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LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France

Accepted to Discrete Applied Mathematics, 18 June 2012

Abstract

Graph coloring is one of the most studied combinatorial optimization problems.
This paper presents an improved extraction and expansion method (IE2COL) ini-
tially introduced in [47]. IE2COL employs a forward independent set extraction
strategy to reduce the initial graph G. From the reduced graph, IE2COL triggers
a backward coloring process which uses extracted independent sets as new color
classes for intermediate subgraph coloring. The proposed method is assessed on 20
large benchmark graphs with 900 to 4000 vertices. Computational results show that
it provides new upper bounds for 6 graphs and matches consistently the current
best known results for 12 other graphs.

Keywords: graph coloring; graph k-coloring; independent set extraction; memetic
coloring; progressive optimization.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E.
A subset I of V is an independent set if no two adjacent vertices belong to
I. A legal k-coloring of G is a partition of V into k independent sets (color
classes). The graph k-coloring problem is to find a legal k-coloring of G for
a given k. The graph coloring problem is to determine the smallest integer
k (the chromatic number χ(G)) such that there exists a legal k-coloring of
G. Notice that the graph coloring problem can be approximated by solving a
series of k-coloring problems with increasing or decreasing k values [18].
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Graph k-coloring is a well-known NP-complete problem [21] and has a number
of practical applications related to printed circuit testing [20], scheduling [31],
register allocation [11], timetabling [5], frequency assignment [40] and bag ra-
tionalization [22]. In the general case, exact solution methods can be used only
to solve problems of relatively small size. As a matter of fact, there are graphs
with as few as 125 vertices that can not be solved optimally even by using the
current best exact algorithms [29,34]. For larger graphs, heuristics and meta-
heuristics are usually preferred to find approximate solutions. Comprehensive
surveys of the most significant coloring methods can be found in [18,34].

There are a large number of heuristic approaches for graph coloring: greedy
construction (DSATUR [3], RLF [31]), tabu search [2,12,24,27,37], iterated
local search and variable neighborhood search [1,8], simulated and quantum
annealing [7,29,41], variable space search [28], scatter search [25], multiagent
fusion search [43], ant colony optimization [10,4,36,44], and evolutionary or
population based hybrid search [13,17,19,23,32,33,38]. These coloring algo-
rithms are based on diverse solution strategies and have led to continually
improved results. Among these algorithms, population-based heuristics are
certainly among the most competitive approaches. Nevertheless, large graphs
with more than 900 vertices always represent a real challenge for any existing
coloring algorithm.

A basic approach to deal with large graphs is to apply the general principle of
“reduce-and-solve”. Before the coloring process, this approach first removes,
during a preprocessing step, some large independent sets from the original
graph to obtain a reduced graph (called residual graph). Since each indepen-
dent set can form a color class, to obtain a coloring of the initial graph, it
suffices to find a legal coloring for the residual graph. This approach were
explored with success in early studies like [15,27,29,35].

Very recently, an improvement has been proposed to enhance this basic in-
dependent set extraction approach [46]. The extraction phase was enhanced
by removing at a time a maximal collection of disjoint independent sets of
maximal size instead of only one independent set. The resulting EXTRACOL
algorithm has obtained new improved colorings for several large and very
large graphs (DSJC1000.9, C2000.5, C2000.9, C4000.5). However, extracting
independent sets as a preprocessing technique suffers an inevitable limitation.
Actually, if an independent set is wrongly extracted such that it is not part of
the optimal coloring, the mistake can never be repaired. To remedy this diffi-
culty, the work of [47] introduced an expansion phase which allows the coloring
process to reconsider each extracted independent set on an one-by-one basis.
The resulting E2COL algorithm has improved the best-known results for two
very large graphs (C2000.5 and C4000.5).

This paper further extends these previous studies by proposing additional
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strategies, leading to the improved extraction and expansion algorithm (IE2COL).
We report experimental studies of IE2COL on the set of 20 largest and most
challenging benchmark graphs (with 900 to 4000 vertices) from the DIMACS
and COLOR02/03/04 competitions. These results show that the proposed
algorithm obtains new upper bounds for 6 graphs (flat1000 76 0, C2000.5,
C4000.5, C2000.9, WAP04, WAP07) and matches consistently the current
best-known results for 12 other graphs.

Section 2 presents the proposed algorithm. Section 3 is dedicated to extensive
computational evaluations and comparisons. Section 4 investigates some key
components of the proposed approach, followed by the concluding section.

2 Improved extraction and expansion coloring (IE2COL)

2.1 General IE2COL procedure

The proposed IE2COL algorithm is based on and extends the basic extraction
and expansion method of [47] and can be summarized by the following general
procedure composed of three phases.

(1) The extraction phase simplifies the initial graph G by removing itera-
tively large independent sets (as well as the corresponding edges) from
the original graph. To be effective, each iteration removes a collection of
disjoint independent sets of the same size (the largest possible) according
to the method developed in [46]. This phase stops when the residual graph
contains no more than a fixed number of q vertices. The independent set
extraction method is discussed in Section 2.2.

