A linear-time algorithm to solve the
Sports League Scheduling Problem
(prob026 of CSPLib)

Jean-Philippe Hamiez

LGI2P — Ecole des Mines d’Alés (EERIE), Parc Scientifique Georges Besse,
30035 Nimes CEDEX 01, France

Jin-Kao Hao *

LERIA - Université d’Angers, 2 boulevard Lavoisier,
49045 Angers CEDEX 01, France

Revised version, 23 May, 2003

Abstract

In this paper, we present a repair-based linear-time algorithm to solve a version
of the Sports League Scheduling Problem (SLSP) where the number T of teams is
such that (T'— 1) mod 3 # 0. Starting with a conflicting schedule with particular
properties, the algorithm removes iteratively the conflicts by exchanging matches.
The properties of the initial schedule make it possible to take the optimal exchange
at each iteration, leading to a linear-time algorithm. This algorithm can find thus
valid schedules for several thousands of teams in less than one minute. It is still an
open question whether the SLSP can be solved efficiently when (7'— 1) mod 3 = 0.

Key words: Sports League Scheduling, linear-time algorithm, repair techniques.

1 Introduction

Many sports leagues (e.g., soccer, hockey, basketball) must deal with schedul-
ing problems for tournaments. These scheduling problems contain in general
many conflicting constraints to satisfy and different objectives to optimize, like

* Corresponding author.
Email address: Jin-Kao.Hao@univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Discrete Applied Mathematics 23 May 2003

minimization of traveling distance [1,3], only one match per team and per day,
stadium unavailability at particular dates, minimum number of days between
a home match and its corresponding away match, etc. Generating satisfactory
schedules with respect to these conditions and objectives is therefore a very
difficult problem to solve.

Many solution approaches have been proposed to solve these problems with
varying degrees of success: integer linear programming [9,17], constraint pro-
gramming [14,20], local search (simulated annealing [22], tabu search [26],
hybrid approach [4]). Sports scheduling was also investigated in terms of edge
colorings of graphs [6-8].

This paper deals with a specific Sports League Scheduling Problem (SLSP for
short) described by K. McAloon et al. in [16]. It is “prob026” of CSPLib [5]:

e There are T teams (7" even). All teams play each other exactly once (half
competition);

e The season lasts T' — 1 weeks;

e Every team plays one game in every week of the season;

e There are T/2 periods and, each week, one game is scheduled in every
period;

e No team plays more than twice in the same period over the course of the
season.

The problem then is to schedule a tournament with respect to all these con-
straints. Table 1 shows an example of a valid schedule for T' = 8 teams labeled
from 1 to 8; there are 7 weeks and 4 periods.

Table 1
Example of a valid schedule for 8 teams
Weeks
1 2 3 4 5 6 7
15,8 2,3 3,4 1,8 5,6 6,7 1,7
] 3,7 1,4 2,5 3,6 2,8 1,5 4,8
Periods

4,6 6,8 7,8 2,7 1,3 2,4 3,5
1,2 57 1,6 4,5 4,7 3,8 2, 6

= W N

As shown in Table 1, a configuration (schedule) may be represented as a two-
dimensional array with weeks in columns and periods in rows. Each column
satisfies the cardinality constraint: each team appears exactly once, i.e., all
the teams are different. In each row, no team appears more than twice. There
is also a global constraint on the array: each match appears only once, i.e., all
matches are different.

In this paper, we present E3S and L3S, two new algorithms for a special case
of the SLSP when the number T of teams is such that (7'— 1) mod 3 # 0*.
E3S and L3S are repair-based algorithms. They start with a particular con-
flicting schedule with interesting properties and then eliminate the conflicts
by exchanging matches. The way the exchanges are realized is based on the
properties of the initial conflicting schedule. While E3S explores in an ex-
haustive way these exchanges (exponential-time complexity), L3S is able to
take the best exchange at each step of its search (linear-time complexity).
L3S can thus find valid schedules for several thousands of teams in less than
one minute, going beyond the state-of-the-art solutions limited to 40 teams.
It is still an open question whether the SLSP can be solved efficiently when
(T'—1) mod 3=0.

The paper begins with a survey of related work (section 2), followed by a
formulation of the SLSP as a constraint satisfaction problem (CSP) [23] (sec-
tion 3). We present then the different elements of the E3S algorithm and its
simplified linear-time version L3S (sections 4 and 5). Computational results
are shown in section 6, followed by a discussion on an alternative formulation
in terms of colorings (section 7). Concluding remarks are given in the last
section.

2 Related work

With integer programming, McAloon et al. [16] solved the problem with 12
teams. They also experimented with constraint programming (ILOG Solver(©),
leading to slightly better results since solutions were found for 14 teams within
45 minutes. Finally, with a basic local search algorithm, they produced the
same results as ILOG Solver(©) does, but in less computing time (10 minutes).

C.P. Gomes et al. [11] obtained better results than those of McAloon et al.
using constraint programming. With a randomized version of a deterministic
complete search they solved problems involving up to 18 teams in approxi-
mately 22 hours.

R. Béjar and F. Manya [2] transformed the SLSP into the satisfiability problem
in propositional logic (SAT) and used a SAT solver. They obtained solutions
for 18 teams in less than 2 hours. They also solved the SLSP with 20 teams
in about 13 hours.

