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Abstract. This paper presents an analysis of the search space of the
well known NP-complete SAT problem. The analysis is based on a mea-
sure called “density of states” (d.o.s). We show experimentally that the
distribution of assignments can be approximated by a normal law. This
distribution allows us to get some insights about the behavior of local
search algorithms.

1 Introduction

In the last decade, many studies intended to understand the dynamics of local
search methods in order to contribute to the development of new effective meth-
ods for hard problems like the problem of satisfiability (SAT) [7]. Several authors
look at the problem structure for an explanation of the behavior of local search
methods. Thus studies on the number of solutions [5], the backbone fragility
[20], the number and the arrangement of local optima [9, 23], provide a more
complete picture of the structure of SAT instances.

However, these studies concern only the computing time for a (local) search
algorithm to find an optimal solution, which is only one aspect of local search
dynamics. Now, there are many other interesting aspects concerning the dynam-
ics of local search. One of them is the question of the quality of solutions found
by a local search algorithm. This important feature was the main object of the
autocorrelation measure [11, 22]. Many authors verified the effect of autocorre-
lation on heuristics performance. Kaufmann [11] and Weinberger [22] show that
a downhill algorithm produces solutions of a better quality on NK landscapes
if the autocorrelation is increased. Similar conclusions was obtained by Mand-
erick [13] with genetic algorithms applied to NK and TSP landscapes, also by
Angel and Zissimopoulos [2] with Simulated Annealing applied to the Graph
Bipartioning Problem (GBP).

The work presented in this paper concerns also the quality of solutions and
its relation with properties of problems. We are interested in the study of the
long tail phenomenon observed for several heuristic search algorithms [18]. More
particularly, we will investigate an interesting and intriguing effect about this
phenomenon. Indeed, our experiments show that the costs generated by a local
search algorithm for a given problem instance stagnate invariably within a par-
ticular cost interval, independently of the starting point. This behavior cannot
be explained using autocorrelation but it can be explained using a new measure
of problem structure called density of states (d.o.s).



The density of states counts the number of configurations for each cost value
of an optimization problem instance. The definition can be extended, to decision
problems. Applied to SAT problem for example, d.o.s gives the number of truth
assignments for each number of unsatisfied clauses. This measure contains not
only the number of solutions [5], but also the number of assignments that satisfy
all clauses except one, then the number of assignments that satisfy all clauses
except two and so on,...until the number of assignments that satisfy no clauses.
This measure is studied in biology [8, 16], physics [12] and optimization [4, 16].
Its approximation can be carried out analytically on some problems [11], by
enumeration on small instances [6, 12] or by approximation on large instances
[4, 12, 16].

This paper undertakes the study of the 3-SAT problem using d.o.s. It shows
through benchmark instances that d.o.s follows, in good approximation, a normal
law. This information (given by d.o.s) turns out to be very informative to explain
and predict the dynamics of local search methods. In particular, it allows us to
give some explanations to the intriguing behavior with the long tail, that we
observe in this paper on a Metropolis algorithm.

The article is organized as follows: Section 2 presents the experiment con-
cerning the long tail with a Metropolis algorithm. Section 3 defines the density of
states (d.o.s). Section 4 measures d.o.s for various SAT instances and shows its
relation with Metropolis dynamics. Section 5 concludes and gives some further
directions.

2 Metropolis and the long tail

This section presents an intriguing experiment with Metropolis. The aim of this
experiment is to answer the following general questions: Where does a local
search begin? where does it end? and does it follow a particular direction (do
costs go up or down)? First, let us present the Metropolis algorithm used in the
experiment.

2.1 Metropolis

Metropolis [15] method is at the heart of Simulated Annealing [1] which is a
method widely used in combinatorial optimisation. For a minimization prob-
lem, Metropolis at temperature T (noted MTR(T)) is defined as follows: the
process starts with a random configuration s of the search space S; then the
process moves from the configuration s to a neighboring configuration s’, with
a probability p defined by:

1 if Af <0
p= {eAf/T 2; A;ZO (1)

where Af = f(s') — f(s), and T is a given temperature.



2.2 Experiments with the long tail

The following experiments shed light on a behavior never presented before about
dynamics of local search. Let F be a SAT formula, S the set of truth assignments,
f the cost function that associates to each truth assignment s € S the number
of unsatisfied clauses in the formula F and v the neighborhood relation used in
this paper. Two configurations are neighbors according to v if they differ by the
value of one variable of an unsatisfied clause. The experiments consist in running
once Metropolis during N moves from two very different initial assignments:

— MTR(T)-I: from a random assignment,
— MTR(T)-II: from a satisfying (optimal) assignment.