(2) The initial coloring phase applies a graph coloring algorithm (the memetic
algorithm presented in [32]) to the residual graph Gz to determine a
(k − t)-coloring where t is the number of extracted independent sets. If
a legal (k − t)-coloring C = {c1, ..., ck−t} for Gz is found, then C plus
the t independent sets extracted during the phase 1 constitutes a legal
k-coloring of the initial graph G, return this k-coloring and stop. Other-
wise, continue to phase 3 to trigger the expansion and backward coloring
phase. The memetic coloring algorithm applied to Gz and intermediate
subgraphs (phase 3) is discussed in Section 2.3.

(3) The expansion and backward coloring phase extends the current sub-
graph G′ by adding back some extracted independent sets S to obtain
an extended subgraph G′′. Then the coloring algorithm is run on G′′ by
starting from the current coloring of G′ extended with the independent
sets of S as new color classes. Once again, if a legal coloring is found for
the subgraph G′′, this coloring plus the remaining independent sets forms
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a legal k-coloring of the initial graph G and the whole procedure stops.
Otherwise, one repeats this expansion and backward coloring phase until
no more independent set is left or a legal coloring is found for the current
subgraph under consideration. Possible strategies to select independent
sets for expansion are discussed in Sections 2.4 and 4.2.

The proposed IE2COL algorithm, designed for the graph k-coloring problem,
implements this general approach and is described in Alg. 1. In what follows,
we show how the main components of IE2COL are implemented.

2.2 Extraction of independent sets

The main goal of the extraction phase (Alg. 1, lines 4-8) of IE2COL is to
simplify the initial (large) graph G by removing from G large independent
sets. For this purpose, IE2COL applies the specific extraction strategy of [46]
which proves to be effective in reducing a graph. This extraction strategy can
be summarized by the following steps.

(1) Apply the Adaptive Tabu Search maximum clique algorithm (ATS) (see
[45]) to identify a first maximal independent set I in G (recall that maxi-
mum clique and maximum independent set are two equivalent problems).

(2) Apply repeatedly ATS to obtain as many independent sets of size |I|
as possible. Then find among these independent sets a maximal set of
pairwise disjoint independent sets I = {I1, . . . , Ix}. This later problem
is the well known maximum set packing problem [21], which itself is
equivalent to the maximum clique (thus independent set) problem, ATS
is thus used again to solve the problem.

(3) Remove from G all the vertices of I1, . . . , Ix as well as all the edges adja-
cent to any of these vertices.

This extraction phase repeats the above steps until the residual graph contains
no more than q vertices (see Alg. 1, line 5). In Section 4.1, we study the
influence of q on the performance of our proposed algorithm.

2.3 Initial and intermediate graph coloring

The IE2COL algorithm needs an algorithm to color the residual graph Gz and
some intermediate subgraphs (Alg. 1, lines 12 and 23). For this purpose, we
adopt MACOL, a recent and effective memetic algorithm [32] designed for the
graph k-coloring problem.

For a given graph G and a fixed number k of colors, MACOL explores a
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search space Φ composed of all the k-colorings of the graph G = (V,E),
i.e., Φ = {C : V → {1, . . . , k}}. MACOL tries to find a legal k-coloring by
optimizing (minimizing) a simple function f(C) which counts the number of
color conflicts in a k-coloring C. Formally, let C = {c1, c2, ..., ck} be a (legal

Algorithm 1 The IE2COL algorithm for large graph k-coloring
1: Input: An undirected graph G = (V, E); an integer k

2: Output: A legal k-coloring of G or report failure
3: {EXTRACTION }
4: {Each extraction iteration removes a maximal collection of disjoint independent

sets of maximal size in G, see Sect. 2.2}
5: while (G has more than q vertices) do

6: Find in G a maximal collection I of pairwise disjoint independent sets of the
largest size possible

7: Simplify G by removing from G all the independent sets of I and the associ-
ated edges

8: end while

9: Let Ω contains all the extracted disjoint independent sets; let t the total number
of the extracted independent sets (t = |Ω|); let Gz be the residual graph from
the extraction phase

10: {INITIAL COLORING}
11: {A population of (k−t)-colorings is obtained by the MACOL coloring algorithm

applied to the residual graph Gz, see Sect. 2.3}
12: Generate a population P of (k − t)-colorings for graph Gz and run MACOL

with the colorings of P to color Gz

13: if (A legal (k − t)-coloring C ∈ P for Gz is found by MACOL) then

14: The coloring C, plus the t extracted independent sets, forms a legal k-coloring
for the initial graph G. Return this k-coloring and stop

15: end if

16: {EXPANSION AND BACKWARD COLORING}
17: {Backward coloring of intermediate subgraphs by reconsidering extracted inde-

pendent sets of Ω}
18: Let G′ = (V ′, E′) be the current subgraph of G under consideration, P be the

set of (illegal) colorings of G′ produced by MACOL
19: while (Ω 6= ∅) do

20: Select some independent sets S from Ω (S ⊂ Ω) and recover the corresponding
subgraph G′′ induced by the vertices of V ′ ∪ S (see Sect. 2.4)

21: Ω← Ω \ S

22: Extend each coloring C ∈ P by including the independent sets of S as new
color classes

23: Run MACOL with the extended colorings of P to color G′′ (see Sect. 2.3)
24: if (A legal coloring C ∈ P for G′′ is found by MACOL) then

25: The coloring C, plus the remaining extracted independent sets of Ω, forms
a legal k-coloring for the initial graph. Return this k-coloring and stop

26: end if

27: end while

28: Return (No legal k-coloring found)
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or illegal) k -coloring, the evaluation function f(C) is given by the following
formula:

f(C) =| {{u, v} ∈ E : ∃ci ∈ C, u ∈ ci, v ∈ ci} | (1)

C is a legal k-coloring if and only if f(C) = 0, i.e., each color class ci of C is
an independent set (conflict free).