J.C. Régin proposed two approaches with constraint programming [18,19].
The first one, using powerful filtering algorithms, produced better results than

1 “mod” is the modulo operator.

those of Béjar and Manya in terms of solution time and robustness, since he
solved problem instances with 24 teams in 12 hours. In the second approach,
the SLSP is transformed into an equivalent problem by adding an implicit
constraint. With a new heuristic and specific filtering algorithms, solutions for
40 teams were found for the first time.

J.P. Hamiez and J.K. Hao developed two local search algorithms based on
tabu search [10]. The first algorithm [12] produced results comparable with
those of [18], solving the problem for 22 teams within 28 minutes. The second
algorithm [13] includes a search space reduction technique and a restricted
neighborhood. It produced results which compared well with those of [19]
(the best known results at that moment). Solutions were found for 40 teams.

Finally, let us mention the work reported by G. Wetzel and F. Zabatta [25]:
using multiple threads on a 14 processor Sun system they obtained results for
28 teams.

3 Problem formulation

The SLSP can be conveniently formulated as a constraint satisfaction prob-
lem. An alternative formulation, in terms of colorings, is discussed later on in
section 7.

3.1 Constraint Satisfaction Problem — CSP

A constraint satisfaction problem [23] is defined by a triplet (X, D, C) with:

e A finite set X of M variables: X = {x1,...,zm};

e Aset D of M associated domains: D = {Dy, ..., Dy }. Each domain D,,(1 <
m < M) specifies the finite set of possible values of the variable z,,;

e A finite set C' of N constraints: C = {¢i,...,cy}. Each constraint is de-
fined for a set of variables and specifies which combinations of values are
compatible for these variables.

Given such a triplet, the problem is to generate a complete assignment of the
values to the variables, which satisfies all the constraints: such an assignment
is said to be consistent. Since the set of all assignments (not necessarily consis-
tent) is defined by the Cartesian product Dy X - - - x Dy, of the domains, solving
a CSP means to determine a particular assignment among a potentially huge
number of possible assignments.

The CSP is a powerful and general model. It can be used to conveniently
model some well-known problems such as k-coloring and satisfiability, as well
as many practical applications related to resource assignment, planning or
timetabling.

3.2 Formulation of the SLSP as a CSP

We will use the following notations to represent the SLSP as a constraint
satisfaction problem:

T: number of teams. Teams are numbered from 1 to T’

P: number of periods, P =T/2;

W: number of weeks, W =T — 1;

m = (t1,ts): schedule of the match m opposing teams ¢; and to, (t1,%2) €
{1,...,T}?(t; # t3). Values of this variable type are of (p, w) pattern, mean-
ing that m is scheduled in period p(1 < p < P) and week w(l < w < W),
noted m — (p, w).

The set M of variables (which are matches) is naturally M = {m = (t1,15),1 <
t1 < to < T} and all domains D,, are equal to D = {(p,w),1 <p < P,1 <
w < W}hVm € M,D,, = D. The set C of constraints contains the following
three types of constraints:

WEEK constraint: Uniqueness of all teams in each week. For each team
t € {1,...,T} and each week w € {1,..., W}, we impose the constraint:
WEEK(t,w) & [{m = (t1,t) = (p,w),1 < t; <T(t1 #t),1 <p < P} =

L

PERIOD constraint: No more than two matches for each team in each
period. For each team ¢(1 < ¢t < T') and each period p(1 < p < P), we
impose the constraint: PERIOD(¢,p) < [{m = (t1,t) — (p,w),1 < t; <
Tt #t),1 <w < W} <2

ALLDIFF constraint: All matches are different. For each tuple (p1, pa, w1,
U)Q) € {1,...,P}2X{1,...,W}2 withm; = <t1,t2> — (pl,wl),l <t <ty <
T and my = (t3,t4) — (P2, ws),1 < t3 <ty < T, we impose the constraint:
ALLDIFF(pl,pQ,’lU1, ’UJQ) = (t3,t4) 75 (tl,tg) and (t4,t3) 75 (tl,tg).

The WEEK and ALLDIFF constraints are always satisfied in our algorithm.

3.3 Search space — Complexity of the SLSP

As shown in Table 1 (section 1), a configuration s is a complete assignment
of D = {(p,w),1 <p < P1<w< W} items to variables of M = {m =

(t1,t2),1 < t; < to < T}. Thus, a configuration is a W x P sized table,
whose items are integer couples (t1,%3),1 < t; < ty < T. For T' = 50 teams,
this represents a problem with 1225 variables (matches) and 1225 values per
variable.

There are |M| = T(T — 1)/2 matches to be scheduled. A schedule can be
thought of as a permutation of these matches. So, for T teams, the search
space size is [T(T — 1)/2]! In other words, the search space size grows as the
factorial of the square of 7'/2.

4 Solving the SLSP using an exhaustive repair method

Traditional complete procedures usually start with an empty assignment (con-
figuration) so. Then, they iteratively choose a free variable z € X in configu-
ration sg(k €) and a value v € D, for this variable which does not violate
any constraint. Next, a branch of the search tree is built by assigning v to x.
This step leads to a partial valid assignment si, 1. If no value v remains for a
free variable x, the process returns (backtracks) to a previous valid assignment
and tries other values. A solution s, is found when all variables are assigned a
value. Recall that a CSP has no solution (it is said to be unsatisfiable) if the
process backtracks until the root of the search tree and no value remains for
the starting variable.