Let us consider the instance uf250-01 from SATLIB library [10]. This in-
stance is satisfiable. A solution can be obtained for a reasonable amount of time
using Metropolis at different temperatures. Temperature T' = 25 is one of these
successful temperatures.

Our first experiment consists in running Metropolis at temperature 7" = 30
with a random initial assignment during N = 20.000 moves. Figure 1 (left) gives
the evolution, through time, of the costs generated by MTR(30)-I. We notice
that MTR(30)-I starts its evolution with a cost value around f =~ 120. After
a while, all generated cost values oscillate in the cost interval [2,12]. This last
phase generates the so-called (long) tail.
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Fig. 1. Evolution of cost values through time for MTR(30)-I (left, from a random
assignment) and MTR(30)-II (right, from a satisfying assignment).

Our second experiment consists in running Metropolis at temperature T = 30
during N = 20.000, but this time, we start the search with a satisfying assign-
ment (for example the solution found with MTR(25)). Metropolis is designed
such that it does not stop when it encounters a satisfying solution. It stops only
when the running time (in terms of number of moves) is over. Figure 1 (right)
gives the evolution, through time, of costs generated by MTR(30)-II. We ob-
serve that MTR(30)-II which is initialized at an optimal cost f = 0 looses this



attribute through time and degrades continually its good starting assignment to
finally oscillate in the same cost interval as the first experiment: [2,12].

These experiments are intriguing because they show that the costs generated
by Metropolis are strongly attracted by the assignments of some particular cost
interval (the cost interval [2,12] for the instance used in the above experiment)
independently of its starting assignment.

Now, let us try to understand why MTR(T) stagnates around a particular
cost interval independently of the starting assignment. We believe that this par-
ticular behavior find its source (origin) in the density of states of the instance.
Therefore, we propose in this paper to examine the relation between the d.o.s
and the above long tail phenomenon.

2.3 Process cost density

To establish the link between the d.o.s and Metropolis behavior, we need an
intermediate notion which is the process cost density (p.c.d). The notion of p.c.d
is not new, it is known as the equilibrium density for Metropolis [1]. The process
cost density is simply the distribution of costs generated by a search strategy
‘after’ an infinite running time. Of course, this density is not tractable but it can
be approximated in some cases [17]. In what follows, we present an algorithm to
approximate the p.c.d of a search strategy ¢ (T) for SAT:

process cost density approximation

Data: F:SAT formula, p: noise, N: Maxflip,

¢(T = t): search strategy with vector parameters T at t

begin

run once ¢ with vector of parameters T at t on F during N flips ;

collect the set of generated costs ;
count the number N(f) of assignments having the cost value f;

approximate the process cost density by the frequency distribution
end;
Result: p.c.d

Applying this algorithm to the costs generated in the above experiments, we
obtain the p.c.d of MTR(30)-I and the p.c.d MTR/(30)-II.

Figure 2 (left) displays the p.c.d of MTR(30)-I, whereas Figure 2 (right) dis-
plays the p.c.d of MTR(30)-II. The curves obtained have a bell shape. They are
centered at f = 7 and cover the cost interval [2,12]. Our tests show that both
curves belong to the same bell shaped distribution.

Consequently, it appears that MTR(30)-I and MTR,(30)-II leave their initial
cost (high and low) to coincide with a bell shaped distribution. This behavior
has been observed for MTR(T) at all temperatures.

N
N

2.4 Some facts about p.c.d

In the last section, we have established the link between Metropolis behavior
and p.c.d. Now, let us make several remarks concerning p.c.d. First, as p.c.d
concerns the probability of occurrence of each cost, it does not depend on their
order of occurrence in the run. Therefore, p.c.d is not dependent on a particular
run but is common to all runs. Our experiments on SAT instances confirm this



Fig. 2. Process cost density for MTR(30)-I left and MTR/(30)-II right.

remark, in very good approximations. Second, the approximation of p.c.d needs
a sufficiently long run. If running time is too short the p.c.d, approximation is
not sufficiently accurate. The p.c.d approximation is improved by increasing the
sample size N.

Up to now, we have linked the long tail behavior of Metropolis with the
process cost density and analyzed some aspects of this density. The next step is
to understand the relation between p.c.d and d.o.s. Next sections are dedicated
to this issue.

