
1

Multi-Agent Evolution Strategy with Cooperative
and Cumulative Step Adaptation for Black-Box

Distributed Optimization
Tai-You Chen, Wei-Neng Chen, Senior Member, IEEE, Jin-Kao Hao, Yang Wang, Jun Zhang, Fellow, IEEE

Abstract—In recent years, black-box distributed optimiza-
tion (DBO) has been widely studied to solve complex optimiza-
tion problems in multi-agent systems, such as hyperparameter
optimization of distributed machine learning. However, most
existing methods use a fixed or diminishing step size to sample
and search in the black box optimization space, which makes
it challenging to maintain optimization efficiency on different
optimization problems. In this work, we propose a multi-agent
evolution strategy with cooperative and cumulative step adap-
tation (CCSA-DES). In CCSA-DES, each agent executes the
algorithm to sample and explores its local objective function,
and communicates with other agents to optimize the global
objective function cooperatively, which is the sum of local
objective functions. To improve the sampling adaptability, we
design a cooperative and cumulative step adaptation method
(CCSA) consisting of inner adaptation and outer adaptation.
By detecting the evolution path of the multi-agent system,
CCSA decreases the step size when the evolution directions
of agents are conflicting and increases the step size when
consistent. In terms of theoretical analysis, we first discuss
the working principle of CCSA, and then discuss the system
consensus of CCSA-DES. In terms of experimental verifica-
tion, CCSA-DES achieves better consensus performance and
competitive solution quality compared with state-of-the-art
algorithms for DBO.

Index Terms—multi-agent systems, evolutionary compu-
tation, evolution strategies, step adaptation, black-box dis-
tributed optimization

Manuscript received August 5, 2024; revised November 14, 2024;
accepted December 29, 2024. This work was supported in part
by the National Key Research and Development Project No.
2023YFE0206200, National Natural Science Foundation of China
under Grants U23B2058, in part by Guangdong Regional Joint Foun-
dation Key Project 2022B1515120076, in part by the research fund
of Hanyang University (HY-202300000003465), and in part by the
Tianjin Top Scientist Studio Project under Grant 24JRRCRC00030.
(Corresponding Author: Wei-Neng Chen, cschenwn@scut.edu.cn)
Tai-You Chen and Wei-Neng Chen are with the School of

Computer Science and Engineering, South China University of
Technology, Guangzhou 510006, China (e-mail: 575583114@qq.com;
cschenwn@scut.edu.cn).
Jin-Kao Hao is with the Department of Computer Science, LERIA

Laboratory, Université d’Angers, 49045 Angers, France (e-mail: jin-
kao.hao@univ-angers.fr).
Yang Wang is with the School of Management, North-

western Polytechnical University, Xi’an 710072, China (e-mail:
yangw@nwpu.edu.cn).
Jun Zhang is with the Nankai University, Zhejiang Normal Uni-

versity and also with the Hanyang University, ERICA, South Korea.
(email: junzhang@ieee.org)

I. Introduction

Multi-agent systems (MAS) widely exist in various
scenarios, including wireless sensor networks [1], smart
grids [2], and others [3, 4]. In the MAS, multiple physical
or virtual entities with computation and communication
capabilities are connected through a communication net-
work. Compared with independent entities, the MAS is
promising to achieve better global performance through
the cooperation of agents. Therefore, distributed optimiza-
tion for the MAS has received considerable attention from
researchers in recent years, in which the global objective
function is the sum of local objective functions of all agents
[5].
In distributed optimization, each agent can only access

its own local objective function and communicate with
immediate neighbors in the network. When the local
objectives conflict, it is challenging to make agents co-
operate to minimize the global objective in a distributed
manner. Facing this challenge, Nedic and Ozdaglar pro-
posed a distributed subgradient descent method [6, 7],
which combined the consensus theory [8] and gradient
descent method to confirm the global optimality and
consensus of agents. After that, distributed optimization
methods under different system characteristics have been
extensively studied, including time-varying networks [9],
unbalanced networks [10], continuous-time systems [11],
constrained problems [10], etc [12, 13].
Most above-mentioned methods rely on the first-order or

second-order gradient information of objective functions.
However, the gradient information of objective functions
may be computationally infeasible in many complex sce-
narios. First, when the solution quality is evaluated by
simulations, there is no explicit mathematical expression
for the objective. For example, the network influence
evaluation relies on Monte Carlo simulation [14], the
traffic efficiency evaluation requires actual road network
simulation [15], and the vehicle performance evaluation
relies on physical testing [16, 17]. Second, the gradient
information of hyperparameter optimization problems is
also infeasible. Such scenarios exist in the network archi-
tecture search of neural networks [18], feature selection of
machine learning [19], and load flow calculation of smart
grids [20]. Therefore, black-box distributed optimization
independent of the gradient information has great research

2

significance.
To address black-box distributed optimization prob-

lems, many gradient-free or zeroth-order methods have
been proposed [21, 22, 23, 24, 25, 26]. The main idea of
these methods is to estimate the gradient by randomized
sampling around the current solution. The step size for
sampling plays an important role in these gradient-free
methods. Most existing methods use a fixed [23] or
diminishing [27, 28, 29] step size, and the initialization
step size is chosen by parameter tuning for the test
problems. However, the optimization problem in real-
world scenarios may vary as the environment, such as
the electricity demand in the smart grid [30, 31]. In
this case, an identical step size setting cannot maintain
high optimization efficiency in different conditions. What’s
more, the optimization method is called frequently in such
scenarios and cannot rely on manual parameter re-tuning.

Considering the above challenge of step adaptability,
evolution strategies (ES), a class of evolutionary compu-
tation methods, have great potential [32, 33, 34]. This is
because step adaptation methods have been widely studied
for the mutation operation of ES, including cumulative
step size adaptation (CSA) [35, 36], success-based rules
[37, 38], self-adaptation [39, 40], and meta-ES [41, 42].
For example, CSA is a representative adaptation method,
which adjusts the step size by analyzing the evolution path
of ES. Its intuitive aim is to increase the step size in the
steep region to accelerate the optimization and decrease
the step size in the optimal region to gradually converge.
Although the above methods have been shown to be
effective for centralized optimization problems, they face
challenges on distributed optimization problems because
they only adapt the step according to the evolution path
of a single agent. In distributed optimization problems,
the local objectives usually conflict and thus the optimum
region of the global objective is different from the optimum
region of local objectives. When the above independent
step adaptation methods are adopted for each agent,
agents will choose the step size that is beneficial to its
own local objective, rather than the global objective. As
a result, agents will conflict to each other and cannot
optimize the global objective. In conclusion, adjusting the
step size independently using existing step adaptation
methods without any cooperation is not beneficial for
distributed optimization.

Consequently, it is worth further studying how multiple
agents can cooperate to adapt the step size during dis-
tributed optimization. The cooperative step adaptation
method for distributed optimization is seldom studied
in existing distributed or parallel evolution strategies
[21, 43, 44]. He et al. [21] pre-set a diminishing step
size for the distributed evolution strategy without step
size adaptation. Duan et al. [44] verified the parallel
evolution strategy under the centralized problems, and did
not consider the cooperation challenge in the case when
the local objectives are conflicting. Considering the above
research gap, we propose a multi-agent evolution strategy
with cooperative and cumulative step size adaptation

(CCSA-DES) to address black-box distributed optimiza-
tion. CCSA-DES works in a distributed manner, where
each agent executes an identical algorithm and cooper-
ates with neighbors through peer-to-peer communication.
CCSA-DES alternates two phases, local optimization and
neighboring cooperation. In the first phase, agents conduct
the evolution strategy for a certain number of generations
independently to optimize their local objective functions.
In the second phase, agents communicate with neighbors
and update the local solution and step size according to
neighbors’ messages. The major contributions of this work
are summarized as follows:
1) To improve the sampling adaptability of the algo-

rithm, we proposed a cooperative and cumulative
step size adaptation method (CCSA). CCSA consists
of inner adaptation and outer adaptation, with the
former working in the local optimization phase and
the latter in the neighboring cooperation phase. The
idea of CCSA is to identify whether the evolution
direction of an agent is consistent or conflicting with
that of its neighbors. Based on the identification
result, CCSA will increase the step size when the
evolution direction of an agent is consistent with that
of its neighbors, and decrease the step size when the
evolution direction is conflicting. In this work, we
analyze the working principle of CCSA theoretically
and verify the effectiveness of CCSA experimentally.