Our exhaustive repair approach (let us call it E3S, for Ezhaustive Sport Schedul-
ing Solver) is different since it starts with a complete conflicting assignment,
like in local search based methods. The initial configuration sq is built in order
to satisfy the WEEK and ALLDIFF constraints; at this stage, the remaining
PERIOD constraint is not verified. The goal of E3S is then to satisfy the
PERIOD constraint. With this statement, a branch of E3S corresponds to
particular swaps of matches, with at least one involved in the PERIOD con-
straint. So, nodes of the search tree are complete assignments, and leaves are
failures or solutions.

We detail hereafter the way we build the initial assignment and its properties,
the repair rule and, finally, the overall E3S procedure.

4.1 Building the root of the search tree

The initial assignment is built (in linear-time complexity) using results of
graph theory, namely edge-coloring of complete graphs. This construction has
been studied in [7,21] for sports scheduling. We recall the geometrical construc-

tion scheme proposed in [21] followed by an equivalent formalism inspired from
[24].

In the following descriptions, we use “mod” to refer to the modulo operator.
Let a = b g +r (Euclidean division) with (a,b,q,7) € %, then a mod b = r.

4.1.1 Geometrical construction

(1) Construct a complete undirected graph with the first 77— 1 teams as
vertices. Place the vertices in order to form a regular polygon, see left
drawing in Fig. 1. Remark that each edge (t1,2),1 < t; <ty < T — 1,
represents the match opposing teams ¢, and ts;

1

J
AW

g 2 ;" ?‘({ ‘, |

\ L

6
5 4

Fig. 1. Constructing initial configuration (7 = 8)

(2) Color the W edges around the boundary using a different color w = ¢
for each edge (t,[t mod (T — 1)] + 1),1 < ¢t < T — 1. These edges are
used to initialize the first period of the tournament (see Table 2): Vm =
(t, [t mod (T'—1)] + 1), m — (1,t). Note that colors map weeks;

(3) Remaining edges are colored by assigning to each edge the same color as
that used for the boundary edge parallel to it. At each vertex ¢(1 <t <
T — 1) there will be exactly one color w;(1 < w; < W) missing and these
missing colors are different;

(4) Add a new vertex T to the graph and link it with all the other vertices
t(1 <t <T—1). The edges (t,T) of the new complete graph incident
to the last vertex (i.e., the last team T') can be colored using the missing
colors wy(1 < wy; < W) identified in the previous step, see right drawing
in Fig. 1. These edges will be placed in the last period P of the schedule
making the PERIOD constraint violated (see Table 2): Vm = (¢, T), m +—
(P’ wt);

(5) Finally, fill in week w(1 < w < W), in the initial configuration sy, with
edges colored w.

Table 2
Initial schedule for 8 teams

1 2 3 4 5 6 7
11,2 2,3 3,4 4,5 56 6,7 1,7
3,7 1,4 2,5 3,6 4,7 1,5 2,6
4,6 57 1,6 2,7 1,3 2,4 3,5
58 6,8 7,8 1,8 2,8 3,8 4,8

Periods

= W N

4.1.2 Formal model

e Let the match m in week 1 of the first period be (1,2) : m — (1,1);

e Fill in all the periods p(2 < p < P — 1) of the first week with the match
m={{p+1,T—p+1):m— (p1);

e Let ¢; and ¢y be the two teams (1 < t; < t < T — 1) of the match m;
scheduled on the period p in the week w : m; = (t1,12) — (p, w). Initialize
period p(1 < p < P—1) and week w+ 1 with the match my = (t3,t4) where
t3=t;+1and t, = (ta mod W)+ 1: my — (p,w + 1);

e Finally, fill in all the weeks w(1 < w < W) of the last period P = T/2
with the match m = (((P4+w — 1) mod W]+ 1,T) : m — (P, w).

4.2 Properties of the root configuration

The two previous equivalent construction schemes lead to a starting tour-
nament which embodied several interesting properties. These properties are
really important since the repair rule of the E3S algorithm (next section) ex-
tensively uses some of them. Proofs are not given here since they are almost
evident and naturally result from the construction step.

Property 1 The ALLDIFF constraint is satisfied.

Property 2 The WEEK constraint is verified.

Property 3 The last team T only appears in all the matches of the last period
P, each time with a different team t,1 < ¢t < T —1:VYm = {,T),m —
(Pyw),1 <w < W. The PERIOD constraint is then violated in the last period.

Property 4 Fach of the first T —1 teams appears exactly twice in each of the
first P — 1 periods.

Remark that the set of matches in each of the first P—1 periods corresponds to
an Hamiltonian circuit in the complete undirected graph, see Fig. 2 together

with Table 2 (section 4.1.1). This remark holds only for problem instances
where (I — 1) mod 3 # 0. When (7" — 1) mod 3 = 0, a particular “failing”
period pr(1 < pr < P — 1) does not follow this topological observation.
Indeed, the set of matches in period ps corresponds to an union of circuits of
length 3 (triangles).

Fig. 2. Using Hamiltonian circuits to fill the first P — 1 periods (T' = 8)

4.3 Repair rule

Our exhaustive repair algorithm starts with a full assignment s, which con-
tains conflicts for the last team 7" in the last period P. So, we wish to remove
these conflicts. Since the first P — 1 periods do not contain the last team
(Property 3), E3S will try to distribute the conflicting matches into these pe-
riods. This is done by swapping matches, within the same week to keep
the WEEK constraint satisfied. Before describing how repair is done, we give
hereafter a function which can be used to compute the number of conflicts at
any node (configuration s) of the search tree 7. We finally give an illustration
of the repair rule (section 4.3.3).

