluation function orients better the search process
with a smoother landscape and permits to find configurations where all the
absolute differences between labels of adjacent vertices are minimized.

• The neighborhood function: it allows the SA-δ to better explore the search
space. It presents a good trade-off between exploration and exploitation.

Extensive experimentation, on a set of 113 well-known benchmark instances
of the literature, has been carried out to evaluate the performance of this
SA algorithm. In these experiments our improved SA-δ algorithm has been
compared with several state-of-the-art algorithms. These comparisons lead to
the following main observations.

For the subset of small instances, the average solutions obtained by the GRASP-
PR algorithm are slightly better than the average values (Avg.) attained by
SA-δ (22.52 against 22.62), while SA-δ in average is 3.05% better than the TS
algorithm (23.33); furthermore, the best results (βb) found by SA-δ over 20
runs improve 11 out of 33 previous best known solutions.

Concerning the subset composed of large instances, the results show that in
average even the worst quality solution (βw) obtained by SA-δ (97.44) over 20
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runs is better than that achieved by TS and GRASP-PR (100.78 and 99.43);
while the average result (Avg.) reached by our algorithm (95.70) represents an
improvement of 3.75% with respect to GRASP-PR. SA-δ shows to be able to
improve on 46 out of 80 previous best known solutions when the best results
of SA-δ over 20 runs are considered.

This study confirms once again that appropriated neighborhood functions and
evaluation functions are indispensable for reaching good performance of a
Simulated Annealing algorithm. It confirms also the importance to find a
suitable tuning of parameters.

Finally, let us comment that although the importance of neighborhood func-
tions is widely recognized, the role of evaluation functions is somewhat over-
looked in the literature. We think that the research on more informative evalu-
ation functions for combinatorial problems is certainly a very interesting topic
to boost the performance of heuristic algorithms. Indeed, it is the evaluation
function that guides a heuristic search process through a large and complex
search landscape. It seems clear that it will be quite difficult to identify general
rules for designing informative evaluation functions. For a given problem, it is
indispensable to realize a deep analysis of the target problem and to integrate
useful information into the searched evaluation function.
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