2) Based on CCSA, a multi-agent evolution strategy
CCSA-DES is proposed. First, in terms of the con-
sensus ability, we provide a theoretical consensus
discussion for CCSA-DES based on the mechanism of
CCSA. The consensus ability of CCSA-DES is also
shown to be better than existing algorithms through
experiments. Second, in terms of the solution quality,
CCSA-DES achieves competitive solution quality on
benchmark functions compared with state-of-the-art
algorithms for black-box distributed optimization.

The rest of this paper is organized as follows. Section
II provides the preliminaries of step adaptation methods.
Section III conducts a case study of the evolution path in
distributed optimization, which illustrates the limitations
of existing methods. The proposed algorithm CCSA-
DES is elaborated in Section IV. A series of experiments
are carried out in Section V. Finally, Section VI concludes
this work.

II. Preliminaries

In this section, we first introduce the problem definition
and application scenarios. Then, we present the typical
cumulative step adaptation method, which provide a basis
for the proposed algorithm.

A. Problem Definition of Distributed Optimization
In a multi-agent system with n agents connected

through a communication network, a general definition

3

of a distributed optimization problem is as follows:

minF (x) =

n∑
i=1

fi(x) (1)

Here, x ∈ RN is the N -dimensional decision variable. fi(∗)
denotes the local objective function of agent i, and F (∗)
denotes the global objective function of the system. When
the mathematical expression of local objective functions
fi is unknown or the gradient of fi is uncomputable, the
problem is termed black-box distributed optimization.

There are two major challenges to minimize the global
objective function in distributed optimization problems.
First, each agent i can only access its own local objective
function fi due to local data, limited sensing range, or
privacy concerns. Thus, a single agent cannot address
the global problem independently. Second, local objective
functions of different agents are usually conflicting and
they have distinct optimal solutions. Thus, there is no
solution that can simultaneously minimize all local objec-
tives. In order to minimize the global objective function
F , it is necessary for agents to cooperate and strike
a balance among multiple local objective functions. In
a word, the distributed optimization problem is non-
separable, where agents should cooperate instead of opti-
mize independently.
Distributed optimization problems widely exist in re-

alworld multi-agent systems, such as cooperative target
localization in wireless sensor networks, the predictive
control and economic dispatch in smart grids, the path
scheduling and task dispatch for multi-UAV systems [1, 2].
Take the cooperative localization problem as an example,
n sensors are connected as a multi-agent system and take
the positions of targets as the optimization variable x.
The local objective function fi(∗) for agent i representing
its own estimation error. The global objective function
F (∗) aims to minimize the sum of estimation errors across
all sensors. Similarly, considering the power allocation
problem within a distributed power system containing n
power stations, the optimization variable x is the power
allocation strategy. In this scenario, the local objective
function fi(∗) is the energy loss of an energy station, while
the global objective F (∗) is to minimize the energy loss
across the entire system.

B. Cumulative step adaptation method
Cumulative step adaptation (CSA) is a representative

step size control method for evolution strategies. For an
optimization problem with N dimensions, CSA constructs
a cumulative evolution path p ∈ RN . The initial path p0

is set to a zero vector. With the optimization process, the
evolution path is updated as follows:

pt+1 = (1− cs)p
t +

√
cs(2− cs)µeff∆xt/σt (2)

where t is the iteration number, σt is the step size, and
∆xt is the movement vector of the current generation.
When the problem dimension N < 1000, the parameter

cs is usually set in the range [0, 0.5], and µeff is set in the
range [1, 10].
The length of p reflects the consistency of the evolution

path. When the length of p is short, it indicates that
the past several steps are anti-correlated and they cancel
each other out. In this case, the step size is expected
to be decreased. When the length of p is long, the past
several steps are considered to be correlated because they
cumulate the evolution path in a similar direction. The
step size is expected to be increased in this case. Based
on this idea, the step size σ is adapted as follows:

σt+1 = σtexp[r(∥pt∥
E(∥p∥)

− 1)] (3)

where t is the iteration number. r is the adaptation rate,
which is usually set in the range [0, 0.5]. Here, the current
length of the evolution path pt is compared with its
expected length, which assumes that the path is randomly
generated and uncorrelated. The step size will increase
when ∥pt∥ is larger than its expectation, and decrease
otherwise.

III. Case Study for Evolution Path in Distributed
Optimization

The evolution path, the cumulation of multiple suc-
cessive steps, is the key to adjusting step size by CSA
and other variant methods. However, the evolution path
analysis of distributed optimization is more complicated
than centralized optimization because each agent owns an
evolution path. Take a two-agent system as an example,
we illustrate four typical conditions of the evolution path
for distributed optimization in Fig. 1:
1) As shown in Fig. 1(a), the current evolving direction

of the agent is consistent with its own historical
evolution path, and also consistent with the evolution
path of its neighboring agent.

2) As shown in Fig. 1(b), the current evolving direction
of the agent is consistent with its own historical
evolution path, but opposite to the evolution path
of its neighboring agent.

3) As shown in Fig. 1(c), the current evolving direction
of the agent is opposite to its own historical evolution
path, but consistent with the evolution path of its
neighboring agent.

4) As shown in Fig. 1(d), the current evolving direction
of the agent is opposite to its own historical evolution
path, and also opposite to the evolution path of its
neighboring agent.

It is worth noting that, the possible evolution paths
include but not limited to the above four conditions. The
purpose of this section is to discuss the four typical cases in
order to explain the difficulties and draw out our proposed
algorithm.
The intuitive idea of the existing step size adaptation

methods, like CSA, is to increase the step size when the
directions of the evolution paths are consistent, and to

4

(a) Case 1 (b) Case 2 (c) Case 3 (d) Case 4

(e) CSA [35] on Case 1 (f) CSA [35] on Case 2 (g) CSA [35] on Case 3 (h) CSA [35] on Case 4

(i) CCSA (ours) on Case 1 (j) CCSA (ours) on Case 2 (k) CCSA (ours) on Case 3 (l) CCSA (ours) on Case 4

Fig. 1. Case study for evolution paths in distributed optimization. (1) Fig. (a)-(d) illustrate four toy examples of one-dimension distributed
optimization problem in a two-agent system. The objective functions of the two agents are colored blue and red respectively, which is
denoted by f1 and f2. The global objective function F = f1 + f2 is denoted by the black dotted-line. The evolution paths are marked
numerically in the figures. (2) Fig. (e)-(h) record the step size and fitness of the agent when using CSA [35] for step adaptation. (3) Fig.
(i)-(l) record the step size and fitness of the agent when using CCSA (proposed) for step adaptation. Note that, the horizontal coordinate
of Fig. (e)-(l) is the iteration number.

decrease the step size when they are opposite. Fig. 1(e)-
(h) shows the performance of CSA on the four cases,
including the step size and fitness. The fitness is defined
by the difference from the evaluated solution to the
global optimal solution. Denote the solution as x and the
global optimal solution as x∗, the fitness is computed by
f = ∥x−x∗∥. Thus, the optimal fitness of these four cases
is zero. In the following, we will analyze the behaviors of
CSA:
1) For the first condition shown in Fig. 1(e), CSA

increases the step size in the early stage because the
evolving direction of agent 1 is consistent with its own
evolution path, and decreases the step size in the late
stage because it is close to the optimal region. Finally,
the fitness approaches zero, which indicates that CSA
works well in this condition.