4.3.1 FEwvaluating nodes

Let OccPs(p,t) be the occurrence number, at node s, of team ¢(1 < ¢t < T)
in period p,1 < p < P. The number of conflicts f(s) is naturally the total
number of excess appearances of all teams in all periods, i.e., the minimum
number of variables to be changed to satisfy the PERIOD constraint:

0 if OccPs(p,t) < 2,
OccPs(p,t) — 2 otherwise.

with x(s,t,p) =

Solving the Sports League Scheduling Problem means finding a particular
configuration s, such as f(s,) = 0. This can be done by minimizing f.

Property 5 For the initial configuration sg, f(so) =T — 3.

PROOF.

Vped{l,...,P—1},x(s0,T,p) = 0;
vte{l,...,T —1},x(so,t, P) = 0.
Property 4Vt € {1,..., T —1} and Vp € {1,..., P — 1}, x(s0,t,p) = 0;

Property 3 <

SO, f(SO) = X(SOaTa P)
= OccP,,(P,T) — 2
= (T — 1) — 2 (Property 3). O

Note that this property means that at least 7" — 3 matches of the last period
P must be rescheduled within other periods p where 1 <p < P — 1.

4.3.2 Repairing by means of swaps

In configuration s;(i €), let a primal match mp = (tp,T),1 < tp <

T — 1, be a conflicting match of the last period P in week wp(l < wp <
W); OccPs,(P,T) > 2. A primal swap is an exchange between a primal
match mp — (P,wp) and a non-conflicting match m; = (t1,tp), (t1,tp) €

{1,...,T — 1}*(t; # tp), subject to:

e m; is located in week wp and a period pp(1 < pp < P—1) : my — (pp, wp);
e t; and tp appeared at most once in period P before swapping: OccPs, (P, 1) <
1 and OccPs, (P, tp) < 1.

Note that, according to Property 3, W x (P — 1) primal swaps are available
from the starting configuration s,.

Due to Property 4, a primal swap will add a conflict in period pp for the team
tp while removing a conflict in the last period P for the team 7'. The primal
swap definition insures that this exchange does not add any conflict for the
teams t; and Zp in period P.

10

From any configuration s;(i €) of the search tree, this first step leads then
to a configuration s;;; such that f(s;41) = f(s;). In other words, the new
configuration s;,; has exactly the same number of conflicts than s;. The con-
flicts are now distributed not only into the last period P but also in a period
pp,1 < pp < P —1. So, this step is not enough to remove conflicts.

Similarly to the previous definition of a primal match, let us define a dual
match mp to be a conflicting match of the last period P in a week wp(1 <
wp < W) : mp — (P,wp). Given a primal swap, in week wp(l < wp < W),
between mp = (tp, T)(1 < tp < T — 1) and a match m; = (¢t1,tp), (t1,tp) €
{1,...,T —1}*(t; # tp) located in a period pp(1 < pp < P —1), a dual swap
is an exchange between a dual match mp and a conflicting match my subject
to:

(1) wp # wp;

(2) mp = <t'DvT>;

(3) mg = (ta,tp)(1 <ty < T —1,ty # tp) is scheduled in week wp and period
pp 1 my = (pp,wp);

(4) ty appeared at most once in period P before primal and dual swaps:
OccPs, (P, ty) < 1.

The first objective of the dual swap is to remove the conflict generated on
period pp for the team tp (due to a primal swap). This is done by imposing
condition 3. Its second objective is to remove another conflict in the last period
P for the team T'. Applying a dual swap (if available) after a primal swap to
a configuration s; insures then to reach a new configuration s;;; with the
following features:

o All teams t(1 < t < T), except t; and ty, occur exactly twice in period
pp:Vte{l,...,T}/t #t, and t # ty,OccPs,, , (pp,t) = 2;

e Teams t; and ?, occur exactly once in period pp : OccPs,,, (pp,t1) =
OccPs, ., (pp,t2) = 1;

e s;;1 have two conflicts less in period P (for team 7') than s; : OccPs,,, (P, T)
= OccPs,(P,T) — 2.

The first two features mean that there is no more conflicts in period pp.

The last feature is very interesting since it simplifies the formula 1 (previous

section) to f(s;11) = f(s;)—2, with f(so) = T—3 (Property 5). The correctness

of this new formula relies on the fact that periods p(1 < p < P —1,p # pp)

are not modified when a dual swap immediately follows a primal swap. It also

means that, from the root configuration sy, exactly 7' — 2 matches of the last

period P will be swapped into the first P — 1 periods. Hence, the depth of the

search tree will be P — 1.

E3S repair rule: At node s; of depth d; (assuming dy = 0), apply a primal
swap followed by one of its corresponding dual swap, with pp = d; + 1.

11

From a theoretical point of view, remark that the number B; of possibilities
to choose primal and dual matches (mp and mp) at each node s;(i €)
can be quite large since at most two dual matches correspond to each of the
W —2d; matches candidate to be primal ones (mainly due to Property 4). This
suggests that B; < 2 % (W — 2d;). This upper bound can easily be reduced
using the natural symmetries of the SLSP, namely by replacing condition 1
with “wp > wp”, leading thus to B; < W — 2d;.

4.3.8 Illustration of the repair rule

Table 3 shows an extract of the starting root sy for 7' = 8 teams (f(so) = 5)
restricted to periods 1 and 4. The corresponding full configuration is available
in Table 2 (section 4.1.1).

