CH-SAT: A Complete Heuristic Procedure for
Satisfiability Problems

Jin-Kao Hao and Laurent Tétart '

Abstract. This paper presents CH-SAT, a Complete Heuris-
tic procedure for the SATisfiability problem (SAT) based on
local search techniques. CH-SAT aims to combine the effi-
ciency of local search and the completeness of memorizing-
backtracking. CH-SAT extends successively a consistent par-
tial assignment using a complete assignment as guidance for
variable-ordering. To extend the partial assignment, CH-SAT
uses a two-step selection strategy to determine the next vari-
able: the selection of an unsatisfiable clause followed by the
selection of a variable in this clause. If the partial assignment
can no longer be extended, it is memorized in the form of
a new clause before the search re-starts. Experiments on Di-
macs benchmarks show the interest of CH-SAT for solving
some classes of hard instances.

1 INTRODUCTION

The satisfiability problem (SAT) [5] is of great importance
both in theory and in practice. The statement of the problem
is very simple. Given a well-formed boolean expression F, is
there a truth assignment that satisfies it? In theory, SAT is
one of the six basic core NP-complete problems. In practice,
many applications such as VLSI test & verification, consisten-
cy maintenance, fault diagnosis, planning and so on can be
formulated with SAT. SAT is originally stated as a decision
problem. However, there are many interesting related prob-
lems. We can mention, among others, 1) model-finding: find
satisfying truth assignments; 2) MAX-SAT: if a clausal for-
m formula is unsatisfiable, to find a truth assignment which
satisfies the maximum number of clauses, 3) model-counting:
find the number of all the satisfying truth assignments.
Existing methods for SAT can be roughly classified into
two categories: complete and incomplete methods. As exam-
ples of the first category, we can mention the logic-based ap-
proach (Davis-Putnam procedure, Binary decision diagram),
the constraint-network-based approach such as CSP techniques,
and 0/1 linear programming. The second category includes
such methods as local search (simulated annealing, Tabu search,
Hill-climbing) and evolutionary or genetic algorithms.
During the last few years, a lot of empirical work has been
carried out and much progress has been made. Efficient new
procedures based on some surprisingly simple ideas were de-
veloped. These procedures are able to solve much larger and
harder instances than previous methods. Among the incom-
plete methods, a good example is the local search procedure

1 LGI2P, EMA-EERIE, Parc Scientifique G. Besse, F-30000 Nimes,

France. Email: {hao,tetart } @eerie fr

© 1996 J.K. Hao and L. Tetart
ECAI-96 Workshop on Advances in Propositional Deduction
Budapest, Hungary from August 12 - 16, 1996

GSAT and its variants [14, 15]. Other incomplete procedures
based on evolutionary algorithms, simulated annealing, or
Tabu search were also reported [2, 7, 16, 8, 4]. At the same
time, efforts are being made as regards complete methods.
Some efficient implementations based on the combination of
the Davis-Putnam procedure and local search techniques have
been developed, see for example [3, 11]. Finally, studies on the
phase transition phenomena of random SAT instances give a
deeper insight into the hardness of this kind of instance [13, 6].

In this paper, we present CH-SAT, a Complete Heuristic
procedure which tries to combine the advantages of both in-
complete and complete methods, i.e., the efficiency of local
search and the completeness of memorizing-backtracking. CH-
SAT has been prompted by the work of [12, 17, 14] and may
be considered as a procedure of the weak-commitment search
specialized for the satisfiability problem. The main difference
is that CH-SAT uses various heuristics for choosing clauses
and variables.

CH-SAT is best viewed as a weak form of the informed-
backtracking algorithm (IFA) [12]. In essence, it tries to ex-
tend successively a consistent partial assignment whenever
possible in an informed manner. To do this, CH-SAT uses
an (inconsistent) complete assignment and heuristics working
on it to make its choice of the next variable. Two differences
distinguish CH-SAT from a standard IFA. First, when the
partial assignment can no longer be extended, the current par-
tial assignment is first memorized in the form of a new clause
(nogood) and then abandoned. The search re-starts with a
new complete assignment which incorporates the last consis-
tent partial assignment. This memorizing prevents the recre-
ation of a former abandoned partial assignment. Note that the
way in which CH-SAT backtracks is the same as in the weak-
commitment search [17], i.e. CH-SAT is not committed to its
partial assignment, in contrast to IFA which never gives up
completely a partial assignment until all possible backtrack-
s are carried out. Second, to extend the partial assignment,
CH-SAT uses a two-step selection strategy to determine the
next variable: the selection of an unsatisfiable clause followed
by the selection of a variable in this selected clause. For each
type of selection, many heuristics are possible.