MACOL is composed of four basic components: a population of candidate
solutions (each solution being a k-coloring in Φ) to sample the search space,
a dedicated recombination operator (crossover) to create new candidate so-
lutions (offspring) by blending two or more existing solutions, a tabu search
based local optimization operator, and a population management strategy.

MACOL starts with an initial population of illegal k-colorings whose individ-
ual k-colorings are first improved by the tabu coloring algorithm which is a
variant of the seminal TabuCOL [27]. MACOL improves the solutions of its
population throughout a number of generations. At each generation, MACOL
takes randomly m ≥ 2 parents and uses the adaptive multi-parent crossover
operator (AMPaX) to generate an offspring k-coloring. AMPaX builds one
by one the color classes of the offspring solution by taking at each step the
largest color class among the parents. During the crossover process, AMPaX
takes care of using color classes from different parents in order to generate
diversified offspring solutions. Once the new offspring coloring is created, it
is immediately improved by the tabu coloring algorithm. The tabu coloring
algorithm improves an illegal k-coloring by minimizing the above evaluation
function f (formula 1). This is achieved by iteratively changing the color of a
vertex that shares the same color with at least one adjacent vertex. To decide
whether the improved offspring k-coloring can be added to the population,
MACOL implements a distance-and-quality based replacement strategy for
the pool updating.

As shown in [32], MACOL performs generally much better than local search
algorithms. This is why we employ MACOL as our underlying coloring algo-
rithm.

2.4 Expansion strategies for backward coloring

The expansion and backward coloring phase takes as its input the current
subgraph G′ of G and the colorings of G′ in the population P , extends G′ to
another subgraph G′′ by adding some extracted independent sets S and color
G′′ with the colorings in P expanded by S (see Alg. 1, lines 16-27). The key
issues concern the way to select the independents sets S and to rebuild the
corresponding subgraph G′′. We consider in this section possible strategies to
determine the independent sets for expansion.
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To determine the set S of independent sets, we can first consider how many
independent sets that we pick for expansion. Basically, this decision can be
made according to one of two rules: one independent set or several indepen-
dent sets. This choice may have influences on the subsequent coloring process.
Indeed, adding back one independent set at a time implies limited changes
between subgraphs G′ and G′′ and limited extensions to the current colorings
(only one new color class is added). This leads thus to a more gradual coloring
optimization. On the other hand, using several independents sets to extend the
current subgraph and colorings offers more freedom for coloring optimization.

We can also consider which independent set(s) are to be selected. This decision
can be achieved following one of three (at least) rules: reverse of extraction
order, extraction order and random order. Given the way independent sets are
extracted during the extraction phase (see Sect. 2.2), applying the reverse of
extraction order handles the independent sets from the smallest to the largest
while applying extraction order does the opposite.

It is clear that any combination of the above two decisions defines a strategy
that can be used to determine the independent set(s) for subgraph and coloring
extensions. Based on experimental observations, we have decided for this work
to use the following simplified strategy which proved to be effective for the set
of graphs tested in the paper. After the initial coloring phase of the residual
graph Gz, we backtrack directly to the initial graph G and add back all the
extracted independent sets as new color classes of colorings of G. Experiments
showed that this strategy performs quite well for the graphs used in the paper
(See Section 4.2 for a computational analysis). In the general case, (e.g., if still
larger and harder graphs are considered), it would be necessary to recover and
color additional intermediate subgraphs during the expansion and backward
coloring phase.

2.5 Discussions

In this section, we highlight the enhancements introduced in our proposed
IE2COL algorithm with respect to the basic extraction and expansion (E2COL)
algorithm of [47].

First, as to the extraction phase, while E2COL generates one subgraph for each
extracted independent set, IE2COL does not store any intermediate subgraph.
Instead, for each selected subset S ⊂ Ω of independent sets, the corresponding
subgraph is reconstructed.

Second, the expansion and backward coloring phase of the proposed IE2COL
differs from that of E2COL. Actually, while E2COL traverses the extracted
independent sets from the smallest to the largest and adds back exactly one
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independent set at a time, IE2COL relies on a much more flexible strategy to
decide how many and which independent sets are selected for each expansion
iteration (E2COL is thus just a special case of this more general expansion
policy). This difference is critical for two reasons. The proposed IE2COL, by
taking several independent sets for expansion, needs to consider (and color)
fewer subgraphs than E2COL does, thus probably shortening the computing
time. And more importantly, extending the current colorings with more new
color classes at a time introduces naturally more freedom for the coloring
algorithm to better optimize its solutions during subgraph coloring process.

Finally, IE2COL uses MACOL to search for a legal coloring while E2COL
replies on a perturbation based tabu search algorithm. By using MACOL,
IE2COL is able to color large subgraphs more effectively and achieve highly
competitive results, as we will show in the next section.

3 Experimental Results

In this section, we assess the performance of the proposed IE2COL algorithm.
For this purpose, we present computational results on a collection of 20 largest
benchmark graphs from the well-known DIMACS graph coloring Challenge
[30] 1 and COLOR02/03/04 competitions 2 . We also report comparisons with
respect to 10 top-performing coloring algorithms from the literature.