Table 3
Starting configuration for 8 teams (extract)
Weeks
1(wp) 2 3 4 5 6 7T
_ 1(pp) | 1,2 (m1) 2,3 3,4 4,5 56 6,7 1,7
Periods

4 |5,8(mp) 68 7,8 1,8 2,8 3,8 4,8

Since dy = 0, we try to identify a primal match mp (in period P = 4) to be
swapped with a match m; scheduled in period pp = 1(= dy + 1). Suppose we
choose the primal match mp = (5,8) — (4,1) : wp = 1,tp = 5. This choice
forces us to swap it with the match m; scheduled in period pp = 1 and week
wp =1;m; — (1, 1) That is my = <1,2> ttp =1t = 2.

Table 4
Intermediate configuration for 8 teams (extract)
Weeks
1 (wp) 2 3 4 (’U)D) 5 6 7
. 1 (pP) 9,8 (m'P) 2,3 3,4 4,5 (m2) 5,6 6,7 1,7
Periods

4 |[1,2(mi) 6,8 7.8 1,8(mp) 2,8 3,8 4,8

The resulting intermediate configuration is given in Table 4. The primal swap
generated a conflict for the team ¢p = 5 in period pp = 1 (it appears three
times) while removing a conflict for team 7" = 8 in the last period P = 4.
Observe also that teams tp = 1 and £; = 2 don’t add any conflict in the last
period P = 4. The number of conflicts of this intermediate configuration is
the same as in sq: 5.

The dual swap imposes then to remove the conflict generated by the primal
swap in period pp = 1 for the team tp = 5. This can be achieved by swapping

12

either the matches my = (4,5)(t2 = 4) and its corresponding dual match
mp = (1,8)(wp = 4), or matches (5, 6) and (2, 8)(wp = 5).

The first choice leads to the configuration reported in Table 5. Observe that
OccPs,(1,2) = OccPs,(1,4) = 1, following the definition of primal and dual
swaps. There is no conflict in periods 1 to 3 and the last period (P = 4) have
now two conflicts less, namely 3 (f(s1) = 3) instead of 5 in s.

Table 5
Result of the first branching (8 teams)
Weeks
1 2 3 4 5 6 7
158 2,3 3.4 1,8 5,6 6,7 1,7
_ 3,7 1,4 2,5 3.6 47 1,5 2 6
Periods

4,6 57 1,6 2,7 1,3 2,4 3.5
1,2 6,8 7,8 4,5 2,8 3,8 4,8

= W N

4.4 E3S: overall procedure

Starting from the particular root configuration sy defined in section 4.1, the
repair rule imposes to iteratively move conflicting matches from the last period
P to periods 1, 2, ..., P — 1, respecting this order. Given 7', this leads to the
following E3S(pp, w) procedure, which is naturally recursive. E3S is first called
with pp = 1 and w = 1, meaning that we look for a primal match mp in week 1
and a dual match mp in week wp > 1 to be swapped with their corresponding
matches in period pp = 1.

E3S(pp,w):

(1) if pp = P then return True. {A solution is obtained.}
E3S has succeed to branch on all periods pp(1 < pp < P —1);
(2) wp < PrimalWeek(pp, w).
Try to find the first week wp(w < wp < W) such that m — (P,wp) is a
primal match, with respect to m; — (pp, wp);
(3) if no wp exists then return False.
No primal swap can be performed between periods P and pp;
(4) A primal match mp — (P, wp) is available.
Exchange(pp, wp).
Primal swap between mp — (P, wp) and my — (pp, wp);
(5) if DualWeek(pp, wp) = False then
(a) Exchange(pp,wp).
A backtrack is made since the primal swap done in step 4 always

13

leads to a failure;
(b) return E3S(pp, wp + 1).
Try to find a primal match into the next week;
(6) return True.
The primal swap done in step 4 leads to a solution.

The DualWeek() function checks if one of the two possible dual swaps (if
enable) leads to a solution. If so, it returns True, else False.

4.5 Complexity of E3S

One way to compute the E3S complexity is to estimate the size | 7| (in number
of nodes) of the tree 7 developed by E3S in the worst case.

From a theoretical point of view, this worst case occurs when, at node s;(i €
), each possible primal swap (there are W — 2d;) leads to two possible dual
swaps. In other words, and due to the natural symmetries of the problem,

E3S may generate, from each node s;, a maximum of B; = W — 2d; nodes
skl <k <W-—2d,).

i<P—2

So, T = [I (W —2d) ®)

=0
Roughly speaking, formula 2 suggests that |7 is in O(VTT).
4.6 Limitations of E3S

The design of E3S is such that it cannot find solution for some particular
T, precisely when (T — 1) mod 3 = 0. In that special failing case, the initial
configuration has an extra property related to the specific “failing” period pr
introduced in section 4.2. pr is such that, even if a primal swap is available
for it, no dual swap at all can be performed. So, E3S cannot branch on this
period to reduce (by 2) the number of conflicts. Then, the search always ends
with remaining conflicts in the last period.

Table 6 gives an extract of the initial configuration sy built for 7" = 10 teams
(9 mod 3 = 0), restricted to periods pr = 2 and the last one. It’s easy to see
that no dual swap is possible whatever any of the nine possible primal swaps
is performed.