In the following sections, we present the CH-SAT procedure
and heuristics for selecting clauses/variables. Some combina-
tions of these heuristics are empirically evaluated using bench-
marks of the second Dimacs implementation challenge. The
performance of CH-SAT is also contrasted with GSAT (for
satisfiable instances) and C-SAT (for unsatisfiable instances),
two representatives of incomplete and complete procedures.

Future extensions and improvements are discussed in the last
section.

2 THE CH-SAT PROCEDURE
2.1 Notations and Definitions

The following notations are used to simplify the presentation:

e a SAT instance is defined by a set of clauses {C1, C’g...C’m},2
linked by the logic and; X = {V1,V5...V,,} is the set of all
the variables in FE;

e a (complete) assignment [is defined by I = {< Vi, v; >
| for each V; € X and v; € {0,1}}, I is also noted as
I=WVi=vnA. AVy=u,);

o for a partial assignment PS = {< V,v > | for someV € X
and v € {0,1}}, PS is also noted as PS = (V;;, =vA..A
Vi, = vi,); X(PS) is used to note the set of the variables
in PS;

o for a variable V in an assignment I, T(V') gives the truth
value of V in [.

Definition 2.1 A partial assignment PS is said to be consis-
tent if all the clauses instantiated by PS are satisfied. Other-
wise, PS is said to be inconsistent.

Definition 2.2 A (consistent) partial assignment PS is said
to be inextensible if there exists a variable V; € (X — X(PS))
such that both < V;,0 > and < V;,1 > make PS inconsistent.

Definition 2.8 A variable V of < Vv >€ PS is said to be
forced if PS is consistent and PS — {< Vv >}U{< V,—-v >}
18 inconsistent. In other words, a forced variable V' has the
unique consistent value v for the partial assignment.

2.2 The CH-SAT Procedure

The CH-SAT procedure is complete: for satisfiable formulae,
it gives satisfying truth assignments, and for unsatisfiable for-
mulae, it confirms the non-satisfiability. Basically, CH-SAT is
a weak form of a backtracking algorithm which is informed by
a complete assignment and a set of heuristics. During each it-
eration, CH-SAT tries to extend successively the current par-
tial assignment (empty at the beginning). To determine the
next variable, it uses various heuristics, based on the com-
plete assignment, to select first an unsatisfied clause and then
a variable in the clause. If during the search it is no longer
possible to extend the consistent partial assignment, the par-
tial assignment is abandoned and its negation is added to the
initial formula as a new clause. The search then re-starts with
an empty partial assignment and a new complete assignment
which incorporates the last consistent partial assignment. The
general procedure is given in Fig. 1 below.

We will now give some explanations about the procedure.
First, cost(I)is an evaluation function used to measure the
quality of an assignment / with respect to the given instance
FE. This function is defined as the total number of clauses
(including added ones) that are not satisfied by I. Therefore,
a solution is found when the cost has the value 0.

2 A clause is a disjunction of literals, a literal being a variable or
the negation of a variable.

Second, the complete assignment / can be generated ran-
domly or constructed using, for example, a greedy method.
Each time the partial assignment PS is extended to include
a new pair < V v > such that < V,=v > € I, I is modified
to have the new value of V. Therefore, at any moment, [is
a superset of PS. In this way, the procedure can terminate
when the condition cost(I) = 0 becomes true even if PS has
not been extended to a complete assignment yet.

Third, the next variable to be added to the partial solution
PS is chosen by a two-step strategy: choose first an unsatis-
fiable clause and then a variable in this clause. Therefore, the
first part of the decision is made globally among all the unsat-
isfied clauses while the second one is made locally among one
clause. Note that this strategy was first used in WSAT [15],
a member of the GSAT family.