3.1 Experimental settings

Test instances. Since IE2COL is designed to color large graphs, we only
consider graph instances with at least 900 vertices. Moreover we retain only
those graphs which are known to be difficult and challenging (see Table 1)
and exclude those (easy) graphs (A graph is considered to be easy if the
current best k∗-coloring can be reached by our tabu coloring algorithm). These
large, but easy instances with at least 900 vertices include the following cases:
3 abb/ashxxxGPIA graphs, 1 Insertions graph, 3 FullIns graphs, 4 qg.order
graphs.

The 20 large and hard graphs considered in this paper belong to the following
six families.

• Three large random graphs (DSJC1000.1, DSJC1000.5, DSJC1000.9). The
first and second number in the name of each graph represent respectively

1 http://www.info.univ-angers.fr/pub/porumbel/graphs/index.html
2 http://mat.gsia.cmu.edu/COLOR04/
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the number of vertices and the edge density in the graph. The chromatic
numbers of these graphs are unknown.
• Three large flat graphs (flat1000 50 0, flat1000 60 0, flat1000 76 0). They

are structured graphs with known chromatic number (respectively 50, 60
and 76).
• Two large random geometric graphs (R1000.1c, R1000.5). These graphs are

generated by picking random points (vertices) in a plane and by linking
two points situated within a certain geometrical distance. The chromatic
number is unknown for R1000.1c and is equal to 234 for R1000.5.
• Three very large random graphs (C2000.5, C2000.9, C4000.5). The chro-

matic numbers of these graphs are unknown. Due to the size and difficulty
of these graphs, they are not always used in computational experiments in
the literature.
• One latin square graph (latin sqr 10) with unknown chromatic number.
• Eight WAP graphs (WAP01 to WAP08) from COLOR02/03/04 competi-

tions. These graphs stem from real-life optical network design problems.
Each vertex corresponds to a lightpath in the network; edges correspond to
intersecting paths. These structured graphs have unknown chromatic num-
ber except WAP05 whose chromatic number is 50. These instances are used
less often than the classical DIMACS graphs.

The graphs of families 1 to 5 were initially collected for the 2nd DIMACS
challenge (on graph coloring and maximum clique) while the WAP graphs
were made available for the COLOR02/03/04 competitions. One notices that
contrary to most DIMACS graphs, the WAP graphs are much less studied in
the literature [4,19,6,9].

Parameter. To run IE2COL, we need to fix the threshold q, the number
of vertices left in the smallest residual graph Gz. Based on preliminary ex-
periments and as shown in Section 4.1, we have fixed q equal to 500 for all
our experiments. In addition to q, MACOL (as well as its tabu coloring algo-
rithm) requires also several parameters. In our case, we adopt those used in
the original paper [32].

Stop condition. All experiments for this study were performed on a com-
puter equipped with an Intel Xeon E5440 processor (2.83 GHz, 2GB RAM)
running GNU/Linux. Following the DIMACS machine benchmark 3 , our ma-
chine requires respectively 0.23, 1.42 and 5.42 CPU seconds for the graphs
r300.5, r400.5 and r500.5. For all the tested graphs, the same parameter val-
ues are used. To report our computational results, 20 independent runs (5 runs
for the three largest random graphs C2000.5, C2000.9 and C4000.5) of IE2COL
were performed on each graph with different random seeds. The IE2COL al-
gorithm stops if one of the following conditions is verified:

3 dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique
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(1) A legal (k− t)-coloring is found in the initial coloring phase by MACOL
which is limited to 300 generations.

(2) A legal coloring is found during the expansion and backward coloring
phase.

(3) The processing time reaches its timeout limit. The timeout limit is set to
be 5 CPU hours except for five large graphs C2000.5, C2000.9, C4000.5,
WAP03 and WAP04. For WAP03 and WAP04 a limit of 1 day is allowed
while for the three largest random graphs C2000.5, C2000.9 and C4000.5,
the limit is set equal to 5 days. Notice that these timeout limits are com-
parable with those reported in the latest papers on large graph coloring
like [32,33,38,43,46,47] to obtain state-of-the-art results.

3.2 Computational Results

Table 1 4 summarizes the computational statistics of our IE2COL algorithm
on the set of 20 large benchmark instances. Columns 2–4 indicate the features
of the tested instances: the number of vertices (Node), the number of edges
(Edge) and the density of the graph (Density). Column 5 displays the current
best known results k∗ reported in the literature, i.e., the smallest k for which a
legal k∗−coloring has ever been found by a coloring algorithm. In columns 6–9,
the computational statistics of our IE2COL algorithm are presented, including
the smallest number of colors (k) for which IE2COL obtains a legal k-coloring,
the success rate (hit) and the average computation time in minutes over the
runs where a solution with k colors is found. The last column shows the
average number of iterations for the successful runs. If IE2COL has a success
rate inferior to 100%, we show additional results with larger k until a 100%
success rate is reached.

From Table 1, we observe that the results obtained by IE2COL (column 6,
k) are highly competitive when compared to the current best known results
reported in the literature (column 5, k∗). For the three huge random graphs
C2000.5, C2000.9 and C4000.5, colorings with respectively k = 146, 409 and
260 were reported recently in [46]. It is noteworthy that IE2COL is able to
further improve these bounds and obtain colorings with k = 145, 408 and 259
respectively.

