
Knowledge Guided Tabu Search for the Prize
Collecting Steiner Tree Problem in Graphs

Zhang-Hua Fu, Jin-Kao Hao* (corresponding author)

LERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France
{fu,hao}@info.univ-angers.fr

Abstract. Given an undirected graph with prizes associated with its
vertices and costs associated with its edges, the prize-collecting Steiner
tree problem in graphs (PCSPG) consists of finding a subtree of this
graph, so as to minimize the sum of the costs of its edges plus the prizes
of the vertices not spanned. In this paper, we propose a knowledge guided
tabu search (named K-TS) algorithm for the PCSPG which integrates
several new (and important) ingredients, including two path-based move
operators for generating neighboring solutions, a tabu search procedure
for local optimization, two knowledge guided perturbation operators for
escaping from local optimum, as well as a knowledge updating mecha-
nism. Specially, for instances with special structures, we implement an
innovative swap-vertex move operator which is shown to be significantly
effective. Experiments results based on a subset of representative PC-
SPG benchmarks show that, the proposed K-TS algorithm is overall
highly effective, especially on several groups of special instances which
are extremely difficult for the existing algorithms. K-TS also produces a
number of remarkable results on the rooted version of PCSPG and the
classical SPG.

Keywords: Network design, prize-collecting Steiner tree problem, knowledge
guided tabu search, swap-vertex move operator.

1 Introduction

Given an undirected graph G = (V,E) with a set V (|V | = n) of vertices and
a set E (|E| = m) of edges. Each vertex i ∈ V is associated with a real-valued
prize pi ≥ 0 (vertex v is a customer vertex if pi > 0, and a non-customer or
Steiner vertex otherwise), and each edge e ∈ E is associated with a real-valued
cost ce ≥ 0. Then the prize-collecting Steiner tree problem in graphs (PCSPG)
aims to find a subtree T (with vertices set VT and edges set ET respectively)
of G, so as to minimize the sum of the costs of its edges plus the prizes of the
vertices not spanned by T , i.e.:

Minimize f(T) =
∑
e∈ET

ce +
∑
i/∈VT

pi. (1)

Specifically, if an additional source vertex is chosen as the root which must
be part of any feasible solution, we get a rooted version of the PCSPG (named
RPCST for short).

Moreover, the classical Steiner tree problem in graphs (SPG) [1] is a par-
ticular case of the PCSPG, if each terminal is associated with a high enough
prize (corresponding to a customer vertex of the PCSPG, to ensure that every
customer vertex must be spanned by any optimal PCSPG solution), and each
Steiner vertex is associated with a prize equals to zero. Given that the classical
SPG is NP-hard [2], the PCSPG is at least as difficult as the SPG in the general
case.

The PCSPG is relevant to model a number of network design problems, e.g.,
optic fibers, electricity, transportation, distribution (water, gas, heat) supply, etc.
Due to its theoretical importance and wide practical applications, the PCSPG
has been extensively investigated since it was proposed [3, 4] (where it firstly
appeared as the so called node weighted Steiner tree problem). Many approaches
have been proposed for solving the PCSPG, which could be mainly classified
into three categories: approximation algorithms, exact algorithms and heuristics.
Specifically, as a preprocessing technique, reduction tests like those introduced
in [5] are used to transform the original graph to an equivalent graph of reduced
size.

Among the approximation algorithms, a factor 3 approximation algorithm
was first proposed in [6]. Later, Goemans and Williamson [7] used a primal-
dual scheme to derive a (2− 1

n−1)-approximation for the rooted PCSPG within

complexity O(n2 log n). By trying all possible choices for the root, they ob-
tained a (2− 1

n−1)-approximation for the un-rooted PCSPG within a complex-

ity of O(n3 logn) [8]. Furthermore, a (2− 1
n−1)-approximation algorithm within

O(n2 log n) running time was introduced in [9] for the un-rooted PCSPG, which
was subsequently extended to the rooted PCSPG in [10]. The new algorithm in
[11] achieves an approximation ratio of (2− 2

n) within O(n2 log n) time. Recently,
Archer et al. [12, 13] reported the best approximation ratio below 1.9672.

Several exact approaches based on different integer programming formula-
tions are studied for the PCSPG, which aim to find provably optimal solutions

(or improved lower bounds). Respectively, Lucena and Resende [14] presented a
polyhedral cutting plane based algorithm, which yields 96 optimal solutions out
of the 114 classical test instances (with up to 1000 vertices and 25000 edges).
Ljubić et al. [15] re-formulated the PCSPG in a directed formulation and imple-
mented a branch-and-cut algorithm which yields outstanding results (with all
the 189 test instances solved to optimality, including 35 real-world instances with
up to 1825 vertices and 214095 edges). Cunha et al. [16] used a Lagrangian non
delayed relax and cut (NDRC) algorithm to generate primal and dual bounds to
the problem. The proposed algorithm incorporates ingredients such as a new re-
duction test, a Lagrangian heuristic and a modification in the NDRC framework.
Experimental results on a new group of difficult instances showed its competi-
tiveness for solving the PCSPG.

As for heuristics, Canuto et al. [17] developed a multi-start local search al-
gorithm for the PCSPG, based on a primal-dual algorithm for solution initial-
ization, and a path-relinking procedure for post-optimization. Klau et al. [18]
developed a new algorithmic framework consisting of an extensive preprocess-
ing phase, a memetic search framework incorporated with an ILP-based exact
subroutine. Goldbarg et al. [19] developed a trans-genetic algorithm hybridized
with path-relinking. Biazzo et al. [20] studied the behavior of an algorithm de-
rived from the cavity method, based on the zero temperature limit of the cavity
equations. Notice that even the current best heuristic is not able to attain the
known optimal values for all the existing benchmarks, meaning that there is still
space for further improvement.