For instance, suppose we do a primal swap in week wp = 3 with pp = pr =

14

Table 6
The “failing” period (10 teams)

‘Weeks
1 2 3 (wp) 4 5 6 7 8 9
. 2 (pr) 3,9 1,4 2,5 (mq) 3,6 4.7 5,8 6,9 1,7 2,8
Periods
5 6,10 7,10 8,10 (mp) 9,10 1,10 2,10 3,10 4,10 5,10

2:mp = (8,10)(tp = 8) and my; = (2,5) — (2,3). This generates a conflict
for team tp = 8 in period pp = 2 and removes a conflict in period 5 for team
10. The resulting intermediate configuration is shown in Table 7.

Table 7
The “failing” period for 7' = 10 teams (intermediate configuration)
Weeks
1 2 3 (wp) 4 5 6 (w1) 7 8 9 (w2)
_ 2(F) | 39 14 810 (mp) 3,6 47 58(ma) 69 1,7 28 (m))
Periods
5 6,10 7,00 25(mi) 9,10 1,10 2,10 (m) 3,10 4,10 5,10 (m’)

Only two possible swaps are then “candidates” to end branching (in weeks
w; = 6 and wy = 9) but they are not dual swaps as formally defined in
section 4.3.2. Swapping m = (2,10) — (5,6) and my = (5, 8) — (2, 6) in week
w; = 6 (respectively m’ = (5,10) and m}, = (2,8) in week wy = 9) will add
a conflict for team 5 (resp. 2) in period 5 and remove a conflict for team 10
in the last period. In the two cases, the resulting node will have the same
number of conflicts as the one of its parent’s node. Note also that the conflicts
are now distributed (in the last period P = 5) between the last team 7" = 10
and another one (2 or 5 in our sample).

Finally, when T is such that (7' — 1) mod 3 = 0, empirical experiments sug-
gested that pr = [(T' — 1)/6], where [a] refers to the minimal integer b > a.

5 From exponential to linear-time complexity

The previous E3S algorithm has one interesting quality: it is exhaustive. This
means that, according to its repair rule, it will always find a solution to the
SLSP for all T even, assuming (7'—1) mod 3 # 0 (general case). But, its main
drawback is that it runs in exponential time (see formula 2 in section 4.5).
This is mainly due to the possible large number B; of child nodes s, (1 <
k < W — 2d;), generated from a parent node s;(i €), which can lead to a
failure.

15

5.1 L3S: a linear-time algorithm to solve the SLSP

The computational experiments of E3S have shown that solutions for some
T, restricted to problem instances such that (7" — 1) mod 3 # 0, were found
by developing a search tree 7 of size P — 1 exactly. This means that, in this
case, E3S directly follows a path to a solution. In other words, from any node
si(i €), E3S was able to branch to the right node s¥ (1 <k <W — 2d,).

Furthermore, solutions found by E3S share common characteristics. They were
obtained by doing primal and dual swaps in specific weeks (wp, wp) according
to the value and the parity of pp. In other words, given pp,wp and wp are
unique and can now be found in a deterministic way. This means that E3S
can be simplified (assume pp fixed):

e wyp is known means that a primal swap is always available in a week wp. So,
steps 3, ba and 5b can be removed from E3S. The PrimalWeek function
is modified to return the right value for wp, which depends on pp (and P):

PrimalWeek(pp):
if pp mod 2 = 1 {odd period}
then return (pp +1)/2
return P + pp/2 {even period}

e wp is known (dual swap available in week wp) and directly computed by
this new version of the DualWeek function:

DualWeek(pp):
if pp mod 2 = 1 {odd period}
then return 1 + (W — pp)/2
return 7 — pp/2 {even period}

e Thanks to the new definition of DualWeek, step 5 of E3S will then be
replaced with:

wp < DualWeek(pp)
Exchange(pp, wp)

e Finally, replace step 6 in E3S with “return E3S(pp +1)” to do primal and
dual swaps within the next period.

The following iterative procedure summarizes the changes in E3S. Let us call it
L3S for Linear Sport Scheduling Solver (L3S is the optimized version of E3S).
Note that L3S naturally runs in linear time since, starting from the initial
configuration described in section 4.1, it makes exactly 2 x (P — 1) swaps.

16

L3S():
for each pp € {1,...,P -1}
wp < PrimalWeek(pp); wp < DualWeek(pp)
Exchange(pp, wp) {Primal swap}
Exchange(pp, wp) {Dual swap}

Table 8 gives a geometrical interpretation of how L3S works for 7" = 12 teams.
For a greater readability, we only represent here matches to be swapped. Recall
that the other matches are not concerned by L3S. Their respective periods and
weeks are fixed when building the starting configuration sy (section 4.1) and
don’t change anymore.

Table 8
Geometrical interpretation of L3S (12 teams)
Weeks
1 2 3 4 5 6 7 8 9 10 11
1] 1,2 6,7
2 6,9 2,10
Periods 3 51 3,8
4 1,5 3,7
5 8,10 9,11
6| 712 812 912 1012 11,12 112 212 3,12 512 6,12

According to the parity of pp, one can observe in Table 8 that primal and dual
swaps made by L3S with odd (respectively even) periods are performed into
weeks wp and wp such that (wp,wp) € {1,..., P}? (resp. {P +1,...,W}?).
Note also that there is no swap in exactly one week (9 in the example). This
is evident since L3S only makes 2(P — 1) = W — 1 swaps (10 in our sample).