2) For the second condition shown in Fig. 1(f), CSA
increases the step size in general because the evolv-
ing direction of agent 1 is consistent with its own
evolution path. However, the increase in the step size
is not conducive to the convergence of the algorithm
to the global optimum in this condition. As a result,
the fitness fluctuates and remains at a high value. A
more detailed explanation is provided in part I of the

supplementary material.
3) For the third condition shown in Fig. 1(g), CSA

decreases the step size because the evolving direction
of agent 1 is opposite to its own historical evolution
path. The CSA method also works in this condition
because the fitness value approaches zero.

4) For the fourth condition shown in Fig. 1(h), CSA
decreases the step size in the early stage because
the evolving direction of agent 1 is opposite to its
own historical evolution path. However, the step size
fluctuates in the late stage and the fitness cannot
converge to the global optimum.

In conclusion, in the first and third conditions, CSA
works well because local objective functions of two agents
have the same optimal solution. However, in the second
and fourth conditions, CSA cannot adjust the step size
properly because the optimal solutions of two local ob-
jective functions are different. In addition to CSA, other
traditional adaptation methods, like success-based rules
and self-adaptation, also face similar challenges. The key
reason is that agents only care about their own evolution
paths and ignore neighboring coordination.
Considering the above challenges of existing step adap-

tation methods when addressing distributed optimization

5

problems, we design a cooperative and cumulative step
adaptation (CCSA) method, which utilizes neighboring
information to assist step adaptation. The detailed proce-
dure and principle of CCSA are elaborated in the following
section.

IV. Multi-Agent Evolution Strategy with CCSA
In this work, we propose a multi-agent evolution strat-

egy with cooperative and cumulative step adaptation
(CCSA-DES). In the following, we elaborate on the
algorithm framework, the detailed process of CCSA, the
working principle of CCSA, and the consensus analysis in
turn.

TABLE I
Notations in CCSA-DES

Notation Meanings
T Iteration number
M Communication interval
λ Number of offsprings
µ Number of elite offsprings
w Weights for offspring recombination
β Weight of historical evolution direction
γ Weight of current evolution direction
θ Conflict angle threshold
r1 Adaptation rate of inner step adaptation
r2 Adaptation rate of outer step adaptation
xi Local solution of agent i
αi Sampling step size of agent i
Ni Neighbors of agent i
Gi Neighboring evolution path of agent i
pi Local evolution path of agent i
v⃗i Current neighboring evolution direction around agent i

∇̂gi estimated gradient

A. Framework
CCSA-DES is proposed to address black-box and non-

convex distributed optimization problems. This framework
works in multi-agent systems, such as smart grids and
wireless sensor networks. An agent in the multi-agent
system represents a physical entity, like a sensor or a
power station. Due to the local data and limited sensing
range, each agent i can only access its own local objective
fi. In order to optimize the global objective F in Eq. (1),
it is necessary for agents to communicate and cooperate.

Fig. 2 shows the system structure and the flowchart
of each agent. Agents have the ability of computation
and communication. In terms of computation, each agent
executes the same algorithm and procedure. In terms
of communication, each agent can communicate with
its neighbors. Agents are connected by a fixed and
connected communication network. The communication
network is usually a non-fully connected graph, which is
determined by physical environments. Take the wireless
sensor network as an example, two sensors are directly
connected only when their distance is within the maximum
communication range.

As shown in Algorithm 1, CCSA-DES consists of the
following steps in each agent:

1) Initialization (line 2): At the beginning, each agent
initializes the following variables. The first is the
local solution xi ∈ RD, where D is the dimension
of the distributed optimization problem. The second
is the step size σi ∈ R, which controls the scale of
local sampling. Each agent maintains and adjusts σi

independently. The third is the historical neighboring
evolution direction Gi ∈ RD and the historical local
evolution direction pi ∈ RD. Both of them are used
for cooperative and cumulative step adaptation. Note
that pi is reinitialized at each iteration because it is
used to track the recent local evolution path (line 5).

2) Local optimization (lines 6-16): This phase includes
the basic processes of evolution strategies, mutation,
selection, and recombination. First, the agent samples
λ vectors by standard Gaussian distribution with the
scale σi for mutation. Then, the λ offsprings are
evaluated by the local objective function fi. After
sorting the offsprings according to their fitness, µ
elite offsprings are selected and recombined as a new
solution xt

i. Each agent will evolve M generations for
local optimization.

3) Communication and cooperation (lines 18-20): After
local optimization, each agent i communicates with
its neighbors in the set Ni. Among the communi-
cation messages, the local solutions of neighbors are
recombined as a new solution xt+1

i , which is used as
the starting point for the next iteration. Besides, the
estimated gradient ∇̂gti and the neighboring evolution
direction Gt

k are used to update Gt+1
k .

4) Step adaptation (lines 15 and 23): The proposed
cooperative and cumulative step adaptation method
contains two parts, i.e., inner step adaptation and
outer step adaptation. Inner step adaptation is used
for local optimization when agents do not com-
municate with neighbors. Outer step adaptation is
used for the communication phase, which utilizes
the neighboring messages to control the step size
cooperatively.

The algorithm terminates when the maximum iteration
number is reached or the consensus condition is satisfied.
The consensus condition for the distributed evolution
strategy is as follows:

1

n

n∑
i=1

∥xi − x∥22 < ϵ

where x =
1

n

n∑
i=1

xi

(4)

Here, ϵ is a small threshold close to zero, and x is the mean
vector of all local solutions. When the above condition
is satisfied, it is considered that the distributed system
reaches a consensus and the algorithm can terminate.

B. Cooperative and Cumulative Step Adaptation (CCSA)
Considering the limitations of CSA in the case study in

Sec. III, the intuitive idea of CCSA is to increase the step

6

Fig. 2. System structure and procedure of CCSA-DES. CCSA-DES works in the multi-agent system, where each agent executes the same
procedure. Agents may represent sensors in the wireless sensor network, or power stations in the distributed grid system, etc.

Algorithm 1 CCSA-DES in each agent
Input: Local objective function fi
1: /* Initialization */
2: let x0

i = 0, σi = σ0,Gi = 0, t = 0
3: while t < T and consensus condition is not satisfied

do
4: /* Local Optimization */
5: let pi = 0
6: for m = 0, ...,M − 1 do
7: for j = 1, ..., λ do
8: Sample zj ∼ N (0, I)
9: Evaluate yj = fi(xi + σizj)
10: end for
11: sort {zj}j=1,2,...,λ according to {yj}j=1,2,...,λ

12: xt
i = xt

i +
∑µ

j=1 wj ∗ σizj

13: /* Inner step adaptation of CCSA */
14: Update pi according to Eq. (2)
15: σi = σi · exp(τ · r1(∥pi∥

E(∥pi∥)
− 1))

16: end for
17: /* Communication and cooperation*/
18: Send xt

i, ∇̂gti ,Gt
i to neighbors k ∈ Ni

19: Receive xt
k, ∇̂gtk,Gt

k from neighbors k ∈ Ni

20: xt+1
i =

∑
k∈Ni∪{i} Wi,kx

t
k

21: /* Outer step adaptation of CCSA */
22: Update Gt+1

i according to Eq. (5) - (7)
23: σi = σi · exp(r2(∥Gi∥ − 1))
24: t = t+ 1
25: end while
Output: x

size when the evolution direction of an agent is consistent
with that of its neighbors, and decrease the step size
otherwise. For this design goal, the following two problems
are addressed in CCSA, i.e., how to construct an evolution
path for distributed optimization, and how to adapt the
step size based on the evolution path.