In this work, we propose several effective strategies for solving different types
of PCSPG instances accordingly. Basically, for the most general instances, we
develop a knowledge based tabu search (K-TS) algorithm, which incorporates
four basic move operators (including two newly designed path-based move op-
erators) for generating neighboring solutions, a tabu search procedure for local
optimization, and two knowledge guided perturbation strategies for escaping
from local optimum, as well as a learning based mechanism which aims to fully
utilize the historical information discovered during the search process. Based on
these ingredients, for some special instances, we implement for the first time a
powerful swap-vertex based move operator, and combine it with the four basic
move operators to form an enhanced algorithm. Experimental results on a sub-
set of selected PCSPG challenging benchmarks show that, K-TS produces quite
competitive results within reasonable time, especially for the special instances
which have shown to be extremely difficult for the existing algorithms, indicat-
ing the importance of the swap-vertex based move operator. Finally, K-TS (with
very slight adaption) also produces remarkable results on the rooted PCSPG and
the classical SPG.

The remainder of this paper is organized as follows: Section 2 presents the
main ideas of the proposed K-TS algorithm. Section 3 reports the results based
on a number of selected challenging benchmarks. Finally, Section 4 concludes
this paper.

2 Proposed Approach for the PCSPG

Algorithm 1 Outline of the proposed approach for the PCSPG

1: Input: Graph G(V,E)
2: Output: The best found solution
3:
4: Identify the type of the input graph G
5:
6: if G belongs to large type then
7: Call a simple iterated local search to solve G
8: else
9: if G belongs to Special type then
10: Call an enhanced iterated tabu search to solve G
11: else
12: Call a knowledge guided iterated tabu search to solve G
13: end if
14: end if
15:
16: return The overall best found solution

The proposed algorithm is outlined in Algorithm 1. After reading the in-
put graph, we at first attempt to identify its type, and then accordingly call a
subroutine to solve it. More details are described below.

2.1 Solution Representation

According to the problem definition, the optimal solution of the PCSPG must
be a minimum spanning tree (MST) over the spanned vertices, indicating that a
given solution could be uniquely represented by its spanned vertices. However,
for the sake of efficient local search, we adopt the solution representation method
used in [21, 22]. Given a specified root vertex, we uniquely represent each feasible
solution by a one-dimensional vector T = {ti, i ∈ V }, where ti denotes the parent
vertex of vertex i if i ∈ VT (excluding the root vertex, VT denotes the vertices
set of T), or ti = Null otherwise. Note that in the broadly defined PCSPG,
there is no vertex which should be necessarily spanned by any feasible solution.
In the case that the current root vertex is deleted, we re-choose the customer
vertex spanned by T with the highest prize as the new root vertex (all the ti
values should be renewed subsequently).

2.2 Reduction Tests

For the sake of simplicity, we do not use reduction test in the proposed algorithm,
although reduction tests have shown to be rather powerful in many cases [5].
Definitively, this would be a direction for further improvement.

2.3 Identify Instance Type

After reading the instance, we at first try to identify some special instances. For
this purpose, we define as follows a normalized edge costs deviation σ.

σ =
1

|E|
∑
e∈E

|ce − ce|
ce

. (2)

where ce =
∑

e∈E ce
|E| is the average cost of all the edges e ∈ E. Intuitively, a

lower value of σ generally indicates lower differences of all the edge costs. Specif-
ically, if σ = 0, it means all the edges have an uniform cost. This information
may be useful to guide the search. For example, in the case σ = 0, once the
set of customers are fixed, the solution cost completely depends on the number
of Steiner vertices. Inspired by this observation, we identify the instances with
σ < 0.05 as special instances and call the remaining instances as general ones.

For the general instances, we develop a knowledge guided iterated tabu search
algorithm (detailed in Section 2.7). Based on it, in order to take advantage of the
information of special instances, we develop a new swap-vertex move operator
and combine it with the conventional techniques to tackle the special instances
(detailed in Section 2.8).

The above algorithms, in their current form, are not suitable to solve large
instances with more than 5000 vertices. Alternatively, we use a simple local
search to find feasible solutions within reasonable time (detailed in Section 2.9).

In the following subsections, we first describe several commonly used basic
elements, and then present the techniques developed for solving the general

and the special instances respectively. Finally we show how we deal with large
instances with more than 5000 vertices.

2.4 Preparation

For small or mid-sized instances (with n ≤ 5000), before running the algorithm,
we first calculate and store the costs of the shortest path between any pair of
vertices. Using Dijkstra’s algorithm (with the aid of binary heap), this could
be achieved within a complexity of O(m n log n). These values are stored in
a n × n table and can be fetched directly during the search process, instead of
recalculating them repeatedly.

2.5 Solution Initialization

In order to provide an initial solution, starting from a randomly chosen customer
vertex i (let i be the original root vertex), we iteratively connect an enough good
customer (while guaranteeing that the objective value after insertion would not
increase), using the shortest path between the selected customer vertex and the
incumbent partial solution. If there are more than one such customers available
at an iteration, one of them is randomly chosen for connection. This process is
repeated until no customer could be further connected. After that, in order to
further improve the obtained solution, we use Kruskal’s algorithm to re-construct
a MST over the spanned vertices, to obtain a feasible solution that serves as the
starting point of following algorithms.

This initialization method is uniform for all instances. The only slight differ-
ence is for large instances, the needed shortest paths are calculated temporarily,
instead of previously calculating them in a pre-processing step (Section 2.4).

2.6 Basic Move Operators

The move operators are the basic elements of local search based approaches.
Therefore, we first introduce several basic move operators for generating neigh-
boring solutions, including two conventional move operators developed in [17],
and two path-based move operators newly developed in this paper. These four
move operators are effective for solving general instances. In Section 2.8, we will
introduce a new swap-vertex move operator specifically designed for the special
instances.

As mentioned in Section 2.1, any optimal solution of the PCSPG could be
uniquely characterized by its spanned vertices set VT . Consequently, given a
solution T = (VT , ET), if we insert a vertex i /∈ VT to (respectively, remove
a vertex i ∈ VT from) VT , the resulting minimum spanning tree (MST) is a
neighboring solution of T (the unfeasible moves should be discarded), denoted
by MST(VT ∪ {i}) (respectively, MST(VT \{i}).