For the three flat graphs, IE2COL can reach the current best known results
consistently with a success rate of 20/20. More importantly, for flat1000 76 0,
IE2COL obtains for the first time a new 81-coloring, improving thus the cur-
rent best-known result which requires 82 colors.

4 The results of IE2COL are available at http://www.info.univ-angers.fr/pub/
hao/ie2col.html
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Table 1
Computational results of IE2COL on the set of 20 large and difficult benchmark
instances. IE2COL improves on the current best known results for 6 instances and
matches the current best results for 12 instances. For 2 graphs, IE2COL obtains a
worse result.

Instance Node Edge Density k∗ IE2COL

k hit time(m) Iterations

DSJC1000.1 1000 49629 0.1 20 20 20/20 65 3.2 × 107

DSJC1000.5 1000 249826 0.5 83 83 20/20 116 1.2 × 108

DSJC1000.9 1000 449449 0.9 222a 222 3/20 256 5.1 × 108

223 20/20 216 4.3 × 108

flat1000 50 0 1000 245000 0.49 50 50 20/20 25 1.2 × 106

flat1000 60 0 1000 245830 0.49 60 60 20/20 25 1.3 × 106

flat1000 76 0 1000 246708 0.49 82 81 3/20 281 5.8 × 108

82 20/20 26 5.3 × 107

R1000.1c 1000 485090 0.97 98 98 20/20 67 3.9 × 107

R1000.5 1000 238267 0.48 234 245 2/20 282 8.5 × 108

246 8/20 251 6.8 × 108

247 20/20 186 4.3 × 108

latin sqr 10 900 307350 0.76 97b 98 5/20 317 1.5 × 108

99 20/20 171 7.9 × 107

C2000.5 2000 999836 0.5 146c
145 1/5 1198 1.7 × 109

146 5/5 223 1.4 × 108

C2000.9 2000 1799532 0.9 409c
408 5/5 720 1.1 × 109

C4000.5 4000 4000268 0.5 260c
259 2/5 6987 6.8 × 108

260 5/5 5223 1.4 × 108

WAP01 2368 110871 0.04 42 42 20/20 159 1.8 × 108

WAP02 2464 111742 0.04 41 41 20/20 206 2.6 × 108

WAP03 4730 286722 0.03 44 44 20/20 1127 3.6 × 108

WAP04 5231 294902 0.02 43 42 3/20 1321 8.4 × 108

43 20/20 1139 3.7 × 108

WAP05 905 43081 0.11 50 50 20/20 18 1.6 × 106

WAP06 947 43571 0.10 40 40 6/20 257 4.4 × 108

41 20/20 139 2.2 × 108

WAP07 1809 103368 0.06 42 41 20/20 141 1.5 × 108

WAP08 1870 104176 0.06 42 42 20/20 135 1.4 × 108

Note a: This bound was reported very recently in [41,46].

Note b: This bound was reported very recently in [42].

Note c: These bounds were reported very recently in [46].

For the 3 random DSJC graphs which are known to be hard to color for
many algorithms, IE2COL can attain the current best known results for two
of them (DSJC1000.1 DSJC1000.5) with a hit rate of 20/20. In particular, for
DSJC1000.9, IE2COL is able to find 222-colorings which were reported very
recently for only two algorithms [41,46].
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Table 2
Comparison of IE2COL with three related algorithms on the set of 12 large DIMACS
benchmark instances. In all the cases, IE2COL obtains the same or improved results
with respect to the compared algorithms.

Instance k∗ IE2COL MACOL [32] EXTRACOL [46] E2COL [47]

k hit Iter k hit Iter k hit Iter k hit Iter

DSJC1000.1 20 20 20/20 3.2×107 20 20/20 3.5×107 20 20/20 3.1×107 20 10/10 5.2×107

DSJC1000.5 83 20 20/20 1.2×108 20 20/20 2.2×108 20 20/20 2.0×108 20 4/10 7.2×108

DSJC1000.9 222 222 3/20 5.1×108 223 18/20 4.5×108 222 3/20 5.4×108 224 6/10 6.7×108

flat1000 50 0 50 50 20/20 1.2×106 50 20/20 3.2×105 50 20/20 3.2×105 50 10/10 1.2×106

flat1000 60 0 60 60 20/20 1.3×106 60 20/20 6.3×105 60 20/20 5.1×105 60 10/10 1.7×106

flat1000 76 0 82 81 3/20 5.8×108 82 20/20 7.2×107 82 20/20 6.7×107 82 10/10 3.5×108

R1000.1c 98 98 20/20 3.9×107 98 20/20 7.5×105 101 18/20 6.4×105 98 10/10 5.2×108

R1000.5 234 245 3/20 8.5×108 245 13/20 1.2×109 250 11/20 8.8×108 256 1/10 4.7×108

latin sqr 10 97 98 5/20 1.5×108 99 5/20 6.7×107 99 11/20 1.2×108 98 10/10 2.7×108

C2000.5 146 145 1/5 1.7×109 148 1/5 8.8×108 146 5/5 1.7×108 147 5/5 1.1×109

C2000.9 409 408 5/5 1.1×109 413 2/5 7.5×108 409 2/5 4.5×108 413 2/5 1.3×109

C4000.5 260 259 2/5 6.8×108 272 3/5 1.2×109 260 4/5 1.8×108 262 5/5 1.8×109

Finally, it is interesting to observe that for the 8 large WAP graphs from
COLOR02/03/04 competitions, IE2COL is able to find improved upper bounds
for 2 graphs (WAP4, WAP7) whose chromatic numbers are still unknown and
match the current best known results for the 6 other graphs.