1) How to construct a neighboring evolution path:
An evolution path is cumulated by multiple successive
steps. Therefore, we define the single step for distributed
optimization by the neighboring direction vector v⃗i of the
current iteration as follows:

v⃗i =

∑
k∈Ni∪{i} ∇̂gk(t)

∥
∑

k∈Ni∪{i} ∇̂gk(t)∥

s.t. ∇̂gk(t) =
[fk(x

t+1
k)− fk(x

t
k)]∆xk

∥∆xk∥22

(5)

where ∆xi is the moving vector of the agent i at the t-th
iteration, which is defined by ∆xi = xt+1

i − xt
i. Because

CCSA-DES is proposed for black-box optimization, we use
∇̂gi to estimate the gradient of local objective functions
according to the change of fitness and positions. The
neighboring direction vector v⃗i reflects the integrated
movement direction of neighboring agents, which provides
the basis for the following path analysis.
To adapt the step size properly, the length of the

evolution path is expected to reflect the consistency of
neighboring agents. Therefore, we design the cumulation
method of the evolution path Gi as follows:

Gt+1
i = βGt

i + γv⃗i

s.t. β2 + γ2 + 2βγcos(θ) = 1

β, γ > 0 and θ = (1− t

T
)90◦

(6)

where β and γ are weights of the historical path and the
current evolving direction respectively. θ is the conflict
angle threshold determining whether the conflict between
the current direction and the historical direction is within
an acceptable range. At the beginning, the threshold θ is
set to the orthogonal angle 90◦. As the iteration number
increases, θ decays to zero gradually. This indicates that
the conflict detection of CCSA is getting stricter. The
working principle is explained in Sec. IV-C.
Because the neighboring direction vector v⃗i can only

combine the path information of one-hop neighbors, we

7

make the information diffuse in the multi-agent system to
help the whole system coordinate:

Gt
i =

∑
k∈Ni∪{i}

Wi,kGt
k (7)

where W is a stochastic matrix, representing the adjacent
matrix of the multi-agent system.
2) How to adapt the step size: According to Eq. (6),

the evolution path is long when the evolution directions
of neighboring agents are consistent, and short otherwise.
Therefore, we adapt the step size based on the length of the
evolution path. Specifically, CCSA consists of two parts,
outer adaptation for the phase of neighboring cooperation,
and inner adaptation for the local optimization.

First, at the phase of neighboring cooperation, the step
size is adjusted according to the neighboring evolution
path Gi. The outer adaptation is designed as follows:

σi = σi · exp(r2(∥Gt
i∥ − 1)) (8)

where r2 is the outer adaptation rate. The step size will
increase when the length of Gi is larger than one, and
decrease when the length of Gi is smaller than one.
Second, at the phase of local optimization, each agent

can only access its local evolution directions. Thus, a local
evolution path pi is constructed based on Eq. (2) for
each agent i. However, according to the discussion in Sec.
III, an agent focusing only on its local evolution path is
not conducive to the optimization of the global objective
function. Therefore, we use the neighboring evolution
path at the previous iteration Gt−1

i to assist the inner
adaptation:

σi = σi · exp[τ · r1(
∥pi∥

E(∥pi∥)
− 1)]

where τ =

{
1 (∥pi∥

E(∥pi∥)
− 1)(∥Gt−1

i ∥ − 1) > 0

0 else

(9)

where r1 is the inner adaptation rate and τ is a binary
variable that controls whether the step size should be ad-
justed. Specifically, τ is activated when the local evolution
path and the neighboring evolution path have the same
trend of step size adaptation, such as the first or fourth
condition of Sec. III. Otherwise, τ is deactivated and the
step size is not adjusted.

C. The working principle of CCSA

In this subsection, we analyze the working principle of
CCSA based on the following four conditions:

∥Gt
i∥ ≥ 1 ∥Gt

i∥ < 1
∠(Gt

i , v⃗i) > θ condition 1 condition 4
∠(Gt

i , v⃗i) ≤ θ condition 2 condition 3

(1) When ∥Gt
i∥ ≥ 1, the step size is in an increasing

trend originally. If ∠(Gt
i , v⃗i) > θ, we have the following

derivation:

∥Gt+1
i ∥2 − ∥Gt

i∥2

=β2∥Gt
i∥2 + γ2 + 2βγ∥Gt

i∥cos(∠(Gt
i , v⃗i))− ∥Gt

i∥2

<(β2 − 1)∥Gt
i∥2 + γ2 + 2βγ∥Gt

i∥cos(θ)
=(β2 − 1)∥Gt

i∥2 + γ2 + (1− β2 − γ2)∥Gt
i∥

=(β2 − 1)(∥Gt
i∥2 − ∥Gt

i∥)− γ2(∥Gt
i∥ − 1)

=(∥Gt
i∥ − 1)(∥Gt

i∥(β2 − 1)− γ2) ≤ 0

(10)

Here, the first inequality sign is obtained due to
cos(∠(Gt

i , v⃗i)) < cos(θ), and the second inequality sign
is due to ∥Gt

i∥ ≥ 1 and β < 1. According to Eq. (10), the
length of Gi will decrease based on the proposed strategy.
This indicates that the trend of step size growth will slow
down when the current direction is inconsistent with the
historical neighboring evolution path.
(2) When ∥Gt

i∥ ≥ 1, the step size is in an increasing
trend originally. If ∠(Gt

i , v⃗i) ≤ θ, we have the following
derivation:

∥Gt+1
i ∥2 =β2∥Gt

i∥2 + γ2 + 2βγ∥Gt
i∥cos(∠(Gt

i , v⃗i))

≥β2 + γ2 + 2βγcos(∠(Gt
i , v⃗i))

≥β2 + γ2 + 2βγcos(θ) = 1

(11)

Here, the first inequality sign is obtained due to ∥Gt
i∥ ≥ 1

and the second one is due to cos(∠(Gt
i , v⃗i)) ≥ cos(θ).

According to Eq. (11), the length of Gi will remain larger
than one based on the proposed strategy. This indicates
that the step size will keep increasing when the current
direction is consistent with the historical neighboring
evolution path.
(3) When ∥Gt

i∥ < 1, the step size is in an decreasing
trend originally. Similar to the derivation in the above
conditions, according to Eq. (12), the length of Gi will
increase if ∠(Gt

i , v⃗i) ≤ θ. This indicates that the trend
of decreasing step size will slow down when the current
direction is consistent with the historical neighboring
evolution path.

∥Gt+1
i ∥2 − ∥Gt

i∥2

=β2∥Gt
i∥2 + γ2 + 2βγ∥Gt

i∥cos(∠(Gt
i , v⃗i))− ∥Gt

i∥2

≥(β2 − 1)∥Gt
i∥2 + γ2 + 2βγ∥Gt

i∥cos(θ)
=(β2 − 1)∥Gt

i∥2 + γ2 + (1− β2 − γ2)∥Gt
i∥

=(β2 − 1)(∥Gt
i∥2 − ∥Gt

i∥)− γ2(∥Gt
i∥ − 1)

=(∥Gt
i∥ − 1)(∥Gt

i∥(β2 − 1)− γ2) > 0

(12)

(4) When ∥Gt
i∥ < 1, the step size is in an decreasing

trend originally. Similar to the derivation in the above
conditions, according to Eq. (13), the length of Gi will
remain smaller than one if ∠(Gt

i , v⃗i) > θ. This indicates
that the step size will keep decreasing when the current
direction is inconsistent with the historical neighboring
evolution path.

8

∥Gt+1
i ∥2 =β2∥Gt

i∥2 + γ2 + 2βγ∥Gt
i∥cos(∠(Gt

i , v⃗i))

<β2 + γ2 + 2βγcos(∠(Gt
i , v⃗i))

<β2 + γ2 + 2βγcos(θ) = 1

(13)

As a result, the working principles of CCSA are sum-
marized as follows:

∥Gt+1
i ∥

< ∥Gt

i∥ if ∥Gt
i∥ ≥ 1 and ∠(Gt

i , v⃗i) > θ

≥ 1 if ∥Gt
i∥ ≥ 1 and ∠(Gt

i , v⃗i) ≤ θ

> ∥Gt
i∥ if ∥Gt

i∥ < 1 and ∠(Gt
i , v⃗i) ≤ θ

< 1 if ∥Gt
i∥ < 1 and ∠(Gt

i , v⃗i) > θ

(14)

We also test the behavior of the evolution strategy
with CCSA on the four typical conditions of distributed
optimization. Fig. 1(i)-(l) record the step size and fitness
when CCSA is used.
1) CCSA has a step adaptation behavior similar to CSA

in the first and third conditions. Both of them work
well in these two conditions. This is because the
two local objective functions have the same optimal
solution in these two conditions, and the centralized
optimization technique CSA can address it well.