Fig. 1 shows an example of applying insert vertex or delete vertex moves,
where (b) is a sub-tree of the original graph (a), while (c) and (d) are improved

Fig. 1. Example of applying insert vertex or delete vertex moves

neighboring solutions obtained by inserting vertex 4 and deleting vertex 2 sub-
sequently.

Corresponding to these two conventional move operators [17], two sub-neighborhoods
N1(T), N2(T) could be defined as follows:

N1(T) = {MST(VT ∪ {i}), ∀ i /∈ VT },
N2(T) = {MST(VT \{i}), ∀ i ∈ VT }.

(3)

Using novel dynamic data structures slightly adapted from [23], at each iter-
ation of local search, all the neighboring solutions belonging to N1(T) (respec-
tively, N2(T)) could be evaluated in O(m log n).

In addition to these two conventional move operators, we implement (for the
first time to our knowledge) as follows two other move operators specifically
designed for the PCSPG, which mainly focus on customer vertices.

1. Connect a Customer Vertex: Add a path to connect a customer vertex i /∈ VT ,
using the shortest path between vertex i and the incumbent solution T . The
resulting neighboring solution is denoted by T ⊕ Connect Customer(T, i),
whose objective value would be increased by the total cost on the inserted
path minus the total prize of the inserted vertices.

2. Disconnect a Customer Vertex: Disconnect a customer vertex i ∈ VT (for
convenience, we only consider leaf customer vertex here), by deleting vertex
i associated with the edges which become useless (see [21] for more details
about how to disconnect a leaf customer vertex). The corresponding neigh-
boring solution is denoted by T ⊕Disconnect Customer(T, i). The objective
value would be decreased by the total cost of the deleted edges minus the
total prizes of deleted vertices.

For example, as shown in Fig. 2, starting from a sub-tree (b) of graph (a), it
could be improved to (c) and (d) by connecting customer 3 and disconnecting
customer 9 sequentially.

Similarly, corresponding to these two new move operators, two sub-neighborhoods
(N3(T) and N4(T) respectively) of the incumbent solution T are defined as fol-
lows:

Fig. 2. Example of applying connect customer or disconnect customer moves

N3(T) = {T ⊕ Connect Customer(T, i),∀ i /∈ VT , pi > 0},
N4(T) = {T ⊕Disconnect Customer(T, i),∀ leaf vertex i ∈ VT , pi > 0}. (4)

Given these four sub-neighborhoods N1-N4, we define the composed neigh-
borhood N(T) as:

N(T) = N1(T) ∪N2(T) ∪N3(T) ∪N4(T). (5)

2.7 Algorithm for Solving General Instances

We use a knowledge guided iterated tabu search algorithm to solve the general
instances (outlined in Algorithm 2). For preparation, we use a one-dimensional
vector Z (with all values initialized to zeros) to record the frequency informa-
tion (knowledge) of each vertex appearing in historically visited local optima.
Accordingly, the number Cnt of visited local optima is also initialized to 0. After
that, the algorithm repeatedly generates (randomly reconstruct from scratch or
perturb from the incumbent solution) an initial solution and then calls a tabu
search to improve the solution to a local optimum. The obtained solution is
subsequently used to update vector Z, which would be used in the perturbation
process. Once the stop condition is met, the best found solution is returned as
the final solution.

During the first ten times (pre-learning phase), the initial solutions are ran-
domly constructed (to reinforce diversity) using the method described in Section
2.5. After that, the search alternates between weak perturbations and strong per-
turbations to generate initial solutions. The search terminates once no further
improvement is gained after a given number of (100 in this paper) consecutive
rounds of solution initialization followed by tabu search. More details are given
below.

Tabu Search for Local Optimization Typically, starting from a given ini-
tial solution T , the tabu-search procedure evaluates the neighboring solutions of
N(T) = N1(T)∪N2(T)∪N3(T)∪N4(T) and iteratively replaces the incumbent

Algorithm 2 Algorithm for solving General instances

1: Input: Graph G(V,E))
2: Output: The best found solution
3:
4: Let Z = {Z1, Z2, . . . , Zn} be a one-dimensional vector recording the frequency in-

formation (knowledge) of each vertex appearing in historically visited local optima
5: for Each vertex indexed i do
6: Zi ← 0
7: end for
8: Let T denote the incumbent solution
9: Cnt← 0
10: while The stop condition is not met do
11: if Cnt < 10 then
12: T ← Randomly Construct Initial Solution(G)
13: else
14: if Cnt Mod 10=0 then
15: T ← Knowledge Guided Strongly Perturb(G,Z,Cnt)
16: else
17: T ← Knowledge Guided Weakly Perturb(G,Z,Cnt)
18: end if
19: end if
20: T ← Tabu Search(T)
21: Z ← Update V ector(Z, T)
22: Cnt← Cnt+ 1
23: end while
24: return The best found solution

solution with a best neighboring solution. Nevertheless, using this local optimiza-
tion procedure, local cycling may occur in some special cases. To address this
drawback, we introduce as follows some memory-based mechanisms, to form a
tabu search subroutine [24]. For each vertex i (customer of non-customer), we
save in an array the last iteration Ii when vertex i is included into or removed
from the current solution. Then, before applying any one of above four move
operators (corresponding to vertex i), we check at first whether the current iter-
ation index is larger than Ii+ lin (if i /∈ VT) or Ii+ lout (if i ∈ VT), where lin and
lout are parameters indicating the length of the prohibition, i.e., the tabu tenures

[24] (in this paper, lin and lout are randomly distributed within [3, 3 + |V |−|VT |
5]

and [3, 3 + |VT |
5] respectively). If this is not the case, the corresponding move is

marked tabu and is thus prohibited, otherwise it is declared non-tabu that can be
applied freely. This mechanism aims to avoid the inclusion of a recently removed
vertex or the removal of a recently included vertex, unless the move meets the
aspiration criterion, i.e., leading to a solution better than the overall best found
solution. Guided by the above information, the tabu search subroutine examines
all the non-tabu legal moves of N(T) and iteratively applies the best legal move
to the incumbent solution (no matter it leads to an improved solution or not),
until the incumbent solution could not be improved after a given number M
(fixed to 30 in this paper) of consecutive iterations. At this point, the best met
solution T is returned as the solution found of one run of tabu search.