3.3 Comparing IE2COL with MACOL, EXTRACOL and E2COL

In this section, we compare IE2COL with three related approaches using the
set of 12 DIMACS graphs: its underlying memetic coloring algorithm (MACOL
[32]), the approach using independent set extraction as a preprocessing method
(EXTRACOL [46]) and the initial basic extraction and expansion algorithm
(E2COL [47]). The purpose of this comparison is to know to which extend
IE2COL can improve on the results of these related approaches and show the
added value of the enhancements implemented in IE2COL. Table 2 summarizes
the computational results of these 4 algorithms.

When comparing IE2COL against MACOL, we notice that they reach the
same minimal k value for 6 graphs (DSJC1000.1, DSJC1000.5, flat1000 50 0,
flat1000 60 0, R1000.1c and R1000.5). For the other 6 graphs, IE2COL finds
better solutions than MACOL. This shows the added value of embedding
the memetic coloring algorithm into the proposed extraction and backward
coloring approach.

When comparing IE2COL and EXTRACOL, one observes that even though
EXTRACOL performs very well on these graphs (except on the two R1000.x
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graphs), IE2COL delivers better results in 7 out of 12 cases. In particular,
thanks to the backward coloring strategy, IE2COL is able to further improve
on the current best known results of 3 very difficult graphs (C2000.5, C2000.9,
C4000.5) which have been established by EXTRACOL. This highlights the
critical role of the expansion-coloring strategy employed by IE2COL.

Finally, when it comes to comparing IE2COL and E2COL, the results are
once again in favor of IE2COL because IE2COL improves on the results of
E2COL in 6 out of 12 cases. This is possible thanks to the enhancements
presented in Section 2, concerning particularly the improved strategies for
the backward coloring phase. This also underscores the importance of the
underlying coloring algorithm (recall that E2COL employs a perturbation-
based tabu search coloring algorithm).

3.4 Comparison with other state of the art algorithms

In this section, we compare the results of our IE2COL algorithm with 13
state-of-art coloring algorithms, which are based on diverse approaches: reac-
tive tabu search with partial solutions (PCol) [2], iterated local search (ILS)
[8], variable space search (VSS) [28], quantum annealing (QA) [41], hybrid
evolutionary algorithms (HGA [15], HEA [17], MMT [33], Evo [38]), multia-
gent fusion search (MFS) [43], mimimal-state processing search (MSP) [16],
distributed coloration neighborhood search (DCNS) [35], adaptive memory
search (AmaCol) [19] and ant local search (ALS) [36]. For this experiment, we
focus on the quality criterion, i.e., the lowest value of k for which a k-coloring
can be found.

Table 3 presents the comparative results on the set of the DIMACS graphs
(except C2000.9 for which no results are reported for the reference algorithms).
Columns 2 and 3 recall the best known results (k∗) and the best results found
by IE2COL. Columns 4–13 give the best results reported by these reference
algorithms. From Table 3, one observes that IE2COL competes very favor-
ably with these top-performing coloring algorithms. Indeed, if one compares
IE2COL with each of the reference algorithm, one finds that over these 11
hard graphs, IE2COL can obtain one or more better solutions (smaller k) and
at most one worse result (larger k).

Notice that a completely fair comparison is impossible since the reference
algorithms are implemented by different authors and run under different con-
ditions. This comparison is thus presented only for indicative purposes and
should be interpreted with caution. Nevertheless, this experiment does show
very positive indications about the competitiveness of IE2COL when compared
to these state-of-the-art algorithms.
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Table 3
Comparisons between IE2COL and 13 state-of-the-art coloring algorithms in the
literature. ’-’ means unavailability of a result. For 10 of the 11 large DIMACS
benchmark graphs, IE2COL obtains the same or improved results with respect to
the reference algorithms.

Graph k∗ IE2COL state-of-the-art coloring algorithms

PCol ILS VSS QA Evo MMT MFS MSP HGA DCNS AmaCol HEA ALS

[2] [8] [28] [41] [38] [33] [43] [16] [15] [35] [19] [17] [36]