2) The second condition shows the advantage of CCSA
over CSA for distributed optimization. Although the
evolving direction of agent 1 is consistent with its own
evolution path, the evolution directions of the two
agents are in conflict. In this case, CCSA can detect
the conflict and decrease the step size according to
Fig. 1(j). As a result, the final fitness is lower than
10−6, which is much better than that of CSA.

3) The fourth condition also shows the effect of CCSA.
Although both CSA and CCSA decrease the step size
at the beginning, the step size of CSA fluctuates in
the late stage because it cannot detect the conflict
between the two agents. Differently, CCSA keeps
decreasing the step size and the final fitness is lower
than 10−5.

In conclusion, CCSA can better address typical con-
ditions of distributed optimization through neighboring
evolution path analysis. In Sec. V, the effectiveness of
CCSA on more complicated problems is verified.

D. Consensus Discussion
In this part, we discuss the system consensus of CCSA-

DES. In the proposed algorithm, the conflict angle thresh-
old θ is set to decrease from an initial value to zero
according to Eq. (6). In the following, we analyze the
system after θ becomes zero, which means that β+γ = 1.
In order to avoid confusion between the time symbol t
and the exponent calculation, Gt

i is denoted by Gi(t) in
the following, and so are other variables.

First, we describe the neighboring evolution path of all
agents together by a dynamical equation according to Eq.
(6) and (7) in Sec. IV.B:

G(t+ 1) = βWG(t) + γV (t)

where G(t) =

G1(t)
G2(t)
· · ·

Gn(t)

 and V (t) =

v⃗1(t)
v⃗2(t)
· · ·
v⃗n(t)

 (15)

Then, the state of the system at the t-th iteration can
be derived:
G(t) = βWG(t− 1) + γV (t− 1)

= βW (βWG(t− 2) + γV (t− 2)) + γV (t− 1)

= β2W 2G(t− 2) + βγWV (t− 2) + γV (t− 1)

= · · ·

= βtW tG0 + γ

t−1∑
k=0

βkW kV (t− k − 1)

(16)

When the iteration number t → ∞, the first term
approaches zero because 0 < β < 1. In this case, consider
the length of the i-th row of the matrix Gi(t), we have:

∥Gi(t)∥t→∞ = ∥γ
t∑

k=0

βk[W k]i∗V (t− k − 1)∥ (17)

where [W k]i∗ is the i-th row of the matrix W k. In the
following, we discuss the length of the evolution path Gi(t)
in two conditions.
1) First, suppose the evolution directions of agents are

not consistent all the time, i.e., v⃗i(t) ≠ v⃗j(t)(∃1 ≤
i, j ≤ n, ∃t = 1, 2, ...,∞). In this case, we have the
following derivation:

∥Gi(t)∥t→∞ = ∥γ
∞∑
k=0

βk[W k]i∗V (t− k)∥ (18)

≤ γ

∞∑
k=0

βk∥[W k]i∗V (t− k)∥ (19)

= γ

∞∑
k=0

βk∥
n∑

j=1

[W k]i,j v⃗j(t− k)∥ (20)

< γ

∞∑
k=0

βk
n∑

j=1

[W k]i,j∥v⃗j(t− k)∥ (21)

= γ

∞∑
k=0

βk
n∑

j=1

[W k]i,j (22)

= γ

∞∑
k=0

βk (23)

Here, Ineqs. (19) and (21) are derived from the
triangle inequality, while the equation sign does not
hold in (21). The equal sign only holds if the evolution
directions of agents are in the same direction, i.e.,
v⃗i(t) = v⃗j(t) ∀1 ≤ i, j ≤ n and t = 1, 2, ...,∞. This
does not satisfy the above-mentioned condition.
For the left derivations, Eq. (22) holds because v⃗j is a
unit vector and its length equals one. Eq. (23) holds
due to the properties of the stochastic matrix that

9

each row of a stochastic matrix sums to one. Because
W is a stochastic matrix, W k is still a stochastic
matrix for k ∈ N.

2) Second, suppose the evolution directions of all agents
are consistent without any conflict, i.e., v⃗1(t) =
v⃗2(t) = · · · = v⃗n(t) = v⃗∗(t),∀t = 1, 2, ...,∞. In this
case, we have:

∥Gi(t)∥t→∞ = ∥γ
∞∑
k=0

βk[W k]i∗V (t− k)∥ (24)

= ∥γ
∞∑
k=0

βk
n∑

j=1

[W k]i,j v⃗∗(t− k)∥ (25)

= ∥γ
∞∑
k=0

βkv⃗∗(t− k)∥ (26)

< γ

∞∑
k=0

βk∥v⃗∗(t− k)∥ (27)

= γ

∞∑
k=0

βk (28)

Here, Ineq. (27) is derived from the triangle in-
equality. Suppose the optimization problem has a
minimization solution, the equation sign does not
hold. The equal sign holds only when the evolution
directions at all the iterations are in the same di-
rection, i.e., v⃗∗(t1) = v⃗∗(t2) ∀t1, t2 ∈ {1, 2, ...,∞}. In
this case, according to the working principle of CCSA,
the step size will keep increasing, so the solution will
become infinite. However, this does not occur in a
problem with a minimization solution, because the
optimization algorithm moves in the direction of a
decline in the fitness value.
For the other derivations, Eq. (26) is due to the

properties of the stochastic matrix that each row of
a stochastic matrix sums to one. Eq. (28) is because
the length of the unit vector v⃗∗(t− k) is one.

For the above two conditions, we have the same result
that ∥Gi(t)∥t→∞ < γ

∑∞
k=0 β

k. Considering the exponen-
tial power series of β is 1

1−β due to |β| < 1, we have:

∥Gi(t)∥t→∞ < γ

∞∑
k=0

βk =
γ

1− β
= 1 (29)

According to Sec. IV-B2, when ∥Gi(t)∥ < 1, the step size
will be decreased in outer adaptation, and be decreased
or remain unchanged in inner adaptation. Taken together,
the step size will keep decreasing and approach zero when
the iteration number t → ∞. In this case, the phase of
local optimization does not change the solutions of agents
because the sampling step size approaches zero (see line
9 in Algorithm 1). Thus, we can describe the solutions of
all agents by a dynamical equation as follows:

X(t+ 1) = WX(t)

where X(t) =

x1(t)
x2(t)
· · ·

xn(t)

 (30)

According to the consensus theory [8], when t → ∞, we
have:

x∗
i = x∗

j ∀1 ≤ i, j ≤ n (31)

As a result, the multi-agent system can finally reach a
consensus.

V. Experiments
In this section, we conduct the following experiments,

i.e., parameter investigation, ablation experiments, and
comparison with state-of-the-art algorithms.