5.2 Limitations of L3S

Table 9
L3S: the resulting “failing” case (10 teams)
Weeks
1 2 3 4 5 6 7 8 9
11610 23 34 45 1,00 67 78 89 19
39 14 25 36 47 210 69 1,7 510
Periods 48 710 1,6 910 38 49 15 26 37

57 68 79 18 29 13 3,10 4,10 4,6
12 59 810 27 56 58 24 35 28

[S 2 \V

Recall that L3S is based on the E3S repair rule. So, since E3S cannot solve
problem instances where (7" — 1) mod 3 = 0, L3S cannot solve such problems

17

either. See Table 9 for an example of the resulting configuration (not a so-
lution) reached by L3S in that special case. The first P — 1 periods do not
violate the PERIOD constraint but the last one does: teams 2, 5 and 8 appear
more than twice.

6 Computational results

In this section, we present computational results and contrast these results
with those obtained by the two best known approaches: a constraint program-
ming algorithm [19] (call it CP hereafter) and a tabu search algorithm [13]
(called TS-SLSP). The tests were carried out on a Sun Sparc Ultra 1 (256
RAM, 143 MHz). E3S and L3S are implemented in C (CC compiler with -O5
option). Results are reported on problem instances having 6 to 50 teams for
E3S and 6 to 4464 teams for L3S (only those greater than 24 are shown).

32.83 4462

30+

3498
25-

2998

20
2500

15+

Time (seconds)

1998

Number of swaps

1498
10

1000
5.05 -
498
0 Il Il Il Il Il Il Il 24
26 500 1002 1500 2000 2502 3000 3500 4002 4464

T

Fig. 3. L3S finds valid schedules for several thousands of matches in less than 60
seconds ([T' — 1] mod 3 # 0)

Given its linear-time complexity, L3S can be used to solve efficiently any SLSP
instance with a number T of teams verifying (7' — 1) mod 3 # 0. Fig. 3 sum-
marizes the computing times (in seconds) and numbers of swaps of L3S to

18

find a valid schedule for up to 4 464 teams. One observes that L3S needs less
than 35 seconds to schedule 4 464 teams.

In order to get an idea about the performance of the exponential-time E3S
algorithm, we show in Table 10 the results of E3S together with those of CP
[19] and TS-SLSP [13]. Column 5 recalls the mean number of moves performed
by TS-SLSP to find a solution. Columns 3 and 7 give numbers of backtracks
for CP and E3S. Information about computing time (in minutes) is only for
indicative purpose because results of CP were obtained on a different machine.

A “” sign means no result is available.

Table 10

Comparative results of E3S and best-known methods
T CP [19] TS-SLSP [13] E3S

Time Backtracks | Time Moves Time Backtracks

26 | 04 6683 10.7 2219711 < 0.01 3333
28| 5.3 32324 12.5 2043353 -
30 | 2.3 11895 22 3034073 0.4 2202643
32 - 49 6387470 <0.1 325929
34 - 25 2917279 -
36 - 91 9307524 2.3 10540 201
38 - - 12 53224 412

40 | 360 2834754 1 68 746 -

42 - - 40 138 880 823
44 - - 141 471475040
46 - - -

48 - - 78.6 hours 430867072
50 - - 204.3 hours -

From Table 10, one observes that even E3S largely outperforms CP and T'S-
SLSP, in terms of solution quality and speed. Indeed, E3S provides solutions
for problems having up to 50 teams, while CP and TS-SLSP are limited to
T < 40. Furthermore, the computing times of E3S are much shorter. Finally,
remark that, for some 7 (28, 34, 40 and 46 teams), no results are reported for
E3S since (T — 1) mod 3 = 0.

19

7 Discussion

Section 3 described a formulation of the SLSP as a constraint satisfaction
problem. We give here an alternative model expressed in terms of edge color-
ings [8] (also called “factorization” [15]).

Let Kr be a complete undirected graph with 7" vertices (teams). Solving the
SLSP is equivalent to find a particular coloring of the edges of Ky . In such
an approach, one has to assign two colors w and p to each edge, where w
(1 < w < W) define a classical edge coloring (see section 4.1.1). The second
color (p, 1 < p < P) must satisfy the following condition: edges within the
same color class w must receive different color p. Furthermore, at each node ¢
(1 <t <T) the largest number of occurrences of a color p on edges incident
to ¢ (this number is OccP(p,t)) must be as small as possible.

More precisely, OccP(p,t) must be lower than 3 due to the PERIOD con-
straint. Obviously, this last requirement can even be more precise since solu-
tions to the SLSP satisfy another property (here again, the proof is not given
since it is almost evident).

Property 6 In a solution s,, V1 <p<P,31<t <t"<T such that:

OccP;, (p,t') = OccPy, (p,t") =1 (3)
andV 1<t <T,t ¢ {t' t"},OccP;,(p,t) =2

Furthermore, V 1 < p; < po < P and {t},t]} (respectively {t,t5}) satisfying
equation 3 within period py (resp. pa), {t,t{} N{ty, t5} = 0.

In terms of colorings, property 6 means that, at each node t in K7 (1 <t <T),
the number of occurrences of a color p on edges incident to ¢ must exactly be
2 except for one color which appears exactly once.

8 Conclusion

In this paper, we presented E3S, an exhaustive repair algorithm and its simpli-
fied linear-time algorithm L3S for a special case of the Sports League Schedul-
ing Problem. These algorithms are applicable when the number 7" of teams is
such that (7"— 1) mod 3 # 0.