CH-SAT Procedure

Input: E: a set of clauses
Output: a model if F is satisfiable; Unsatisfiable otherwise
begin
I «— complete truth assignment
PS — empty
satisfiable « true
while (cost(I)>0 and satisfiable=true) do
choose a clause C that is not satisfied by I
choose a variable V' in C to be added to PS
(let T(V) be Vs current truth value in I)
if adding < V, =T (V) > to PS does not lead to unsat. clause then
| add < V, =T(V) > to PS
replace < V, T(V) > by < V, =T(V) > in I
Ise
[*see if < V, (V) > can be added to PS */
if adding < V, T(V) > to PS does not lead to unsat. clause then
add < V, T(V) > to PS
mark V as being forced;
else
/* neither = T(V) nor T(V) can be included in PS
= dead-end = backtrack */
if PS is not empty then
construct a clause C from — PS and add C to B
abandon PS;
undo the marks of the forced variables

else
L L L satisfiable «— false

if cost(I)=0 and satisfiable=true then
| solution found

else
L E is unsatisfiable

end

Fig. 1: The CH-SAT Procedure

Many heuristics are possible for both choices. Different
heuristics lead to different variable-ordering strategies. In the
following, some of them are studied.

1. Heuristics for selecting an unsatisfied clause:

e c.1 random A: take randomly one unsatisfied clause;

e c.2 shortest A: take the shortest unsatisfied clause;

¢ ¢.3 random B: take randomly one unsatisfied clause
from among added clauses;

e c.4 shortest B: take the shortest unsatisfied clause,
with priority for added clauses.

2. Heuristics for selecting a variable in the chosen

clause:

¢ v.1 random: take randomly a variable from the chosen
clause;

e v.2 best-one: take a variable which gives the greatest
decrease in the cost function. If no such variable exists,
take the one which leads to the smallest deterioration in
the cost function (break ties randomly);

o v.3 first-improvement: take the first variable which
improves the cost function. If no such variable exists,
take the one which lead to the smallest deterioration in
the cost function (break ties randomly);

J.K. Hao and L. Tetart

¢ v.4 random-walk: with probability p, apply the ran-
dom heuristic, with 1 — p, apply the best-one or first-
improvement heuristic.

Evidently, any combination of a c¢.x heuristic and a v.y
heuristic gives a different selection strategy (there are more
than 16 possibilities in our case). It would be interesting to
investigate the performance of these combinations. Limited
empirical evaluations for some of these combinations are re-
ported later in the paper.

2.3 Construct a New Clause from PS;,..

In CH-SAT, when a partial assignment cannot be extended
further, a new clause is created from the negationof the partial
assignment and added to E. The principle is the following. A
partial assignment represents a subtree or a specific area in
the search space. The fact that a partial assignment can no
longer be extended implies that there is no solution in this
area. This fact can be memorized as a no-good to prevent the
search process from re-visiting this area. One natural way to
do this is to memorize the negation of the inextensible partial
assignment as a clause. Let PSines be such an inextensible
partial assignment, then the associated clause C(ﬂPSmex)
can be constructed as follows.

Since P Sines & (Viy =vi; A AV, =05,) & (0V;, =
vy, V.. VAV, =) & (Vi = ~oy V.oV, = v,
therefore, C(=PSinez) = Li; V...V L;, is defined as follows:
Li; =Vi; (1 235 2 k)il vy =0; Li; = 2Vi, if vi; =
0. By definition, C(—PSines) is not satisfied by the current
PSines. It is easy to see that any assignment which satisfies
E AC(=PSines) must satisfy E.

An equivalent but simpler C(—PSine;) may be obtained
due to forced variables. The interest of such a simplification
lies in the fact that the smaller a clause is, the larger the area
represented by the clause in the search space. For instance,
a unit clause represents half of the search space. The simpli-
fication can be achieved thanks to forced variables. It should
be remembered that a forced variable V in PS;n.: has a u-
nique consistent value ». The other value —v is impossible for
PSines. More precisely, the following theorem can be proven
and be used to construct a simpler C(=PSines).

Theorem 2.1 Let F be a SAT instance, and PSines an in-
extensible partial solution for E, then E is salisfiable (unsatis-
fiable) if and only if, for any < V;,,vi, >€ PSines such that
Vi, is a forced variable, E A C(PSines — {< Vi, vi, >1}) is
satisfiable (unsatisfiable).

Using this theorem, we obtain the following procedure to
construct a reduced clause C(—=PSines) for PSines.