DSJC1000.1 20 20 20 - 20 20 20 20 - 21 - - 20 20 20

DSJC1000.5 83 83 89 89 86 83 83 83 84 88 84 89 84 83 84

DSJC1000.9 222 222 226 - 224 222 223 225 223 228 - 226 224 224 224

flat1000 50 0 50 50 50 - 50 - 50 50 50 50 84 50 50 - 50

flat1000 60 0 60 60 60 - 60 - 60 60 60 60 84 60 60 - 60

flat1000 76 0 82 81 87 - 85 82 82 82 83 87 84 89 84 83 83

R1000.1c 98 98 98 - - 98 98 98 - 98 99 98 - - -

R1000.5 234 245 248 - - 238 238 234 - 237 268 241 - - -

latin sqr 10 97 98 - 99 - 98 98 101 104 99 106 98 104 - -

C2000.5 146 145 - - - - 148 - 150 162 153 151 - - -

C4000.5 260 259 - - - - 271 - - 301 280 - - - -

4 Analysis of IE2COL

4.1 Effect of the size of residual graph

We now turn our attention to a study on the influence of the size of residual
graph on the performance of the IE2COL algorithm. Recall that the extraction
phase of IE2COL stops when no more than q vertices are left in the residual
graph from which the initial coloring and possibly backward coloring phases
are launched. Different values of q may impact the outcome of IE2COL. We
carry out additional experiments on 4 instances (DSJC1000.5, DSJC1000.9,
R1000.1c, flat1000 76 0) and run IE2COL 10 times on each of these instances
with q ∈ {300, 500, 600} and show in Table 4 the computational results. In
addition to k and hit, we also indicate the average number of iterations needed
to find a k-coloring. For DSJC1000.9, we aim at finding a 223-coloring, for
flat1000 76 0, we aim at finding a 82-coloring. For each run of the IE2COL,
the timeout limit is set to be 5 CPU hours.

¿From Table 4, we observe that all these q values allow the algorithm to find
a legal k-coloring. Nevertheless, IE2COL with q = 500 and q = 600 reaches
more stable results (higher hits), but may require more iterations than with
q = 300. Therefore, it seems that a relatively larger q makes the algorithm
more robust but also slower. This implies that there may not be an absolute
best value for this parameter and that a compromise between robustness and
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Table 4
Influence of the size of residual graph (parameter q) on the performance of IE2COL.

Graph k∗ q = 300 q = 500 q = 600

k hit Iterations k hit Iterations k hit Iterations

DSJC1000.5 83 83 6/10 8.4 × 107 83 10/10 1.2 × 108 83 10/10 1.5 × 108

DSJC1000.9 222 223 10/10 4.1 × 108 223 10/10 4.3 × 108 223 9/10 4.6 × 108

flat1000 76 0 81 82 9/10 5.0 × 107 82 10/10 5.3 × 107 82 10/10 5.7 × 107

R1000.1c 98 98 10/10 4.1 × 107 98 10/10 3.9 × 107 98 10/10 4.2 × 107

speed could be possible.
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Fig. 1. Influence of the size of residual graph on the evaluation function f
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Fig. 2. Influence of the size of residual graph on the diversity D of the population

To complement this experiment and get more insight, we analyze the influence
of q on two other interesting points: (1) the evaluation function f (Eq. 1, Sect.
2.3) and (2) the diversity of the population. For this purpose, we present below
in detail the results on a single graph, but the observations remain valid for
several other tested graphs.

The considered instance is DSJC1000.5 with k = 83. We show in Fig. 1 the
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influence of q on the evaluation function f using a running profile. The profile
is defined by the function q 7−→ f∗(q) where q is the size of residual graph
and f∗(q) the best (smallest) f value at the end of the initial coloring phase
(averaged over 10 independent runs). From Fig. 1, one can observe that a too
large or too small q value can lead to worse (large) results for f . q values
ranging from 350 to 500 seem to give the best results.

For memetic algorithms, it is well known that population diversity has an
important influence on the performance [26]. A fast lost of the diversity in the
population leads to a premature convergence. We show in Fig. 2 influence of
q on the diversity D of the population. The population diversity is calculated
according to the method described in [38,39]. The plotted profile in Fig. 2 is
defined by the function q 7−→ D∗(q) where q is the size of the residual graph
and D∗(q) the population diversity at the end of the initial coloring phase
(averaged over 10 independent runs). From Fig. 2, one observes that a larger
value for q can better preserve the population diversity while a smaller value
for q can lead to a fast lost of the diversity in the population, thus leading to
premature convergence of the memetic algorithm.

Considering jointly Fig. 1 and 2, we conclude q = 500 is an appropriate value,
which explains why this value was used for all the experiments reported in
this paper. More generally, it is reasonable to believe that q may depend on
the effectiveness of the underlying coloring algorithm and on the structure of
the graphs to be colored.

4.2 Influence of the expansion strategy

As discussed in Section 2.4, if the initial coloring phase fails to find a legal
coloring for the residual graph Gz, one can use different strategies to add
back the extracted independent sets for the backward coloring phase. The
computational results of Section 3 are obtained by our IE2COL algorithm
with a two-level strategy: backtrack from Gz directly to the initial graph G by
adding back all the extracted independent sets as new color classes of colorings
of G. In this section, we compare this strategy with two other multi-level
expansion strategies which add back progressively the extracted independent
sets in several steps.

With the first compared strategy, each expansion step reintegrates all the
independent sets of the same size according to the extraction order (i.e., from
the largest to the smallest, denoted by Largest first Strategy). For the second
strategy, each expansion step brings back all the independent sets of the same

size according to the reverse of extraction order (i.e., from the smallest to the
largest, denoted by Smallest first Strategy).
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As an illustration, Fig. 3 shows a detailed comparison of these three expansion
strategies on the instance (DSJC1000.5, k = 83). We run IE2COL with each
of these expansion strategies until the coloring algorithm (MACOL) reaches
1000 generations. For the two-level strategy, we recover all the extracted inde-
pendent sets at generations 300, while for the two other expansion strategies,
the independent sets are progressively added at generations 300, 500 and 700
respectively in 3 steps.