3 Approximating Density of States

Process cost density of a search strategy depends on three factors 1) the strategy
and its parameters, 2) the given problem instance and 3) the neighborhood
relation used by the local search strategy.

In this section, we are concerned by the approximation of d.o.s for different
classes of SAT instances. The aim is to 1) answer the question "Where does
the local search begin?’ and 2) show how p.c.d is correlated to d.o.s for the
Satisfiability problem?

Let F be a Satisfiability formula, S the set of assignments and f the cost
function which associates to each formula F and truth assignment s € S the
number of unsatisfied clauses. Assuming the independence of clauses satisfaction.
The random variable nuc “number of unsatisfied clauses” follows a binomial law

nuc ~ B(nc, p) )
Plnuc = k] = CF_.¢*.(1 — g)ne—*

where nc is the number of clauses, ¢ the probability for the unsatisfiability
of one clause. Thus,

E(nuc) = nc.q (3)



and,
o(nuc) = \/nc.q.(1 — q) (4)

where E(.) and o (.) are the mean and standard deviation. For k-SAT instances,
we have ¢ = 2% For instances with variable lengths of clauses, g is averaged over
all clause lengths k;,...,k;.

i=l
i—1 Ti-gi
g = il P (5)
Zi:1 g
and
1
qi = ok: (6)

where n; is the number of clauses of length k;.

The binomial deduction is inspired by a study on the random MAX-CSP
[21]. In the case of MAX-CSP, the study showed a perfect concordance between
theory and practice [3] .

In general, the assumption of satisfaction independence for the clauses is not
reliable. This question is discussed in details in the next section.

4 Experiments

In this section, we first aim to approximate d.o.s on different kinds of SAT
instances, to determine the law of distribution. Secondly, we show how d.o.s.
influences 1) the cost of the initial truth assignment used by the local search
method and 2) its process cost density.

4.1 Approximating density of states

Experiments are realized on one instance of each family of SATLIB library [10]
(see Table 1 and Table 2). Density of states is approximated by two different
methods:

1. Theoretical (analytical) method: under the assumption of clause satisfaction
independence, we apply the formulas (1) to (6).

2. Experimental method: we use random selection which consists of taking as-
signments from the assignments set S in a random and independent manner.
The sample size is between 1.000 and 50.000 depending on the studied for-
mula.

Random SAT All instances used in Table 1 are random and satisfiable formu-
las generated by models of Satisfiability problem. n is the number of variables
and nc the number of clauses.

Instances from (a) to (h) are 3-SAT formulas. So, d.o.s estimation can be
carried out by formulas (2) and (3) with ¢ = . Instances (i) and (j) are variable

length formula. So, we apply formulas (2) and (3) with g calculated by formulas



number of truth assignments

Fig. 3. (left) d.o.s as approximated by random selection for uf100-01. (right) d.o.s as
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Instances n | nc B(nc,p) RandomSelection

o o 195%Conf. 095%Conf.
(a) uf100-01 100 | 430 | 53.75 | 6.85 | [53.66,53.75] | [6.77,6.83]
(b) uf 200-01 200 | 860 | 107.5 |9.70 | [107.5,107.61] | [9.72,9.80]
(c) uf 250-01 250 [1065| 133.12 |10.80([133.06, 133.20]|[11.16, 11.26]
(d) f600 600 (2550| 318.75 [16.70([318.62, 318.83]|[16.75,16.90]
(e) £1000 1000(4250| 531.25 |21.56|[531.18, 531.44]|[21.48,21.67]
(f) RTILk3.n100.m429.1 |100|429 | 53.62 |6.85 | [53.60,53.67] | [7.01,7.07]
(9) BMS_k3.n100.m429_1 |100|272| 34 |5.45| [33.97,34.03] | [4.56,4.60]
(h) CBS_k3-n100-m429_650_1| 100 | 429 | 53.62 |6.85 | [53.59,53.68] | [6.78,6.84]
(?) jnh201 100 | 800 | 45.63 |6.55 | [45.62,45.88] | [6.43,6.61]
() aim-200-3_-yes1-1 200 | 680 [85.25024| 8.63 | [85.23,85.31] | [6.07,6.13]

Table 1. D.o.s of random SAT instances according to analytical approximation and random selection.

(4) and (5). We have obtained for example for uf100-01 a mean of g = 53.75 and
a standard deviation of o = 6.85.