1. Delete all forced variables from PS;pnes, leaving PSines =
(Vil =v, ALLAV, = ’Uik:),

2. Construct C(=PSines) = Liy V...V L;, where L, =V
(IZjZk)ifv,-j:m Li; ==V, if v, = 1.

i

2.4 Termination, Completeness, Soundness
and Complexity

Termination: The proof of termination is based on three
points.

e each iteration extends the partial assignment if it is possi-
ble,

e the number of partial assignments is finite,

e each inextensible partial assignment is different from those
already encountered.

The first two points being evident, we will show only the
third one. Let 7 be the current iteration number, PS; the
current consistent inextensible partial assignment. The fact
that PS; can no longer be extended implies that there exists
a chosen V such that including either < V;0 > or < V|1 >
in PS; gives an inconsistent PS;y1. Suppose now that there
exists a 7 < ¢ such that PS; = PS;, then during 7" iteration,
a clause C(—PS;) has been added to E. Therefore, C(=PS;)
is not satisfied by PS;(= PSj), i.e. PS; is inconsistent, which
is a contradiction. Consequently, P.S; must be unique.

In practice, the procedure stops either when a satisfying
assignment is found or when a contradiction (a unit clause
and its negation) is found?

Completeness: The completeness is a direct consequence
of the previous proof. In fact, the proof shows that in the
worst case all inextensible partial solutions are enumerated
and corresponding clauses added. Therefore, if F is unsatisfi-
able, then sooner or later a unit clause and its negation will
be found among added clauses.

Soundness: For the satisfiable part, the search stops when
cost(I) = 0. This means that all the clauses (including added
ones) of E are satisfied by I. Consequently, a satisfying truth
assignment is found. For unsatisfiable instances, the stop con-
dition implies that no non-empty partial solution is possible.
In other words, both a unit clause and its negation are found.
Given the completeness of the procedure, this stop condition
will be reached in finite time.

Complexity: The time complexity of the procedure is ev-
idently an exponential function of n, the number of the vari-
ables of F, because in the worst case, all the possible partial
assignments will be enumerated before a contradiction is de-
tected. Since inextensible partial assignments are memorized
as nogoods, the procedure has a worst-case exponential space
complexity.

3 EXPERIMENTAL RESULTS

In this section, we compare first some combinations of heuris-
tics introduced in section 2.2 for clause/variable selection and
then contrast CH-SAT*with GSAT and C-SAT, two represen-
tative procedures for finding models and proving unsatisfia-
bility. Note, however, that the main goal of this work is to
present CH-SAT and to study its heuristics.

Tests were carried out on a set of well-known SAT bench-
marks representing different fypes of problems (planning, ran-
dom, bridge-fault, induction, coloring ...), essentially from the
archives of the second Dimacs Implementation Challenge®

Results presented here are the mean of 10 independent run-
s, except for some vary hard instances. For each tested in-
stance, we give the number of iterations Iter and user times
Time on a Silicon PowerMachine L (Processor R8000, 75Mhz

3 if there are no such clauses in F, they are necessarily constructed
and are among the added clauses.

4 In fact, a C++ implementation of the CH-SAT procedure.

5 Dimacs Benchmarks can be obtained by anonymous ftp from:
ftp.dimacs.rutgers. edu.

J.K. Hao and L. Tetart

with 128Mo of RAM) for successful runs. If a run fails to find
a solution within a fixed number of iterations (maximum fixed
to be 1,500,000), NOis given followed by brackets showing the
time spent by the run.

The performance of CH-SAT is largely controlled by the
heuristics for selecting clauses/variables. As discussed in Sec-
tion 2.2, many combinations are possible. In what follows, we
will present some representative combinations. It should be
noted that making a general assertion about the performance
of heuristics is a difficult task. Consequently, the results con-
cerning the relative performance of heuristics should be inter-
preted with precaution. However, we hope that empirical tests
will help to disclose some intrinsic properties of the heuristics
as regards different classes of problems.

3.1 Comparison of Heuristics for Selecting
Clauses

We have chosen to compare the following two heuristics for
selecting clauses: ¢.1 random and c.2 shortest. They were
tested with the v.2 best-one heuristic for selecting variables.
Tables 1 and 2 show the comparative results for the two chosen
heuristics for satisfiable and unsatisfiable instances.