Knowledge Maintaining In order to maintain the knowledge learned during
the search process, after each run of tabu search, we use the obtained solution
T to update the frequency vector Z as follows: for each vertex i, if i ∈ VT ,
we increase Zi by 1; otherwise we keep Zi unchanged. Synchronously, variable
Cnt is also increased by 1. After that, the search enters into the next round
of solution perturbation followed by tabu search. This process is repeated, until
some specifically designed stop condition (no further improvement is gained after
100 consecutive rounds) is met.

Perturbation Strategies After the pre-learning phase (first ten rounds), once
tabu-search reaches a local optimum T , we try to perturb it to a new solution. For
the tradeoff between intensification and diversification, we develop respectively
a weak perturbation and a strong perturbation as follows.

For weak perturbation, we try to flip the status (insert an un-spanned vertex
or remove a spanned vertex) of a number of vertices. More precisely, after ran-
domly choosing a vertex i, if i ∈ VT , we flip its status with probability Cnt−Zi+1

Cnt+1 .

Otherwise, we flip its status with probability Zi+1
Cnt+1 (”+1” is to ensure that the

resulting probability belongs to (0, 1)) (unfeasible flips should be discarded). This
process is repeated until a given number (randomly chosen between [1, |VT |]) of
flips have been applied, resulting a new solution different from T .

In addition to the weak perturbation, we also implement a strong perturba-
tion operator which reconstructs a solution after every ten rounds. For this, we

first select a subset of promising customer vertices for connection, guided by the
knowledge stored in the frequency vector Z. More precisely, for each customer
vertex i, we add it to a candidate customer vertices set CV with probability
Zi+1
Cnt+1 . If no customer vertex is selected, a randomly chosen customer vertex is
added into CV , to ensure that CV is not empty. After that, starting from a
customer vertex i randomly chosen from CV , we iteratively connect the nearest
customer vertex of CV , using the shortest path between the selected customer
vertex and the incumbent partial solution, until all the customer vertices of CV
are connected. After that, we re-construct a minimum spanning tree (MST) over
the spanned vertices, to obtain a new feasible solution that serves as the starting
point of the next round of tabu search.

2.8 Algorithm for Solving Special Instances

Algorithm 3 Algorithm for solving Special instances

1: Input: Graph G(V,E))
2: Output: The best found solution
3: Let T denote the incumbent solution
4: Cnt← 0
5: while The stop condition is not met do
6: if Cnt < 1 then
7: T ← Randomly Construct Initial Solution(G)
8: else
9: if Cnt Mod 10=0 then
10: T ← Swap Based Strongly Perturb(G)
11: else
12: T ← Swap Based Weakly Perturb(G)
13: end if
14: end if
15:
16: T ← Tabu Search(T)
17: T ← Enhanced Local Search(T)
18:
19: Cnt← Cnt+ 1
20: end while
21: return The best found solution

The knowledge based iterated tabu search described above is quite effective
for the general instances, however, they do not perform very well for the special
instances (with σ < 0.05), possibly due to their irregular landscapes. To clarify
this point, we consider an instance with uniform edge cost (ce = 1, ∀e ∈ E)
and highly enough prize of each customer for example. Clearly, in this case, all
the customers should be connected, thus the objective value completely depends
on the number of used Steiner vertices. It means optimizing the objective value

is essentially equivalent to reducing the Steiner vertices. More precisely, adding
a Steiner vertex (if feasible) would definitively increase the solution cost by 1,
leading to a worse solution. On the contrast, although deleting a Steiner decreases
the objective value by 1, the search process is very easy to get stuck into a local
optimum where no feasible deleting move is possible. At this point, it seems
very difficult to escape from the incumbent local optimum by applying only the
above four basic move operators, even with the aid of tabu search. In order to
overcome this drawback, we implement a new swap-vertex based move operator
and combine it with the four basic move operators in a variable neighborhood
mode.

As outlined in Algorithm 3, starting from a randomly constructed solution,
we first try to improve it by the tabu search procedure described above, based
on the four basic move operators. After that, the search enters into an enhanced
local search phase, which combines the four basic move operators and the new
swap-vertex move operator. Once no improvement is possible, the incumbent
solution is perturbed to a new solution (using strong perturbation or weak per-
turbation), and then the search enters into a new round of tabu search followed
by enhanced local search again. This process is repeated until the incumbent
solution could not be further improved after a given number of (100 in this pa-
per) consecutive rounds of solution initialization followed by tabu search and
enhanced local search. More details are described below.

Swap-Vertex Based Move Operator Typically, the swap-vertex based move
operator adds a vertex i /∈ T to T and removes another vertex j ∈ T from T ,
leading to a new solution (the unfeasible moves should be discarded). This idea
is natural, but to our best knowledge, until now the swap operator has not
been well implemented in the field of Steiner tree problems, possibly due to its
unreasonably high computational complexity. Indeed, at each iteration there are
a total of O(|VT |)×O(|V |−|VT |) ≤ O(n2) possible swap moves. If we reconstruct
a MST (using kruskal’s algorithm with the aid of Fibonacci heap) after applying
each swap-vertex move, the overall complexity would be O(n2)×O(m+nlog n),
being unaffordable for a local search based approach.