Now, it remains to confirm the binomial distribution and its parameters by
a different method. Concerning the shape, the experimental method described
above leads for uf100-01 to a normal distribution as shown in Figure 3 (left).
For all other instances (with nc > 1000) the agreement with normality has been
tested successfully (using a standard normality test). This normality result agrees
perfectly with analytical formula since it is possible to approximate a binomial
by a normal under certain conditions (conditions satisfied in this case).

Concerning the distribution parameters, the experimental results for all fami-
lies of random SAT instances of SATLIB are presented in Table 1. We observe
that the mean and standard deviation approximated by the experimental method
agree with the mean and standard deviation approximated by the analytical
method. Thus, according to the experimental method, uf100-01 founds a mean in
the confidence interval [53.66,53.75] and a standard deviation in the confidence
interval [6.77,6.83], and the analytical method founds the estimated mean at
53.75 and the estimated standard deviation at 6.85. We remark that the mean
belongs to the confidence interval, whereas the standard deviation is sometimes



outside the confidence interval without being very far. The difference in the
estimation of the standard deviation varies with the instance.

Extension to other instances The following experiments concern satisfiable
formula of SATLIB that are issued from other optimization problems (instances
(k) to (q) in Table 2). Again, we apply the analytical formula (even if the in-
dependence condition is likely unsatisfied) to calculate the mean and standard
deviation. Table 2 gives the mean and standard deviation estimated by the an-
alytical method.

Moreover, we approximate mean and standard deviation by random selection.
Concerning the shape, experiments show that for hanoi4 the normality remains
true as shown in Figure 3 (right). The normality agreement has been tested
successfully for all other instances (using a standard normality test). Concerning
the distribution parameters, we observe, surprisingly, that the estimated mean
found by the analytical method agrees with the confidence interval found by the
experimental method, and this for all instances. However it is not the case for
the standard deviation. Indeed the analytical and experimental methods found
very different values.

Instances | n nc B(nc, p) RandomSelection
I o 1195%Conf. 095%
(k) flat150-1 | 450 | 1680 [401.2495]17.47614|[400.54, 401.98]| [36.20,37-21]
) aisl0 181 | 3151 (681.7787| 23.114 |[681.55,682.76]| [97.91,98.77]
(m) bwlarge.c |3016|50457|10988.78| 92.71 | [10987,10991] |[127.61,128.73]
(n) logistics.c |1141|10719|2012.814| 40.43 | [2011,2013] |[[127.61,128.73]
(o) s5a7552-038(1501| 3575 | 767.60 | 24.551 |[767.43,767.74]| [24.34,24.55]
(p) parl6-1-c |317 | 1264 | 173.25 | 12.22 |[[173.20,173.32]| [9.79,9.88]
(¢) hanoi4 |718|4934 | 970.42 | 27.92 [[969.80,970.65]| [68.00,68.60]

Table 2. D.o.s of random SAT instances according to analytical approximation and random selection.

To conclude this section we recall its main results: 1) d.o.s for Satisfiabil-
ity can be approximated by a normal law; 2) the approximated mean of the
analytical approximation and the experimental approximation coincide; 3) the
approximated standard deviation of the analytical method and the experimental
approximation do not coincide for SAT instances issued from other optimization
problems.

However, as the experimental method (random selection) cannot cover all
costs in a reasonable amount of time, the accuracy of the above results may be
discussed. Improving the experimental estimation of d.o.s needs more elaborate
sampling techniques based on Metropolis algorithm [16], for example. Notice
that such a sampling technique is usually very time consuming.

Now, let us see the implications of normality of d.o.s for local search. One
first point is that finding an assignment that satisfies the maximum number of
clauses may be as difficult as finding an assignment that satisfies the minimum