Both E3S and L3S start with a conflicting schedule built using results from
graph theory. Then, they iteratively remove the conflicts by doing particular

20

swaps of matches. The way matches are swapped uses extensively some prop-
erties of the initial conflicting schedule. E3S relies on backtracking during its
search while L3S is totally backtrack-free.

Even though L3S, like E3S, can only solve problem instances when the number
T of teams verifies the condition (7'—1) mod 3 # 0, L3S is the first linear-time
algorithm for this special case of the SLSP. So, L3S can find a valid schedule for
several thousands of teams ([T"— 1] mod 3 # 0) in less than one minute while
other state-of-the-art algorithms based on constraint programming and tabu
search are limited to 40 teams. Let us mention also that even the exponential-
time algorithm E3S competes favorably with these state-of-the-art algorithms.

Finally, it is still an open question whether the SLSP can be solved efficiently
when the number T of teams verifies (7" — 1) mod 3 = 0.

Acknowledgements

We would like to thank gratefully the reviewer of the paper for having sug-
gested to us the formulation in terms of colorings and complementary refer-
ences. This work was partially supported by two grants from the Sino-French
Joint Laboratory in Computer Science, Control and Applied Mathematics
(LIAMA) and the Sino-French Advanced Research Programme (PRA).

References

[1] J.C. Bean and J.R. Birge, Reducing traveling costs and player fatigue in the
National Basketball Association, Interfaces 10(3) (1980) 98-102.

[2] R. Béjar and F. Manya, Solving the round robin problem using propositional
logic, in: Proceedings of the Seventeenth National Conference on Artificial
Intelligence (AAAI’00, Austin, Texas, USA) (AAATI Press / The MIT Press,
2000) 262-266.

[3] R.T. Campbell and D.S. Chen, A minimum distance basket ball scheduling
problem, in R.E. Machol and S.P. Ladany (editors) Management Science in
Sports (North Holland, New York, USA, 1976) 15-25.

[4] D. Costa, An evolutionary tabu search algorithm and the NHL scheduling
problem, INFOR 33(3) (1995) 161-178.

[5] CSPLib: a problem library for constraints, maintained by I.P. Gent, T. Walsh
and B. Selman, http://www-users.cs.york.ac.uk /~tw/csplib/index.html.

21

[6] D. de Werra, Geography, games and graphs, Discrete Applied Mathematics 2
(1980) 327-337.

[7] D. de Werra, Scheduling in sports, in P. Hansen (editor) Studies on graphs and
discrete programming (North Holland, Amsterdam, 1981) 381-395.

[8] D. de Werra, On the multiplication of divisions; the use of graphs for sports
scheduling, Networks 15 (1985) 128-138.

[9] J.A. Ferland and C. Fleurent, Allocating games for the NHL using integer
programming, Operations Research 41(4) (1993) 649-654.

[10] F. Glover and M. Laguna, Tabu Search (Kluwer Academic Publishers, 1997).

[11] C.P. Gomes, B. Selman and H.A. Kautz, Boosting combinatorial search
through randomization, in: Proceedings of the Fifteenth National Conference
on Artificial Intelligence (AAAI'98, Madison, WI, USA) (AAAI Press / The
MIT Press, 1998) 431-437.

[12] J.P. Hamiez and J.K. Hao, Tabu search and sports league scheduling (in
French), in: Proceedings of the Twelfth French Congress on Pattern Recognition
and Artificial Intelligence (RFIA’00, Paris, France) Vol. 1 (2000) 357-366.

[13] J.P. Hamiez and J.K. Hao, Solving the sports league scheduling problem with
tabu search, Lecture Notes in Artificial Intelligence 2148 (Springer, 2001) 24—
37.

[14] M. Henz, Scheduling a major college basketball conference - Revisited,
Operations Research 49(1) (2001) 163-168.

[15] A. Kotzig, Decomposition of complete graphs into regular bichromatic factors,
Discrete Mathematics 2 (1972) 383-387.

[16] K. McAloon, C. Tretkoff and G. Wetzel, Sports league scheduling, in:
Proceedings of the Third ILOG Optimization Suite International Users’
Conference (Paris, France, 1997).

[17] G.L. Nemhauser and M.A. Trick, Scheduling a major college basketball
conference, Operations Research 46(1) (1998) 1-8.

[18] J.C. Régin, Modeling and solving sports league scheduling with constraint
programming, INFORMS (Montréal, Québec, 1998).

[19] J.C. Régin, Sports scheduling and constraint programming, INFORMS
(Cincinnati, Ohio, USA, 1999).

[20] A. Schaerf, Scheduling sport tournaments using constraint logic programming,
Constraints 4(1) (1999) 43-65.

[21] J.A.M. Schreuder, Constructing timetables for sport competitions, Mathema-
tical Programming Study 13 (1980) 58-67.

[22] B.J. Terril and R.J. Willis, Scheduling the Australian state cricket season using

simulated annealing, Journal of the Operational Research Society 45(3) (1994)
276-280.

22

[23] E.P.K. Tsang, Foundations of constraint satisfaction (Academic Press, London
and San Diego, 1993).

[24] P. Van Hentenryck, L. Michel, L. Perron and J.C. Régin, Constraint
programming in OPL, Lecture Notes in Computer Science 1702 (Springer,
1999) 98-116.

[25] G. Wetzel and F. Zabatta, Technical Report, CUNY Graduate Center CS
(1998).

[26] M. Wright, Timetabling county cricket fixtures using a form of tabu search,
Journal of the Operational Research Society 45(7) (1994) 758-770.

23