Instance | Random clause | The shortest clause
Name Tter. Time Tter. Time
alm-100-2_0-1 65561 1'51” 42593 28”
alm-200-2_.0-2 max NO(5h19’) 294883 8’3"
medium 796 0720 251 0714
hanoi 59873 537 14627 57
huge 83284 1'45” 15374 7
ii16al 741 0768 624 0790
ii32b3 1262 1741 1753 1755
mwif.300 max NO(2h40%) max NO(2h18’)
par8-2-c 737 0710 9907 2714
par8-4-c 592 079 1842 0724
ssa7552-038 407518 58741 131231 3774
ssa7552-158 351809 12’77 34429 9766

Table 1.

Comparisons of clause heuristics for sat. instances

From the data, we see that the c.1 shortest heuristic works
better than the ¢.1 random heuristic in terms of iterations
and solving time for most of the tested instances. This is espe-
cially true for unsatisfiable instances. The main reason for this
is that the c.1 shortest heuristic informs better the search
about which direction to take than the ¢.1 random heuris-
tic does. The following observation helps to understand this
point, at least for satisfiable instances.

If we trace the cost evolution, i.e. the number of unsatisfied
clauses as a function of the number of iterations, we observe
that both heuristics are able to reduce rapidly the cost after a
relatively small number of iterations (descending phase), fol-
lowed by a long series of up-down moves (oscillation phase).
The first difference between these two heuristics is that the
c.1 shortest heuristic goes faster (requires much smaller it-
erations) during the descending stage. The main difference is
that ¢.1 shortest focuses better its search direction during
the oscillation stage. In fact, the ¢.1 random heuristic oscil-
lates too much to be able to concentrate on any search area
after the descending phase.

We have also observed that the number of added clauses of
c.1 shortest tends to be smaller than that of ¢.1 random. In

Instance | Random clause | The shortest clause
Name Tter. Time Tter. Time
alm-100-2_0-1 9122 6” 5559 27
alm-200-2_0-2 815086 5h41’ 87234 3’6"
jnh202 368601 1h10’ 421106 41'26"
jnh302 43801 58” 36165 257
dubois20 max NO(2h) 1262335 6h14’
bf2670-001 max NO(1h16’) max NO(2h59’)
Table 2. Comparisons of clause heuristics for unsat. instances

other words, ¢.1 shortest backtracks less frequently than c.1
random does. As to the length of added clauses, it is usually
big (from 10 to 60) for both heuristics. Consequently, added
clauses have little chance to be selected by the ¢.1 shortest
heuristic.

Note that the performance of the c.1 shortest heuristic
in CH-SAT is consistent with its performance found in other
complete procedures.

3.2 Comparison of Heuristics for Selecting
Variables

Similar tests were also carried out on heuristics for selecting
variables in a clause. In particular, we have compared the
following three heuristics: v.1 random, v.2 best-one and
v.3 first-improvement in conjunction with ¢.2 shortest
for selecting clauses. The same set of instances and criteria
used above for testing clause heuristics were used here.

From the experimental data (not shown here), we observed
that although the performance of these heuristics is mixed
for the tested instances, it seems that v.2 best-one and v.3
first-improvement give slightly better results on average.

To have a closer look at the behavoir of these heuristics, we
traced once again the evolution of the cost function for each
heuristic for some instances. First, we observed that the de-
scending phase of v.2 best-one and v.3 first-improvement
is faster (sharper) than that of v.1 random. In other word-
s, to reach a given number of satisfied clauses, v.1 random
usually needs more iterations. Second, the oscillation phase of
v.2 best-one is smoother and less chaotic than that of v.3
first-improvement, and the oscillation phase of v.3 first-
improvement is smoother and less chaotic than that of v.1
random. This is not surprising. In fact, while v.2 best-one
and v.3 first-improvement guide the search toward improv-
ing moves, v.1 random may lead to deteriorating moves at
any step during the search. Consequently, v.1 random may
abandon a promising path.

After all, the performance of these heuristics varies accord-
ing to the type of problem. Indeed, a guided heuristic such as
v.2 best-one or v.3 first-improvement may be stuck in
deep local optima.

Note finally that the difference of performance of these vari-
able heuristics is less significant than that for heuristics for
selecting clauses. This may be explained by the fact that a
clause selection is a global decision made among all the unsat-
isfied clauses while selecting a variable is a local decision lim-
ited to a clause. Therefore, the first choice has more influence
on the performance of the procedure. This is particularly true
if the selected clauses are short. This is what happens with
the c¢.2 shortest heuristic we used.