Fortunately, for the special instance with σ equals to zero (or nearly zero),
the computations could be much simplified. Without loss of generality, we con-
sider the case with uniform edge costs (σ = 0) at first. Obviously, in this case, if
swapping vertex i /∈ T and vertex j ∈ T leads to a feasible solution, the objective
value would definitively decrease by ri − rj , because the consumed cost remains
unchanged and the collected prize varies by ri − rj . Specifically, swapping two
Steiner vertices would never change the objective value. Obviously, these com-
putations are much easier, and could be realised in O(n2) for all O(n2) possible
swap-vertex moves.

However, we have to consider three additional questions: (1) How to verify
the solution feasibility after applying a swap-vertex move? (2) How to distinguish
the feasible moves corresponding to the same objective difference (denoted by

∆ hereafter)? and (3) How to deal with the case if σ does not strictly equal to
0 (the edge costs slightly differ from each other)?

For the first question, using some novel data structures such as union find
set and leftist heap (the detailed techniques are somewhat complex and omitted
here, due to page limitation), the feasibility of all the O(n2) possible swap-vertex
moves could be examined within an overall complexity of O(mlog n) + O(m ×
|VT |) ≤ O(m × n) (unfeasible moves are discarded directly). This complexity
seems high, but still remains affordable for sparse graphs (with O(m) ≈ O(n)),
especially when the solution is of small size (|VT | ≪ n).

The second question is much more difficult because there are usually a large
number of swap-vertex moves corresponding to the same ∆ value (e.g., swapping
any two Steiner vertices would lead to a ∆ = 0). Using the objective value as
the evaluation function will not be able to guide the search since this evaluation
function cannot distinguish neighboring solutions of the same objective value
even if they can lead to different search trajectories and thus different local
optima. In order to guide the search towards more promising search regions,
relative to each feasible solution T , we define as follows an auxiliary function.

Definition 1. For each vertex i ∈ VT , its special degree sdi is defined as the
number of vertices belonging to VT which are directly reachable from i. Precisely,
we say a vertex j ̸= i is directly reachable from vertex i if cij < ∞.

According to this definition, we observe that if sdi = 1, vertex i is only
directly reachable from another vertex j ∈ VT , implying that once vertex j is
removed from T , the resulting solution would become unfeasible.

Definition 2. The special degree sd(T) of a feasible solution T is defined as:

sd(T) =
∑

i∈VT ,sdi=1

1. (6)

Intuitively, the lower the value of sd(T), the larger opportunity to feasibly
delete a vertex (thus improve the solution). Inspired by this idea, during the
search process, we use the objective value f(T) (Eq. (1)) as the main evaluation
criterion, while adopt the special degree sd(T) as an auxiliary evaluation crite-
rion. We say T1 dominates T2 if f(T1) < f(T2) or f(T1) = f(T2), sd(T1) <
sd(T2), so as to distinguish the neighboring solutions with the same objective
value.

Fig. 3 shows the benefits of combining swap-vertex move operator with basic
move operators, where sub-figure (a) is the input graph and (b) is an initial solu-
tion with total collected prize 30 and total consumed cost 4. The corresponding
special degree of solution (b) is 2 (both vertex 1 and 3 have a special degree
sd1 = sd3 = 1). Notice that solution (b) could not be further improved by the
four basic move operators. However, if swap vertex 2 and 6 to get a new solution
(c), although the objective value does not vary, the special degree of solution (c)
decreases to 1 (only vertex 3 has a special degree sd3 = 1). From this solution,
we could feasibly delete vertex 4, to get an improved solution (d).

The final question related to the swap-vertex move operator is how to adapt
it to instances with σ > 0. The main difficulty here is that the ∆ value after

Fig. 3. Example of combining swap-vertex move operator with the basic operators.

swapping vertices i and j no longer strictly equals to ri−rj (the total consumed
cost may vary). If we choose to calculate ∆ exactly after swapping each pair of
vertices, the complexity would become unaffordable again. Fortunately, we do
not need to do so if σ is small enough (e.g., σ < 0.05), because in this case
swapping two vertices generally only slightly changes the total consumed cost,
being almost negligible compared to the overall objective value. This implies
that once the customers to connect are fixed, the overall objective value still
mainly depends on the number of used Steiner vertices. For this reason, we
decide to solve the special instances in two different phases. The first phase is
the tabu search procedure (regarding exactly the cost of each edge) described
in Section 2.7, using the four basic move operators. The second phase is an
enhanced local search procedure (described below), which combines the four
basic move operators and the swap-vertex move operator, regardless the edge
cost differences. These two phases complement each other.

Enhanced Local Search Once the basic tabu search terminates, the search
enter into an enhanced local search phase, which relies on a larger neighborhood
by combining the four basic move operators and the swap-vertex based move
operator in a variable mode. More precisely, at each iteration, the search process
examines at first the neighboring solutions generated by the four basic move
operators and accepts the first met improving solution, and then continues to
the next iteration. If no improving is found, the search process examines again
the neighboring solutions generated by swap-vertex move operator, and accepts
the first met improving solution. To identify an improving solution, the objective
value f(T) is used as the main criterion, while the special degree sd(T) is used
as an auxiliary criterion to break ties.

For the sake of simplicity, we do not adopt tabu mechanism here, thus once
no improving solution is found in both neighborhoods, this enhanced local search
process terminates. After that, the search turns into a perturbation phase, which
is detailed below.

Perturbation Strategies In order to exploit a reasonable tradeoff between
intensification and diversification, we develop again a weak perturbation operator
and a strong perturbation operator respectively for the special instances. For
weak perturbation, we randomly choose an vertex i /∈ VT to insert into T at

first, and then randomly swap |VT | pairs of Steiner vertices, while guaranteeing
feasibility after each step. Adding a vertex before swapping is to increase the
number of feasible swap moves, thus increase the opportunity to escape from
the incumbent local optimum. The strong perturbation operator works almost
the same. The only difference is several (randomly distributed between [3,6])
vertices are added before swapping, to enhance diversity. Note that we no longer
use history information to guide the perturbation process, thus no frequency
vector Z is needed here.