A. Experiment Settings and Benchmarks
To verify the performance of the proposed algorithm, we

adopt the black-box and non-convex distributed optimiza-
tion benchmark functions proposed in [45]. The general
definition of the benchmark function is as follows:

F (x) =

n∑
i=1

fi(x) (32)

where fi(x) = f i
elementary(z) + c

D∑
j=1

[A]ijzj (33)

and z = T 0.2
asy(Tosz(R(x− x′))) (34)

where fi(∗) is the local objective function of the i-th agent,
and F (∗) is the global objective function. As shown in
Eq. (33), the local objective function consists of a non-
convex elementary function and a linear term. In Eq.
(34), the solution x is processed by four operations: (1)
Shift: x is shifted by a randomly generated vector x′; (2)
Rotation: The solution is rotated by a randomly generated
orthogonal matrix R; (3) Unsmooth: The solution is put
into a transformation function Tosz to create smooth local
irregularities. (4) Asymmetric: The vector is put into a
transformation function Tasy to break the symmetry of
the symmetric functions.
Table II shows the function configuration of the bench-

mark set. Elementary functions include Elliptic, Schwe-
fel, Rosenbrock, and Griewank. The elementary function
f i
elementary(∗) is the same for each agent in F1-F3, but
different for agents in F4-F9. Referring to the settings
in [45], the number of agents is set to 20, the problem
dimension is set to 100, and the maximum number of
objective function evaluations is set to 1.5E+6 for each
agent.
The parameters of CCSA-DES are partly set according

to existing studies and partly determined by parameter
investigation. According to [35], the offspring number λ
is set to 34 and the number of elite offspring µ is set to
17. The weight of recombination is set to wj = log(µ +

10

TABLE II
Configuration of benchmark functions

Benchmark functions Elementary function
F1 Elliptic
F2 Schwefel
F3 Rosenbrock
F4 Elliptic & Schwefel
F5 Elliptic & Rosenbrock
F6 Schwefel & Rosenbrock
F7 Elliptic & Griewank
F8 Schwefel & Griewank
F9 Rosenbrock & Griewank

0.5) − log(j) for j = 1, 2, ..., µ. The adaptation weight r1
and r2 is set to 0.01 and 0.001 respectively. The initial
step size σ0 is set to 1E-6. Other parameters, including
the historical weight β and the communication interval M ,
are investigated through experiments, which are discussed
in Sec. V-B.

The following experiments are conducted on a cluster
composed of Intel(R) Xeon(R) CPU E5-2699 v3@2.30GHz
36 cores and CentOS 7.5 x64 system. Each experiment is
repeated for 25 times independently.

B. Parameter Investigation
In this subsection, we investigate three important pa-

rameters in CCSA-DES. In brief, the historical weight
affects the sensitivity of CCSA, the communication in-
terval affects the frequency of CCSA, and the conflict
angle threshold affects the tendency of CCSA. Specific
experiments and analyses are as follows.

1) Historical Weight: The historical weight determines
the importance of the historical path in the process of
evolution path accumulation, as shown in Eq. (6). In
order to investigate the impact of historical weight on the
algorithm, we test the performance of CCSA-DES when
the historical weight β is set to 0.6, 0.7, 0.8, 0.9, 0.95, 0.97,
0.99, and 0.999, respectively. According to the results in
Fig. S1 of the supplementary material, the fitness value
shows a V-shaped curve as the historical weight changes
in most tested functions. This indicates that too large or
too small values are not suitable for the historical weight.

When the historical weight is too large, especially when
the weight is set to 0.999, the fitness value is much
larger than others in Fig. S1. This is because the step
size adaptation becomes sluggish and it cannot catch
the conflict of evolution paths of different agents in
time. Consider the following condition, assuming that the
direction of evolution has remained consistent over the
past period of time, then the length of the evolution path
Gi is large according to the working principle in Sec. IV-C.
In this state, when the optimized region moves from the
consistent region to the conflict region, the step size is
expected reduced. However, due to the long evolution path
and large historical weight, the step size will still maintain
the trend of growth. As a result, the algorithm cannot be
stabilized in the global optimal region, so the optimization
result is poor.

When the historical weight is too small, especially when
the weight is set to 0.6, the algorithm performance is quite
worse than others from functions F4 to F9. According to
Eq. (6), the current direction weight γ is 0.8 when β is 0.6
and θ is 90°. In this case, the step size adaptation becomes
shortsighted, focusing only on the near-term evolution
path. As a result, the trend of step size adaptation will
change frequently, resulting in the optimization becoming
unstable.
Considering the overall performance, 0.97 is an appro-

priate parameter setting for the historical weight. When β
is set to 0.97, the algorithm achieves the best performance
in five of nine functions. Besides in F5 and F6, the
difference between the fitness of 0.97 and the best fitness
is not significant according to the Wilcoxon rank sum
test. To be specific, the performance of the two algorithms
is considered to be significantly different only when the
p-value is smaller than 0.05 in the Wilcoxon rank sum
test. The p-value between 0.97 and 0.99 on F5 is 0.202,
and the p-value between 0.97 and 0.95 on F6 is 0.148.
Therefore, we set the historical weight to 0.97 in the
following experiments.
2) Communication Interval: The communication inter-

val of CCSA-DES determines the number of generations
at the phase of local optimization. In this part, we aim to
investigate the impact of the communication interval on
CCSA-DES and find an appropriate setting. We test the
performance of the algorithm when the communication
interval is set to 1, 2, 5, 10, and 20, respectively. Fig.
S2 of the supplementary material shows how the fitness
curve changes with communication bits. The experiment
findings are as follows.
In functions F1-F5, the larger the communication inter-

val is, the faster the fitness curve drops under the same
communication bits. This is because the agents explore
more at the phase of local optimization when the com-
munication interval is larger. However, this phenomenon
does not apply to all benchmark functions. In functions
F7-F9, the fitness curve shows a sharp rebound when the
interval is set to 20 and 10. This is due to the lack of
necessary cooperation among agents. To be specific, at
the phase of local optimization, an agent can only adjust
the step size according to its own local evolution path. In
general, the optimal region of the local objective function
is different from that of the global objective function. In
this case, when the communication interval is large, agents
tend to increase the step size and search for their own
optimal regions. As a result, agents will jump out of the
global optimal region and cause the global fitness value to
rebound.
In conclusion, a large communication interval may

weaken the cooperation of agents, and a small commu-
nication interval will have a large communication cost.
To balance these two constraints, we set the default com-
munication interval to five in the following experiments.
When the interval is set to five, CCSA-DES always has a
good performance in the tested nine functions.

11

3) Conflict Angle Threshold: The conflict angle thresh-
old affects the evolution path and further affects the
step size adaptation. In CCSA-DES, the conflict angle
threshold decays gradually with optimization as shown
in Eq. (6). In this part, we conduct experiments to
verify the advantage of the decaying angle threshold over
the static angle threshold. In this experiment, the static
angle threshold is set to 90°, 70°, and 50° respectively.
From experiment results in Fig. S3 of the supplementary
material, we can conclude the following phenomenons.

First, when the static angle threshold is set to 90°,
the fitness curve of F1 shows a sharp rebound. According
to the working principle of CCSA in Sec. IV-C, a fixed
and large angle will make the conflicting judgment more
relaxed. So that the algorithm tends to increase the step
size. As a result, the sampling step size of the algorithm
may become too large, causing the solution to jump out
of the original convergence region. This is the reason that
the fitness value rebounds on F1. Although the algorithm
performs well on the other eight functions, it is still not an
ideal setting because it cannot adapt to different problems.

Second, when the static angle threshold is set to 50°, the
fitness curves on all functions are almost stagnant from
the beginning. This is because a fixed and small angle
will make the conflicting judgment strict. According to
the working principle of CCSA, the sampling step size
tends to decrease once the algorithm starts. In this case,
the local optimization of agents is limited to a small region
around the initial position, so the algorithm cannot fully
explore the optimization space.

Third, when the static angle threshold is set to 70°,
the performance of the algorithm is as well as that of
the decaying angle threshold from functions F1 to F3.
However, it has a stagnant fitness curve from functions
F4 to F9.

The above three cases show that it is difficult for the
static angle threshold to adapt to different optimization
problems well. In contrast, the performance of CCSA-
DES with decaying angle threshold performs well in
all of the nine functions. This is because the decaying
angle threshold considers both the early exploration and
later exploitation of the algorithm. In conclusion, this
experiment verifies the effectiveness of the decaying angle
threshold.