Tns— MTR(T) MTR(T) MTR(T)
—tances T>1lxo T =t(topt <t < tco) T & topt
1195%Conf . 795%Conf. 195%Conf. | 095%Conf. | p95%Conf. | 095%Conf.
(a) [49.36, 49.44] [6.61,6.67] | [13.22,13.24] | [3.34, 3.36] [3.47] [1.55]
(b) [98.28, 98.40] [9.38,9.47] | [24.66,24.69] | [4.65,4.67] [3.97] [1.70]
(¢) | [121.05,121.18] | [10.69,10.79] | [28.25,28.28] | [5.10,5.12] | [4.42,4.43] [1.84]
(d) | [292.12,292.33] | [16.99,17.13] | [72.18,72.20] | [7.90,7.94] |[53.83,53.98]|[11.22,11.32]
(e) | [486.41,486.67] | [20.74,20.92] [[123.02,123.08]|[10.24, 10.29]|[20.60,20.63]| [4.55,4.56]
() [48.83, 48.92] [6.60,6.66] | [11.74,11.76] | [3.22,3.24] [3.24] [1.59]
(9) [31.96, 32.02] [4.47,4.50] | [11.11,11.12] | [2.81,2.83] | [3.46,4.47] | [1.52,1.53]
(h) [49.22, 49.31] [6.62,6.67] | [11.88,11.90] | [3.10,3.12] | [3.31,3.34] | [1.93,1.94]
(4) [41.73, 41.81] [6.18,6.23] | [10.56,10.58] | [2.94,2.96] | [2.76,2.78] | [1.65,1.67]
() [81.61, 81.64] [5.96,5.99] | [36.01,36.04] | [4.60,4.62] | (12.25)x (3.96)
(k) | [301.38,301.74] | [28.87,29.13] | [55.42,55.46] | [6.14,6.17] |[11.05,11.06]| [2.88,2.89)]
(1) | [228.15,228.42] | [42.46,42.65] | [10.47,10.49] | [2.73,2.74] | [3.60,3.61] | [1.08,1.09]
(m) |[4667.90,4673.71]|[466.63, 470.74]|[137.38, 137.46]|[12.97, 13.02]|[10.40, 10.42] | [3.77,3.78]
(n) |[1075.96,1076.24]| [71.44,71.63] | [96.64, 96,69] | [8.80,8.84] |[24.88,21.90]| [4.46,4.48]
(o) | [711.94,712.03] | [23.28,23.35] |[206.35,206.43]([12.97,13.02]|[28.15,28.17]| [5.01,5.03]
(p) | [163.44,163.56] | [9.71,9.80] | [49.00,49.04] | [6.63,6.66] |[11.61,11.62]| [1.89,1.90]
(¢) | [660.37,660.94] | [45.98,46.38] | [54.86,54.91] | [7.82,7.85] |[11.10,11.11]| [2.67,2.68]

Table 3. Approximation of p.c.d for MTR(T) at different temperatures

number of clauses since d.o.s is symmetric. Other implications are presented in
what follows.

4.2 Does d.o.s explain the initial costs?

At this point, one can answer the question ‘Where does local search begin?’.
Indeed, as d.o.s is normal, random initial assignments have very probably a cost
around the mean. For the experiment of Section 2.2 with uf250-01, the initial
random cost was 120 which coincides with the mean and the standard deviation
of d.o.s (u = 133.12 and o = 10.80). This random initial assignment cost is not
that bad, since it is between very good and very bad costs. Another point is that
it is very unlikely to select by chance an optimal (satisfying) assignment, since
the associated probability is the smallest over all costs.

4.3 Does d.o.s explain the process cost density?

After explaining the effect of d.o.s on the random initial assignment, we look at
the relation between the process cost density of the local search strategy and
the density of states of the given instance. We propose to link these densities
by comparing their distributions and their parameters (¢ and o in our case). In
this paper, we will establish the link between p.c.d of Metropolis and d.o.s.

Metropolis To establish the link between p.c.d of Metropolis and d.o.s., we will
show that the mean of the p.c.d. goes from the mean of d.o.s to the best costs
with the temperature decrease, and standard deviation of the p.c.d starts at the
standard deviation of d.o.s and diminishes with the temperature decrease. Our



experiments concern Metropolis at three different categories of temperatures.
1) to a very high temperature 2) t,,; a temperature that finds an optimal
assignment in a reasonable amount of time and, 3) an intermediate temperature
topt < T < too-

012
L

010
x> o
ird

frequency
006 o008
. .

004
L

002

000
L

\\\\\\\\\\\\\\\
0 10 20 30 40 50 60 70 80 9 100 110 120 130 140

cost:number of unsatisfied clauses

Fig. 4. MTR(T) p.c.d for different (decreasing) temperatures on formula uf200-01.

As shown by Figure 4 the process cost density of MTR(T) is a bell shaped
distribution (or slightly asymmetric when p.c.d mean approaches the near op-
timal area). The mean becomes lower and lower as the temperature decreases
(T=1000, T=60 then T=40). Thus, p.c.d is closer and closer to optimal cost ar-
eas and so it has more and more chances to reach a satisfying solution. Similarly,
the standard deviation becomes smaller and smaller as temperature decreases.
This implies that neighboring assignments are more and more similar, which is
not in favor of the search process. The bell shaped distribution and the trends
for both mean and standard deviation are confirmed for all instances as shown
by Table 3.