We keep other ingredients unchanged in the IE2COL algorithm and observe
(like in Section 4.1) the evolution profile of each expansion strategy: the aver-
aged best objective value (over 20 runs) vs. the number of generations. From
Fig. 3, we observe that the two-level strategy performs better than the two
multi-level expansion strategies. In particular, for the two-level strategy, as
soon as all the independent sets are added back, the objective function value
decreases (from generation 300 to 400) more importantly than with the two
competing expansion strategies. This dominance continues until the end of
the search. This could be explained by the fact that extending the current
colorings with more new color classes at a time provides MACOL (which itself
is a powerful coloring algorithm) with more freedom which allows it to better
optimize its solutions during its coloring process.

Concerning the two multi-level recovery strategies, we observe that the Small-
est first Strategy performs better than the Largest first Strategy. One possible
reason could be the fact that the vertices of large independent sets have more
chance to group together in an optimal coloring [17,32]. Thus, it seems wise to
preserve these large independent sets and add them back only at late stages
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of the backward coloring process.

Finally, there seem no formal justifications to prefer one strategy over another.
The above observations should be interpreted with caution. In particular, even
though the two-level strategy showed a good performance on the set of in-
stances used in this paper, the other expansion strategies discussed in Section
2.4 could be useful in other situations.

4.3 Analysis about the three different phases of IE2COL

Our IE2COL algorithm is composed of an independent set extraction phase
(A), an initial coloring phase (B) and an backward-coloring phase (C). Given
an instance (G, k), one may wonder at which step a legal coloring is reached.
Clearly, the answer depends on the instance. For the set of 20 instances used
in this paper, we observed that the extraction phase is quite helpful in gen-
eral and is especially useful for random graphs. This observation is consistent
with previous studies like [14,17,27,29,35] where an extraction phase is also
implemented as a preprocessing step. On the other hand, we noted that the
expansion and backward coloring phase is necessary for most of the instances,
especially for the structured graphs (except some flat graphs). Finally, it is
clear that the underlying coloring algorithm also impacts on the number of
needed expansion steps. Complementary information can be found in two re-
lated studies [46,47].

To complement this discussion and for purely indicative purposes, we show in
Table 5 the phases which are needed to obtain the results reported in Table 1
(Section 3.2) and the associated computing times for each phase.

5 Conclusion

In this paper, we have presented a general method for the graph vertex coloring
problem able to handle large graphs. This method combines an independent
set extraction phase with an expansion and backward coloring phase. The
extraction phase relies on a dedicated strategy to identify and remove large
independent sets from the initial graph. The expansion-coloring phase provides
a way of reconsidering extracted independent sets as additional color classes
for the purpose of progressive coloring optimization.

The proposed IE2COL algorithm implementing this method has achieved note-
worthy performance on the set of 20 largest benchmark graphs with 900 to
4000 vertices from DIMACS and COLOR02/03/04 competitions. IE2COL im-
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Table 5
An analysis about the independent set extraction phase (A), the initial coloring
phase (B) and the backward-coloring phase (C) of the IE2COL algorithm. The
computing time T (in percentage) spent on each phase is indicated for indicative
purposes.

Instance Node Edge Density k IE2COL

TA TB TC Phases

DSJC1000.1 1000 49629 0.1 20 85% 15% 0% A+B

DSJC1000.5 1000 249826 0.5 83 15% 15% 70% A+B+C

DSJC1000.9 1000 449449 0.9 222 8% 8% 84% A+B+C

223 9% 9% 82% A+B+C

flat1000 50 0 1000 245000 0.49 50 80% 20% 0 A+B

flat1000 60 0 1000 245830 0.49 60 80% 20% 0 A+B

flat1000 76 0 1000 246708 0.49 81 10% 5% 85% A+B+C

82 80% 20% 0 A+B

R1000.1c 1000 485090 0.97 98 50% 30% 20% A+B+C

R1000.5 1000 238267 0.48 245 7% 7% 86% A+B+C

latin sqr 10 900 307350 0.76 98 6% 5% 89% A+B+C

99 12% 9% 81% A+B+C

C2000.5 2000 999836 0.5 145 9% 1% 90% A+B+C

146 49% 6% 45% A+B+C

C2000.9 2000 1799532 0.9 408 64% 3% 33% A+B+C

C4000.5 4000 4000268 0.5 259 68% 1% 31% A+B+C

260 90% 1% 9% A+B+C

WAP01 2368 110871 0.04 42 20% 5% 75% A+B+C

WAP02 2464 111742 0.04 41 20% 5% 75% A+B+C

WAP03 4730 286722 0.03 44 41% 1% 58% A+B+C

WAP04 5231 294902 0.02 42 37% 1% 62% A+B+C

43 43% 1% 56% A+B+C

WAP05 905 43081 0.11 50 75% 25% 0 A+B

WAP06 947 43571 0.10 40 8% 4% 88% A+B+C

41 14% 7% 79% A+B+C

WAP07 1809 103368 0.06 41 20% 10% 70% A+B+C

WAP08 1870 104176 0.06 42 20% 10% 70% A+B+C

proves on the current best colorings (new upper bounds) for 6 graphs and
matches the current best results for 12 other graphs while its results is worse
in two cases. The improved upper bounds, combined with the new develop-
ment of lower bounds, constitute a step forward toward the goal of finding the
chromatic number of these graphs.

Even though it is believed that it becomes more and more difficult to ob-
tain better upper bounds for the tested benchmark graphs, this study shows
that improvements are still possible with new solution strategies, in particular
combined method.
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