C. Ablation Experiment for CCSA
In the literature of black-box distributed optimization,

the step size control methods include fixed step size [23],
diminishing step size [21, 24, 25, 26, 27, 28], and adaptive
step size [46, 35]. Therefore, we conduct an ablation
experiment to verify the advantage of the proposed CCSA
over existing methods. We select CSA [35] as the adaptive
step method because it is a representative method of evo-
lution strategies. We implement the diminishing method
according to a recently proposed distributed evolution
strategy [21]. To test the adaptability of the step size
control methods, we design nine sets of twin functions

based on the existing nine benchmark functions. To be
specific, each set contains two functions named Fi-L and
Fi-S, where i means the index of the benchmark function.
Fi-S is contracted by Fi-L 10000 times over the domain.
For example, F1-L and F1-S are defined as follows:

F1-L(x) = F1(x)
F1-S(x) = F1(10000 ∗ x)

(35)

Table III shows the fitness of solutions on both the twin
functions. The overall fitness is the mean of the above
two fitness, and the p-value is computed based on the
overall fitness according to the Wilcoxon rank sum test.
The experiment findings are as follows.
First, observing the adaptive step method, the perfor-

mance of CSA is better than CCSA on F1, and slightly
worse than CCSA on F3 and F5. However, CSA has a big
gap compared with CCSA in the other functions. This is
because CSA adapts the step size according to the agent’s
own evolution path only, and cooperation among agents is
lacking. CSA works well only when the optimal region of
local objectives is close to that of the global objective, like
F1 and F3. In contrast, when the optimal region of local
objectives is different from that of the global objective,
CSA may increase the step size at the optimal region of
the global objective function. As a result, the algorithm
may jump out of the optimal region and the global fitness
increases sharply.
Second, observing the performance of the fixed step

size, there is no suitable step size that can both get
good performance in twin functions. Before the ablation
experiment for fixed step size, we selected the best step size
for the twin functions by tuning parameters respectively.
The best step size is 1E-1 for Fi-L and 1E-5 for Fi-S. The
performance of the algorithm with these two step sizes is
shown in Table III. When the fixed step is set to a larger
value 1E-1, it has a good performance from F1-L to F9-L.
However, it has a poor performance from F1-S to F9-S,
because a large step cannot exploit the optimal region of
Fi-S. Similarly, when the fixed step is set to a smaller
value 1E-5, it has a good performance from F1-S to F9-S,
but poor performance from F1-L to F9-L. This is because
a small step size cannot well explore Fi-L and the solution
only stays near the initial position.
Third, observing the performance of the diminishing

step size, the experiment finding is similar to the fixed
step. There is no initial step size that can get good per-
formance in both the twin functions. Before the ablation
experiment, we also selected the best step size for the twin
functions by parameter tuning. The best step size is 1.0
for Fi-L and 1E-3 for Fi-S. When the initial step is set to
a larger value 1, it has a poor performance from F1-S to
F9-S. When the initial step is set to a smaller value 1E-3,
it has a poor performance from F1-L to F9-L.
In conclusion, the overall performance of the proposed

CCSA is better than the other three types of existing step
control methods.

12

TABLE III
Ablation experiment for the proposed step adaptation method CCSA

benchmark proposed:
CCSA

adaptive step:
CSA

fixed step:
large value

fixed step:
small value

decaying step:
large initial value

decaying step:
small initial value

fitness on F1-L 1.51E+06 5.21E+05 5.21E+05 9.87E+10 4.06E+06 1.89E+11
fitness on F1-S 1.36E+06 6.18E+05 3.74E+11 4.31E+05 1.53E+10 2.38E+07
overall fitness 1.44E+06 5.70E+05 1.87E+11 4.93E+10 7.66E+09 9.46E+10F1

p-value - 2.80e-04* 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F2-L 5.92E+05 1.76E+287 5.82E+05 2.60E+17 1.02E+06 4.09E+23
fitness on F2-S 4.25E+05 9.89E+16 3.33E+11 6.21E+05 9.53E+10 3.64E+05
overall fitness 5.08E+05 8.79E+286 1.66E+11 1.30E+17 4.77E+10 2.05E+23F2

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F3-L 2.80E+02 1.22E+03 3.62E+02 3.56E+12 5.23E+02 1.74E+13
fitness on F3-S 3.12E+02 1.22E+03 4.18E+13 4.02E+02 3.06E+12 8.04E+02
overall fitness 2.96E+02 1.22E+03 2.09E+13 1.78E+12 1.53E+12 8.68E+12F3

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F4-L 1.35E+06 1.01E+305 9.50E+05 2.40E+17 1.22E+06 5.68E+23
fitness on F4-S 1.21E+06 6.77E+305 2.61E+25 9.79E+05 2.72E+10 6.75E+06
overall fitness 1.28E+06 3.89E+305 1.31E+25 1.20E+17 1.36E+10 2.84E+23F4

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F5-L 2.97E+03 1.29E+05 1.52E+04 2.13E+12 1.73E+04 8.15E+12
fitness on F5-S 2.99E+03 1.37E+05 7.80E+13 1.52E+04 1.27E+12 1.27E+05
overall fitness 2.98E+03 1.33E+05 3.90E+13 1.06E+12 6.36E+11 4.07E+12F5

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F6-L 1.49E+03 6.67E+294 3.38E+02 1.69E+17 4.71E+02 3.45E+21
fitness on F6-S 1.28E+03 2.62E+304 7.32E+17 3.66E+02 1.43E+14 5.49E+03
overall fitness 1.39E+03 1.31E+304 3.66E+17 8.47E+16 7.13E+13 1.72E+21F6

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F7-L 8.18E+06 1.73E+18 4.54E+06 5.79E+10 6.26E+06 9.44E+10
fitness on F7-S 2.05E+07 1.68E+18 4.48E+13 4.48E+06 7.01E+13 1.81E+08
overall fitness 1.44E+07 1.70E+18 2.24E+13 2.89E+10 3.51E+13 4.73E+10F7

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F8-L 1.77E+06 9.48E+217 1.41E+06 3.41E+16 2.59E+06 1.38E+24
fitness on F8-S 2.58E+06 2.91E+124 1.58E+15 1.46E+06 1.29E+37 7.94E+07
overall fitness 2.18E+06 4.74E+217 7.89E+14 1.71E+16 6.47E+36 6.89E+23F8

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
fitness on F9-L 1.53E+03 9.63E+27 3.73E+02 1.90E+12 1.11E+03 8.40E+12
fitness on F9-S 1.49E+03 1.05E+28 2.33E+14 4.05E+02 5.23E+15 2.85E+03
overall fitness 1.51E+03 1.00E+28 1.16E+14 9.51E+11 2.62E+15 4.20E+12F9

p-value - 2.80e-04# 2.80e-04# 2.80e-04# 8.74e-08# 8.74e-08#
* The performance of the compared algorithm are significantly better than the proposed CCSA method based to the Wilcoxon rank sum test of level
0.05.

The performance of the compared algorithm are significantly worse than the proposed CCSA method based to the Wilcoxon rank sum test of level
0.05.

D. Comparison with State-of-the-art Algorithms
In this experiment, we compare CCSA-DES with four

existing algorithms for black-box and non-convex dis-
tributed optimization. MASOIE is a multi-agent swarm
optimization with adaptive internal and external learning,
which is newly released [45]. RGF is a classical randomized
gradient-free method [23]. GFPDO is a general framework
for population-based distributed optimization [47]. DA-
PSO is a distributed particle swarm optimization algo-
rithm using the strategies of diffusion adaptation [48].
Algorithms are compared based on the same maximum
evaluation number of objective functions.

The control parameters of compared algorithms are
set as follows. First, the swarm size of population-based
algorithms, including MASOIE, GFPDO, and DA-PSO, is
set to 300 [45]. Besides, the initial communication interval
of MASOIE is set to 4 [45]. For RGF, the initial step size is
set to 1E-5 and the magnitude of Gaussian perturbation is
set to 1E-3. For DA-PSO, the weight of inertial velocity is
set to 0.5. Finally, the consensus accuracy level of GFPDO
is set to 1E-3 [47].