J.K. Hao and L. Tetart

3.3 Results and Comparisons

This section lists results of CH-SAT for some Dimacs bench-
marks. Most of these results are obtained with the ¢.2 short-
est/v.2 best-one combination, and the only parameter asked
is therefore the maximal number of iterations. In our experi-
ments, this number is usually fixed at 1,500,000.

3.8.1
Table 3 shows the results of CH-SAT for satisfiable instances.

Satisfiable Instances

Instances CH-SAT

Name Var. CI. Tter. Add.Cl Time
aim-100-2_0-yes-1 100 200 42593 2017 28749

aim-200-2_0-yes-2 200 400 294883 10360 8’3"
aim-200-2_0-yes-3 200 400 244117 15137 31’40”
aim-200-2_0-yes-4 200 400 334586 19137 42'4"
medium 273 2311 251 7 0714
hanoi 417 2561 14627 790 5”720

huge 937 14519 15374 672 6783
i116al 1650 19368 744 1 0768
ii16b1 1728 24792 25989 221 1472
ii16c¢1 1580 16467 809 3 0783
ii16d1 1230 15901 883 5 0789
iil6el 1245 14766 2208 28 2722
ii32b3 348 5734 532 11 0775
200 200 860 67830 2367 14’35”

400 400 1700 206307 5119 58’4
par8-2-c 68 270 737 36 0710

par8-4-c 67 266 592 27 079
ssa7552-038 1501 3575 131231 1409 3774
ssa7552-158 1363 3034 51170 823 11735
ssa7552-159 1363 3028 18738 439 3738
ssa7552-160 1391 3126 27824 398 4796

Table 3. Results for satisfiable instances
From the data in this table and some results not shown
here, two general remarks can be made about the performance

of CH-SAT.
1. CH-SAT solves the instances of the following classes:

o aimzzz: artificially generated 3-SAT instances having ex-
actly one solution,

e iizxz: instances from inductive inference,

e jnhzzz: random instances which are generated by reject-
ing unit clauses,

o medium, hanoi and huge: instances from planning,

e ssaxxr: instances from circuit fault analysis,

e frzx: satisfiable hard random instances until 400 vari-

ables.

2. CH-SAT has difficulty solving the following classes of in-
stances or some instances of these classes:

o frzz: large and hard random instances having more than
400 variables,

e gzzz: graph coloring problems,

e parl6zr and par32zx: problems in learning the parity
function.

As put forward in [9], comparing heuristic procedures is
very difficult and may be meaningless. However, it will be
useful to have some indication about the performance of CH-
SAT with respect to other well-known procedures. For this

purpose, we have compared the above results with the re-
sults of GSAT reported in the literature as well as those we
obtained by running GSAT. We can make the following re-
marks:

o GSAT fails to solve the aimzzz family which is easy for
CH-SAT to solve,

e For the instances solved by both CH-SAT and GSAT, CH-
SAT generally requires far few iterations (flips for GSAT)
than GSAT,

o GSAT solves much larger random instances than CH-SAT,
thanks to its Random- Walk strategy which exploits well the
characteristics of these classes of instances,

e GSAT solves the graph coloring instances thanks to the
Clause Weights and Averaging in” strategies.

Although CH-SAT fails to solve some instances which can
be solved by GSAT), it is remarkable for CH-SAT to give com-
parable or better results on many classes of problems since
GSAT is a specialized, highly optimized procedure for finding
models.

3.83.2 Unsatisfiable instances

Table 4 shows results of CH-SAT for unsatisfiable instances.

Instances | CH-SAT
Name Var. CI. Tter. Add.Cl Time
alm-100-2_0-no-1 100 200 9122 869 570"
alm-200-2_0-no-1 200 400 133570 10360 10’107
alm-200-2_0-no-2 200 400 99318 15137 4’20"
alm-200-2_0-no-3 200 400 28804 19137 35”
alm-200-2_0-no-4 200 400 63233 4910 3'03”
bf2670-001 1393 | 3434 966774 26891 2h28’48”
jnh2 100 850 448147 25252 1h13’44”
jnh302 100 800 284043 17074 34°'04"
jnh302 100 900 12402 821 4’95"
dubois20 60 160 792941 34729 3h33’41”
dubois21 63 168 845671 35723 3h37'01”
Table 4. Results on unsatisfiable instances

From the data in Table 4 and some results not shown here,
two general remarks can be made about the performance of

CH-SAT.