Now, let us examine the relation between p.c.d of MTR (¢, ) and d.o.s. Firstly,
the p.c.d of MTR(t) coincides exactly with the p.c.d of the biased random
walk!. This is because the temperature is so high that it has no effect: the
condition of selection is always satisfied.

Secondly, the p.c.d of the biased random walk is generally different from the
p-c.d of the unbiased random walk?. This difference is discussed in [3]. Also, the
p-c.d of the unbiased random walk coincides exactly with d.o.s. This point is
also discussed in [3].

Consequently, the p.c.d of MTR(t) is slightly different from d.o.s. The
difference between p.c.d of MTR(t»,) and d.o.s corresponds to the difference

! Biased random walk starts at a random initial assignment and moves from an as-
signment to another by flipping a variable within an unsatisfied clause.

% Unbiased random walk starts at a random initial assignment and moves from an
assignment to another by flipping a random variable.



between biased and unbiased random walk. This bias is confirmed by experi-
ments: for example the uf-100-01 has an estimated mean in the confidence inter-
val [53.66,53.75] and an estimated standard deviation in the confidence interval
[6.77,6.83] (see Table 1) but MTR (¢+) has an estimated mean in the confidence
interval [49.36,49.44] and an estimated standard deviation in the confidence in-
terval [6.61,6.67] (see Table 3).

In conclusion, there exists an infinity of MRT(T) p.c.d that cover the cost
area from d.o.s mean to optimal costs. All these densities are bell shaped curves
(or slightly asymmetric when p.c.d mean approaches the near optimal area). The
mean of MTR(T) p.c.d starts at the mean of d.o.s (or slightly below if the neigh-
borhood is biased). Then it diminishes as temperature decreases. Similarly, the
estimated standard deviation of MTR(T) p.c.d starts at the standard deviation
of d.o.s (or slightly below if the neighborhood is biased). Then it diminishes as
temperature decreases.

Concerning the extension of this work to the case of a varying temperature
interesting observations can be made. Changing the temperature allows to jump
from a curve to another, so that the obtained shape for p.c.d depends on the
running time allowed for each temperature. If we consider a schedule with two
temperatures T=1000 and T=40 and a sufficiently long running time for each
temperature, we will obtain the two bell shaped curves of Fig. 4. Otherwise
the temperature with too small running time will generate only a piece of the
corresponding bell shaped curve. The previous remark could be used to tune
objectively simulated annealing algorithm. For example temperature T=1000
should be changed to a smaller one, when the cost f =120 is reached because
the process starts its stagnation.

To extent the previous conclusions to other local search methods, we have
repeated all the experiments of this study with WSAT [19]. WSAT is one of the
best methods for finding solutions to satisfiable formulas. Our experiments con-
cern WSAT(p) with noise parameter from p=1 to p=0.5 on SATLIB instances.
We have observed that WSAT (p) presents the same behavior as Metropolis. In-
deed WSAT(p) reach the same particular cost interval whatever is the starting
solution. Even a near-optimal one. This cost interval can be related to the p.c.d
of WSAT(p). We have also observed that the p.c.d of WSAT(p) is a bell-shaped
curve whose mean and standard deviation become smaller and smaller as noise
decreases. The mean of p.c.d is between the mean of d.o.s and the optimal cost,
whereas the standard deviation of p.c.d is between the standard deviation of
d.o.s and zero. Therefore, the conclusions concerning the dynamics of Metropo-
lis remain true for WSAT. We conjecture these conclusions would be true for
evolutionary algorithms applied to SAT.

5 Conclusions and Perspectives

In this paper, we have analyzed the search space of SAT problem. We have shown
on random and structured SAT formulas that the density of states approaches a
normal law. This distribution sheds light on some interesting questions related
to local search behavior. First, we understand why local search methods like



Metropolis and WSAT are attracted by some cost intervals independently of the
cost of the initial assignment. In fact, these costs correspond to an equilibrium
cost interval which is determined by the density of states, the neighborhood
relation and the local search method itself and its parameters. Second, we learn
that the random initial assignment will have a cost around the mean of the d.o.s.

In our future work, we want to reinforce the proof of the relation between
p-c.d and d.o.s. We also want to see what happens to p.c.d of WSAT beyond the
optimal noise value 0.5 (i.e. between 0.5 and 0). Indeed, in [14] the authors show
that the number of resolved formulas decreases. Also, we want to understand
the relations between local optima and the dynamics of local search.
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