2.9 Algorithm for Solving Large Instances

Algorithm 4 Algorithm for solving Large instances

1: Input: Graph G(V,E)
2: Output: The best found solution
3: Let T denote the incumbent solution
4: while The stop condition is not met do
5: T ← Randomly Construct Initial Solution(G)
6: T ← Simple Local Search(T)
7: end while
8:
9: return The best found solution

Unfortunately, due to our initial implementation choice, the above two algo-
rithms in their present form are not able to solve large instances with more than
5000 vertices (our programs maintain several n×n matrices, leading to memory
excess for large instances). In order to tackle the large instances, we implement
alternatively a weaken version of iterated local search algorithm, which is able
to find a feasible solution within reasonable time.

As outlined in Algorithm 4, starting from an initial solution randomly con-
structed by the method described in Section 2.5, the search calls a simple local
search procedure to improve it to a local optimum, which examines the feasible
neighboring solution (only considers insert vertex move and delete vertex move)
in random order and iteratively accepts the first met improving solution, until
no such solution exists in the whole neighborhood. After that, the search enters
into a new round of solution initialization followed by local search again, until
the stop criterion is met (e.g., the allowed time is elapsed).

3 Experimental Results

In this section, we report results obtained by K-TS on PCSPG, RPCST and SPG
respectively. The proposed algorithm is coded in C language and executed on a
machine with i3-2120 CPU (3.30 GHz) and 3.2 GB RAM (the score obtained
after running the test script on our machine is 227.863466).

3.1 Results on the PCSPG

Currently there are 8 groups of PCSPG instances included by the 11th DIMACS
challenge, among which 32 instances (4 instances from each group) are selected
for the challenge. For each of these 32 instances, we independently run K-TS
multiple times, until the allowed time (3600s for each instance) is elapsed. The
results are reported in Table 1, where the first three columns indicate the instance
name, the number of vertices and edges of the graph. The following column
indicates the optimal results (if applicable). The last three columns report the
results obtained by our K-TS algorithm, including the historically found overall
best solution (regardless of computation time, in order to indicate the discover
ability of K-TS), the best solution found within 3600s for each instance, as well
as the CPU time (in seconds) to reach the best (found within 3600s) solution.

Table 1. Results obtained by K-TS on 32 PCSPG instances (selected for the challenge)

Instance Optimal K-TS
Name |V | |E| Overall Best Best within 3600s Time to Best (s)
C13-A 500 2500 236 236 236 1.19
C19-B 500 12500 146 146 146 2.62
D03-A 1000 1250 1509 1509 1509 2.94
D20-A 1000 25000 536 536 536 11.14

P400.3 400 1175 2951725 2951725 2951725 40.78
P400.4 400 1144 2852956 2852956 2852956 10.33
K400.7 400 1442 474466 474466 474466 1.71
K400.10 400 1507 394191 394191 394191 66.71

hc10p 1024 5120 N/A 59732 59883 1075.87
hc11u 2048 11264 N/A 1115 1117 1559.02
hc12p 4096 24576 N/A 236478 237043 3226.98
hc12u 4096 24576 N/A 2220 2222 3447.69

bip52nu 2200 7997 222 222 223 482.61
bip62nu 1200 10002 214 214 214 14.84
cc3-12nu 1728 28512 N/A 95 95 28.07
cc12-2nu 4096 24574 N/A 567 570 706.56

i640-001 640 960 2932 2932 2932 0.01
i640-221 640 204480 8400 8400 8400 22.75
i640-321 640 204480 N/A 28787 28787 2.97
i640-341 640 40896 N/A 29666 29668 2227.30

a2000.2 2000 16062 1483.8368 1486.337077 1489.495826 1794.66
a4000.3 4000 32025 3406.61873 3411.926814 3411.926814 177.81
a8000.1.2 8000 64373 4719.96527 4757.798841 4757.798841 3070.84
a14000.1.5 1400 112228 9475.59356 9576.048590 9576.048590 773.99

handsd04 42500 84475 N/A 737.715995 737.715995 1365.39
handbd13 169800 338551 N/A 13.212800 13.212800 1308.16
handsi03 39600 78704 56.149422 56.201404 56.201404 83.49
handbi07 158400 315808 150.974258 150.985112 150.985112 633.84

drosophila001 5226 93394 8273.98263 8276.536854 8278.526979 2498.04
HCMV 3863 29293 7371.53637 7371.536373 7371.536373 17.37

lymphoma 2034 7756 3341.89024 3341.890237 3341.890237 45.48
metabol expr mice3523 4345 11346.9272 11349.164341 11349.164341 1441.11

As shown in Table 1, for most of the instances (except the very large in-
stances) with known optimal results, K-TS is able to reach quickly an optimal
or near-optimal solution. Specifically, for the hc, bip and cc instances with spe-
cial structure (with σ < 0.05) which are known to be extremely difficult for
the existing algorithms, K-TS produces remarkable results compared to other
competitors’s results (not shown in the Table). Actually, the main contribu-
tion belongs to the swap-vertex based move operator. Indeed, if we remove the
swap-vertex based move operator from the proposed algorithm, the results would
become much worse, indicating its importance for solving the special instances.

Encouraged by this observation, we decide to do more experiments on all the
remaining instances of special structures (hc, bip and cc instances). The detailed
results are listed in Table 2, where the meaning of each column keeps in accor-
dance with Table 1 (column ”optimal” is removed from the table, because to our
knowledge for almost all these instances the optimal results remain unknown).