1. CH-SAT easily solves the following two classes: aimzzz and
jnhzzr and manages to solve one bfrzzz and two of the
duboisrr instances,

2. CH-SAT has difficulty solving the pretrzz (2-coloring) class

and some large instances of the classes duboiszz, ssazzzr and

bfrzx.

Compared with the results of C-SAT reported in [3] and
those we observed by running C-SAT, the current CH-SAT
procedure gives poorer results except for the aimzzz family.
This seems not surprising given that C-SAT is a specialized,
highly optimized procedure for detecting the non-existence of
solutions. Note also that C-SAT solves some very hard prob-
lems such as the duboiszrz and prezzrinstances with the help
of advanced techniques such as symmeitry detection proposed
in [1].

J.K. Hao and L. Tetart

4 CONCLUSIONS AND FUTURE
WORK

In this paper, we have presented CH-SAT, a complete pro-
cedure based on local search heuristics for the satisfiability
problem. Some of the combinations of heuristics for select-
ing clauses/variables have been empirically evaluated. We ob-
served that it is difficult to compare objectively these com-
binations since very often the performance of a given com-
bination depends on the type of instance to be solved, i.e.
the intrinsic structures of these instances. However, we ob-
served that the combination shortest clause/best (or first-
improvement) variable gives the most consistent results for
tested instances.

Preliminary results on the second Dimacs benchmarks show
the interest of this procedure for both finding models and
proving unsatisfiability. In fact, for satisfiable instances, CH-
SAT gives good results for a wide range of problem instances.
For unsatisfiable instances, although the current implemen-
tation of CH-SAT is not as good as C-SAT, a very efficient
procedure specialized in proving unsatisfiability, it gives in-
teresting results for many non-trivial instances.

At the same time, some classes of problems remain un-
solvable with CH-SAT. This is the case for large (and hard)
random and graph coloring satisfiable instances, and for some
pretzxz, duboiszr and ssaxxzr unsatisfiable instances.

Many possibilities exist for improving or extending CH-
SAT. We can mention:

1. Specialization: As put forward in [3], searching for so-
lutions and proving the non-existence of solutions are two
very different tasks. In fact, the search has to implicitly vis-
it the whole space to prove unsatisfiability while this is not
necessary for finding a solution. Specialization has shown
its power with C-SAT and GSAT. It would be interesting
to specialize CH-SAT for these two different tasks.

2. One-step selection strategy: Like other procedures, this
alternative to the current two-step selection strategy deter-
mines directly the next variable. Once again, many heuris-
tics may be used. We can mention, for instance, 1) random:
pick randomly a variable occurring in an unsatisfied clause;
2) the best (min-conflict): pick the variable which gives the
greatest decrease in the total number of unsatisfied clauses;
3) next-better: take the first variable which gives any de-
crease in the total number of unsatisfied clauses; 4) most-
constrained: pick the variable which occurs in the biggest
number of (unsatisfied) shortest clauses; 5) random-walk:
with probability p, pick randomly a variable occurring in
an unsatisfied clause; with 1 — p, pick the best.

3. Learning: A fundamental element underlying any intelli-
gent problem-solving system is the use of flexible memory.
Flexible memory embodies the dual process of creating and
exploiting structures in order to take advantage of historical
information. Memorizing inextensible partial assignments
as clauses may be considered as a primitive learning mech-
anism. More advanced mechanisms are certainly necessary
to tackle very hard problems. The basic idea is that the
procedure stores and uses pertinent historical information
to better orient the search towards particular regions either
to find solutions or to prove the non-existence of solutions.

4. Clause simplification: CH-SAT requires many memory
to record supplementary clauses. Indeed, it has an worst-

case exponential space complexity. Therefore, it should be
interesting if some clauses may be simplified or even sup-
pressed during the search.

Similar work of embedding local search into backtracking
procedures has been reported, see for instance [3, 11]. The
main difference is that they integrate local search into the
Davis-Putnam procedure. In this paper, we have given an al-
ternative way of realizing this integration, i.e. embedding local
search into a very simple informed backtracking framework.