Table 2. Results obtained by K-TS on 38 special PCSPG instances

Instance K-TS
Name |V | |E| Overall Best Best within 3600s Time to Best (s)

hc6p.stp 64 192 3908 3908 1.89
hc6u.stp 64 192 36 36 0.03
hc7p.stp 128 448 7721 7721 1.58
hc7u.stp 128 448 72 72 0.95
hc8p.stp 256 1024 15213 15213 225.63
hc8u.stp 256 1024 143 143 1.84
hc9p.stp 512 2304 30082 30082 3227.84
hc9u.stp 512 2304 283 283 46.55
hc10u.stp 1024 5120 559 559 464.09
hc11p.stp 2048 11264 118981 119029 2855.94

hc6p2.stp 64 192 3923 3923 1.64
hc6u2.stp 64 192 20 20 0.01
hc7p2.stp 128 448 7711 7711 94.39
hc7u2.stp 128 448 47 47 0.03
hc8p2.stp 256 1024 15243 15243 35.08
hc8u2.stp 256 1024 97 97 0.56
hc9p2.stp 512 2304 30240 30240 410.56
hc9u2.stp 512 2304 190 190 4.33
hc10p2.stp 1024 5120 59766 59766 169.83
hc10u2.stp 1024 5120 380 380 237.97
hc11p2.stp 2048 11264 118922 118922 2292.92
hc11u2.stp 2048 11264 751 752 429.24
hc12p2.stp 4096 24576 236872 237144 3048.38
hc12u2.stp 4096 24576 1493 1494 1239.00

bip42nu.stp 1200 3982 227 227 44.50
bipa2nu.stp 3300 18073 325 325 414.89
bipe2nu.stp 550 5013 53 53 0.76
cc3-4nu.stp 64 288 10 10 0.01
cc3-5nu.stp 125 750 17 17 0.03
cc3-10nu.stp 1000 13500 61 61 2.81
cc3-11nu.stp 1331 19965 79 79 15.19
cc5-3nu.stp 243 1215 36 36 10.08
cc6-2nu.stp 64 192 15 15 0.01
cc6-3nu.stp 729 4368 95 95 59.00
cc7-3nu.stp 2187 15308 272 272 120.31
cc9-2nu.stp 512 2304 83 83 948.94
cc10-2nu.stp 1024 5120 168 168 100.81
cc11-2nu.stp 2048 11263 305 305 957.63

3.2 Results on the RPCST

Our K-TS algorithm could also be used to solve the rooted version of PCSPG
(RPCST), just after very slight adaption (by assigning the fixed root vertex a
high enough prize, to make sure it will always be spanned). Similarly, we test our
K-TS algorithm on 29 RPCST instances selected by the 11th DIMACS challenge,
using the same termination criterion for each instance. The obtained results are
listed in Table 3, where the meaning of each column is the same as in Table 1.

Table 3. Results obtained by K-TS on 29 RPCST instances (selected for the challenge)

Instance Optimal K-TS
Name |V | |E| Overall Best Best within 3600s Time to Best (s)

Cologne1-i01M1 748 6332 109271.503 109271.5028 109271.5028 0.01
Cologne1-i01M2 748 6332 315925.31 315925.3105 315925.3105 1.61
Cologne1-i01M3 748 6332 355625.409 355625.4089 355625.4089 3.70
Cologne1-i02M1 749 6343 104065.801 104065.8012 104065.8012 0.01
Cologne1-i02M2 749 6343 352538.819 352538.8189 352538.8189 1.18
Cologne1-i02M3 749 6343 454365.927 454365.9275 454365.9275 23.35
Cologne1-i03M1 751 6343 139749.407 139749.4074 139749.4074 0.01
Cologne1-i03M2 751 6343 407834.228 407834.2279 407834.2279 1.92
Cologne1-i03M3 751 6343 456125.488 456125.4880 456125.4880 8.97
Cologne1-i04M2 741 6293 89920.8353 89920.8354 89920.8354 0.01
Cologne1-i04M3 741 6293 97148.789 97148.7891 97148.7891 0.64
Cologne1-i05M1 741 6296 26717.2025 26717.2025 26717.2025 0.01
Cologne1-i05M2 741 6296 100269.619 100269.6186 100269.6186 0.01
Cologne1-i05M3 741 6296 110351.163 110351.1633 110351.1633 3.32

Cologne2-i01M2 1803 16743 355467.684 355467.6844 355467.6844 0.03
Cologne2-i01M3 1803 16743 628833.614 628833.6143 628833.6143 44.04
Cologne2-i01M4 1803 16743 773398.303 773398.3026 773398.3026 688.65
Cologne2-i02M2 1804 16740 288946.832 288946.8318 288946.8318 4.54
Cologne2-i02M3 1804 16740 419184.159 419184.1590 419184.1590 7.26
Cologne2-i02M4 1804 16740 430034.264 430034.2639 430034.2639 7.15
Cologne2-i03M2 1809 16762 459894.776 459894.7765 459894.7765 4.57
Cologne2-i03M3 1809 16762 643062.02 643062.0196 643062.0196 72.88
Cologne2-i03M4 1809 16762 677733.067 677733.0673 677733.0673 788.36
Cologne2-i04M2 1801 16719 161700.545 161700.5453 161700.5453 0.03
Cologne2-i04M3 1801 16719 245287.203 245287.2026 245287.2026 6.31
Cologne2-i04M4 1801 16719 245287.203 245287.2026 245287.2026 5.75
Cologne2-i05M2 1810 16794 571031.415 571031.4154 571031.4154 126.30
Cologne2-i05M3 1810 16794 672403.143 672403.1432 672403.1432 6.30
Cologne2-i05M4 1810 16794 713973.623 713973.6228 713973.6228 5.84

As shown in Table 3, K-TS is able to quickly reach the optimal solution on
each of these 29 instances, indicating its effectiveness and efficiency for solving
the RPCST.

3.3 Results on the SPG

Our K-TS algorithm could also be used to solve the SPG, just with very slight
adaption (by assigning each customer a large enough profit). Although we do
not intend to participate in the competition about the SPG (due to time limit),
we would like to report several remarkable results on the SPG (listed in Table
4), which are better than the best upper bounds known by 01/August/2014, and
being at least no worse than the upper bounds released by 12/09/2014.