To conclude, we make some general remarks on heuristics-
based search procedures. The performance of a heuristics de-
pends largely on its capacity to exploit the structure or char-
acteristics of problems. A heuristic has a priori some “fa-
vorite” problems. Therefore, a long-term goal of our work is
to look for a better understanding of the behavior of heuristic
procedures such as CH-SAT. This may consist in identifying
the characteristics of problems that may be efficiently exploit-
ed by the given heuristic procedure.

ACKNOWLEDGEMENTS

We would like to thank O. Dubois of the University of Paris
6, B. Selman and H. Kautz of AT&T, and L. Sais of the U-
niversity of Lens for making respectively C-SAT, GSAT and
DPTWSAT available to us, and the referees for their com-

ments on the paper.

REFERENCES

[1] Benhamou B and Sais L. ‘Theoretical Study of Symmetries in
Propositional Calculus and Applications’, Proc. 11th Conf. on
Automated Deduction, Springer-Verlag, 1992, pp281-294.

[2] De Jong K.A. and Spears W.M. ‘Using Genetic Algorithms to
Solve NP-Complete Problems’. Proc. of Intl. Conf. on Genetic
Algorithms, Fairfax, Virginia, June 1989, pp124-132.

[3] Dubois O., André P., Boufkhad Y. and Carlier J. ‘SAT versus
UNSAT". in [10].

[4] C. Fleurent and J.A. Ferland, “Object-oriented Implementa-
tion of Heuristic Search Methods for Graph Coloring, Maximum
Clique, and Satisfiability”. in [10]

[5] Garey M.R. & Johnson D.S. ‘Computers and Intractability: a
Guide to the Theory of NP-Completeness’. Freeman, San Fran-
cisco, CA, 1979.

[6] Gent I.P. and Walsh T. ‘The SAT Phase Transition’. Proc. of
ECAT94, John Wiley & Sons, Amsterdam, The Netherlands,
August 1994, pp105-109.

[7] Hao J.K. and Dorne R. ‘A Population-based Method for Sat-
isfiability Problems’. Proc. of ECAI-94, John Wiley & Sons,
Amsterdam, The Netherlands, August 1994, pp135-139.

[8] Hensen P. and Jaumard B., Algorithms for the maximum satis-
fiability problem, Computing Vol.44, pp279-303, 1990.

[9] Hooker J.N. ‘Testing Heuristics: We Have it all Wrong’. J. of
Heuristics, Vol.1, No.1, 1996.

[10] Johnson D.S. and Trick M.A. (eds.) ‘2nd DIMACS Implemen-
tation Challenge: Cliques, Coloring and Satisfiability’. DIMACS
Series in Discrete Mathematics and Theoretical Computer Sci-
ence, Vol. 26, 1996.

[11] Mazure B., Sais L. and Grégoire E. ‘Boosting Complete Tech-
niques Thanks to Local Search Methods’. Workshop on Practi-
cal Solving of SAT at ICCP’95, Marseille, France, 1995.

[12] Minton S., Johnston M.D. Philips A.B. and Laird Ph. ‘Min-
imizing Conflicts: A Heuristic Repair Method for Constraint-
Satisfaction and Scheduling Problems’, Journal of Artificial In-
telligence, Vol.58 No.1-3, 1992, pp.161-206.

J.K. Hao and L. Tetart

[13] Mitchell D., Selman B. and Levesque H.J. ‘Hard and Easy
Distributions of SAT Problems’. Proc. of AAAI-92, San Jose,
CA, 1992, pp.459-465.

[14] Selman B., Levesque H.J., and Mitchell M. ‘A New Method for
Solving Hard Satisfiability Problems’. Proc. of AAAI-92, San
Jose, CA, 1992, pp.440-446.

[15] Selman B., Kautz H.A and Bram C. ‘Noise Strategies for Im-
proving Local Search’. Proc. of AAAI-94, Seattle, WA, July
1994.

[16] Spears W.M. ‘Simulated Annealing for Hard Satisfiability
Problems’. in [10].

[17] Yokoo M. ‘Weak-Commitment Search for Solving Constrain-
t Satisfaction Problems’ Proc. of AAAI-94, Seattle, WA, July
1994, pp313-318.

J.K. Hao and L. Tetart