Table 4. Results obtained by K-TS on 4 difficult SPG instances

Instance UB by 01/08/2014 UB by 12/09/2014 UB by K-TS
Name |V | |E|
hc9p 512 2304 30258 30242 30242
hc10p 1024 5120 60494 59797 59732
hc10u 1024 5120 581 575 575
hc12p 4096 24576 236949 236949 236899

4 Conclusion

The prize-collecting Steiner tree problem in graphs (PCSPG) is theoretically
important and has many practical applications in network design. In this paper,
we propose a knowledge based tabu search (K-TS) for the PCSPG, which incor-
porates several innovative ingredients and produces highly competitive results
not only on the PCSPG, but also on two other closely related problems (the
rooted version of PCSPG and the classical SPG).

Acknowledgments

The work was supported by the following projects: RaDaPop and LigeRO (2009-
2013, Pays de la Loire Region) and PGMO (2014-2015, Jacques Hadamard Math-
ematical Foundation).

References

1. Hakimi, S. L. 1971. Steiner’s problem in graphs. Networks, 1, 113-133.

2. Karp, R. M. 1972. Reducibility among combinatorial problems. Miller, R. E.,
Thatcher, J. W., eds. Complexity of Computer Computations, New York.

3. Segev, A. 1987. The Node Weighted Steiner Tree Problem. Networks, 17, 1-17.

4. Engevall, S., Göthe-Lundgren, M., Värbrand, P. 1998. A strong lower bound for the
node weighted Steiner tree problem. Networks, 31(1998), 11-17.

5. Uchoa, E. 2006. Reduction tests for the prize-collecting Steiner problem. Operations
Research Letters, 34, 437-444.

6. Bienstock, D., Goemans, M. X., Simchi-Levi, D., Williamson, D.P. 1993. A note on
the prize collecting travelling Salesman problem. Mathematical Programming, 59,
413-420.

7. Goemans, M. X., Williamson, D. P. 1995. A general approximation technique for
constrained forest problems. SIAM Journal on Computing, 24(2), 296-317.

8. Goemans, M. X., Williamson, D. P. 1997. The primal-dual method for approxima-
tion algorithms and its application to network design problems. In D. S. Hochbaum
editor, Approximation Algorithms for NP-Hard Problems, PWS Publiching Com-
pany, Boston, 144-191.

9. Johnson, D., Minkoff, M., Phillips, S. 2000. The prize collecting steiner tree problem:
theory and practice. Proceedings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms, Society for Industrial and Applied Mathematics, Philadelphia,
PA, USA, 760-769.

10. Minkoff, M. 2000. The prize collecting Steiner tree problem. Master’s thesis, De-
partament of Electrical Engineering and Computer Science, Massachusetts Insitute
of Technology, USA.

11. Feofiloff, P., Fernandes, C. G., Ferreira, C. E., Pina, J. C. D. 2007. Primal-dual ap-
proximation algorithms for the Prize-Collecting Steiner Tree Problem. Information
Processing Letters, 103, 195-202.

12. Archer, A., Bateni, M., Hajiaghayi, M., Howard Karloff, H. 2011. Improved Ap-
proximation Algorithms for Prize-Collecting Steiner Tree and TSP. 2009. Proceed-
ings of the 2009 50th Annual IEEE Symposium on Foundations of Computer Sci-
ence, 427-436.

13. Archer, A., Bateni, M., Hajiaghayi, M., Howard Karloff, H. 2011. Improved Ap-
proximation Algorithms for Prize-Collecting Steiner Tree and TSP. SIAM Journal
on Computing, 40(2), 309-332.

14. Lucena, A., Resende M. G. C. 2004. Strong lower bounds for the prize collecting
Steiner problem in graphs. Discrete Applied Mathmatics, 141(1-3), 277-294.

15. Ljubić, I.,Weiskircher, R., Pferschy, U., Klau, G., Mutzel, P., Fischetti, M. 2006.
An algorithmic framework for the exact solution of the prize-collecting Steiner tree
problem. Mathmatical Programming: Series B, 105, 427-449.

16. Salles da Cunha, A., Lucena, A., Maculan, N., Resende, M. G. C. 2009. A relax-
and-cut algorithm for the prize-collecting Steiner problem in graphs. Discrete Ap-
plied Mathematics, 157, 1198-1217.

17. Canuto, S. A., Resende, M. G. C., Ribeiro, C. C. 2001. Local search with per-
turbations for the prize-collecting Steiner tree problem in graphs. Networks, 38,
50-58.

18. Klau, W., Ljubić I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl, G.,
Weiskircher, R. 2004. Combining a memetic algorithm with integer programming
to solve the prize collecting Steiner tree problem. Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO-2004), Lecture Notes in Computer
Science, 3102, 1304, 1315.

19. Goldbarg, E. F. G., Goldbarg, M. C., Schmidt, C. C. 2008. A hybrid transge-
netic algorithm for the prize collecting Steiner tree problem. Journal of Universal
Computer Science, 14(15), 2491-2511.

20. Biazzo, I., Braunstein, A., Zecchina, R. On the performance of a cavity method
based algorithm for the Prize-Collecting Steiner Tree Problem on graphs. Physical
Review: E, 86, 026706.

21. Fu, Z. H., Hao, J. K. 2014. Breakout local search for the Steiner tree problem with
revenue, budget and hop constraints. European Journal of Operational Research,
232(1), 209-220.

22. Fu, Z. H., Hao, J. K. 2014. Dynamic programming driven memetic search for the
Steiner tree problem with revenue, budget and hop constraints. INFORMS Journal
on Computing, accepted, forthcoming.

23. Uchoa, E., Werneck, R. F. F. 2010. Fast local search for Steiner trees in graphs.
In Blelloch, G.E., Halperin, D., eds.: ALENEX, SIAM, 1-10.

24. Glover, F., & Laguna, M., 1997. Tabu search. Kluwer Academic Publishers.
25. Polzin, T., Daneshmand, S.V. 2001. Improved algorithms for the Steiner problem

in networks. Discrete Applied Mathematics, 112, 263-300.
26. Beasley, J.E., 1990. OR-Library: Distributing test problems by electornic mail.

Journal of the Operational Research Society, 41, 1069-1072.