Fig. S4 shows the solution quality of CCSA-DES and
compared algorithms. According to the fitness curves in
the figure, the optimization process of the algorithms can
be divided into three stages, early stage, middle stage and
late stage. In the early stage, the fitness value of CCSA-
DES is higher than other algorithms because the initial
step size is very small. MASOIE, GFPDO, and DA-PSO
are population-based algorithms, which do not contain
the sampling step. Their initial populations are randomly
spread across the search domain, so they have smaller
fitness values at the early stage. In the middle stage, the
curve of CCSA-DES shows a rapid decrease trend in all the
nine functions. This is because CCSA-DES increases the
step size adaptively and thus the exploration speeds up.
In this stage, CCSA-DES outperforms other algorithms in
six functions. In the late stage, the fitness curves of the
algorithms gradually flatten and converge.
We also show the consensus performance of CCSA-

DES and compared algorithms in Fig. 3. The vertical
axis in the figures is disagreement of the distributed
system, which is usually used to evaluate the consensus

13

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

Fig. 3. Consensus performance of the proposed algorithm and state-of-art algorithms. The vertical axis is the disagreement of the distributed
system, i.e., the difference of local solutions. The disagreement is computed according to Eq. (36).

performance of distributed algorithms. The disagreement
is defined by the sum of the distance between local
solutions and the average solution:

D =
1

n

n∑
i=1

∥xi − x∥22 (36)

where xi is the local solution of i-th agent, and x =
1
n

∑n
i=1 xi is the average solution of all local solutions.

When the local solutions are consistent, the disagreement
value approaches zero, which indicates that the system
reach a consensus.

According to the disagreement curves in Fig. 3, the
curve of CCSA-DES also exhibits three stages during the
optimization process. In the early stage, the disagreement
of CCSA-DES decreases because the initial step size is
very small and thus there is less local exploration. In the
middle stage, the disagreement of CCSA-DES increases
because CCSA-DES increases the step size adaptively
and thus the exploration is enhanced. In the late stage,

CCSA-DES decreases the step size gradually and the
disagreement converges to 1E-10. The multi-agent system
reaches a consensus finally in all the nine functions. Ac-
cording to the figure, CCSA-DES has the best consensus
performance among the algorithms. The consensus perfor-
mance of MASOIE and GFPDO is second. In particular,
the disagreement of MASOIE converges to 1E-10 in six
functions. The disagreement of GFPDO shows a relatively
slow decreasing trend and does not reach 1E-10. Unlike
the above algorithms, RGF and DA-PSO do not show
a decreasing trend in the disagreement. The consensus
performance of RGF is confirmed on convex functions
only, so it cannot address the non-convex benchmark well.
The disagreement curve of DA-PSO remains at its initial
value because its algorithm design does not consider the
system consensus.
Table IV shows the solution quality and communication

amount of these algorithms. The communication amount
records the number of times that an agent communicates

14

TABLE IV
Comparison with state-of-the-art algorithms

CCSA-DES
(proposed) MASOIE[45] GFPDO[47] RGF[23] DA-PSO[48]

mean 1.51E+06 7.69E+04 5.85E+06 5.02E+03 4.23E+05
median 1.49E+06 7.60E+04 5.64E+06 5.01E+03 3.77E+05
std 1.41E+05 1.48E+04 9.08E+05 4.48E+01 2.02E+05

p-value - 7.08e-10* 7.08e-10# 6.88e-11* 7.98e-10*F1
comm.
amount 6.35E+07 6.01E+08 4.85E+09 1.50E+09 9.96E+06
mean 5.92E+05 6.43E+04 8.87E+08 1.03E+11 7.80E+07
median 5.57E+05 6.36E+04 8.98E+08 1.03E+11 7.72E+07
std 1.11E+05 7.64E+03 1.21E+08 0.00E+00 1.09E+07

p-value - 7.07e-10* 7.07e-10# 4.85e-11# 7.07e-10#F2
comm.
amount 1.98E+07 2.11E+08 1.48E+10 1.50E+09 9.96E+06
mean 2.80E+02 1.09E+04 9.58E+09 3.72E+10 1.86E+04
median 2.75E+02 1.04E+04 9.76E+09 3.72E+10 8.25E+03
std 2.00E+01 2.93E+03 4.17E+08 0.00E+00 2.28E+04

p-value - 7.08e-10# 7.08e-10# 4.86e-11# 7.08e-10#F3
comm.
amount 1.92E+07 2.56E+08 1.53E+10 1.50E+09 9.96E+06
mean 1.35E+06 2.06E+07 1.82E+09 2.52E+09 4.23E+08
median 1.38E+06 2.07E+07 1.82E+09 2.52E+09 4.08E+08
std 1.86E+05 1.86E+06 1.38E+08 9.90E+05 1.07E+08

p-value - 7.07e-10# 7.07e-10# 1.56e-10# 7.07e-10#F4
comm.
amount 5.08E+07 3.25E+08 1.29E+10 1.50E+09 9.96E+06
mean 2.97E+03 2.41E+06 6.95E+09 3.84E+09 6.62E+06
median 2.93E+03 2.56E+06 6.88E+09 3.84E+09 5.74E+06
std 2.03E+02 7.77E+05 2.83E+08 0.00E+00 2.89E+06

p-value - 7.08e-10# 7.08e-10# 4.86e-11# 7.08e-10#F5
comm.
amount 2.67E+07 2.59E+08 1.46E+10 1.50E+09 9.96E+06
mean 1.49E+03 1.50E+05 6.66E+09 4.50E+10 1.12E+09
median 1.33E+03 1.45E+05 6.66E+09 4.50E+10 9.83E+08
std 6.20E+02 6.03E+04 3.68E+08 0.00E+00 3.75E+08

p-value - 7.07e-10# 7.07e-10# 4.86e-11# 7.07e-10#F6
comm.
amount 2.87E+07 3.28E+08 1.46E+10 1.50E+09 9.96E+06
mean 8.18E+06 4.54E+07 8.99E+08 1.32E+09 1.43E+09
median 7.85E+06 4.55E+07 9.04E+08 1.22E+09 1.35E+09
std 1.17E+06 2.97E+06 5.10E+07 4.31E+08 3.44E+08

p-value - 7.08e-10# 7.08e-10# 7.08e-10# 7.08e-10#F7
comm.
amount 5.93E+07 3.35E+08 1.44E+10 1.50E+09 9.96E+06
mean 1.77E+06 1.98E+05 5.44E+08 3.43E+10 8.58E+07
median 1.76E+06 1.92E+05 5.55E+08 2.99E+10 5.64E+07
std 1.59E+05 2.49E+04 8.90E+07 1.96E+10 9.63E+07

p-value - 7.08e-10* 7.08e-10# 7.08e-10# 7.08e-10#F8
comm.
amount 2.21E+07 2.55E+08 1.46E+10 1.50E+09 9.96E+06
mean 1.53E+03 1.08E+07 5.69E+09 2.31E+10 2.67E+09
median 1.56E+03 1.02E+07 5.74E+09 2.38E+10 2.44E+09
std 2.34E+02 2.26E+06 2.89E+08 4.10E+09 6.84E+08

p-value - 7.07e-10# 7.07e-10# 7.07e-10# 7.07e-10#F9
comm.
amount 2.57E+07 3.93E+08 1.41E+10 1.50E+09 9.96E+06

* The performance of the compared algorithm are significantly better than the proposed
CCSA-DES based to the Wilcoxon rank sum test of level 0.05.

The performance of the compared algorithm are significantly worse than the proposed
CCSA-DES based to the Wilcoxon rank sum test of level 0.05.

with its neighbors during the whole optimization process.
Besides, p-value is the result of Wilcoxon rank sum test.
It indicates whether there is a significant difference in the
performance of two algorithms. According to the table, the
solution quality of CCSA-DES is significantly better than
other algorithms on six of nine functions. In addition, the
performance of RGF on F1 is better than CCSA-DES, and
the performance of MASOIE on F2 and F8 is better than
CCSA-DES. However, the communication amount of RGF
and MASOIE is 1 to 2 orders of magnitude higher than
CCSA-DES. In the scenarios where the communication
amount is limited, CCSA-DES has the advantage over
MASOIE, GFPDO, and RGF.

In conclusion, the proposed CCSA-DES has better
consensus performance and competitive solution quality
when compared with state-of-the-art algorithms for black-
box distributed optimization.

E. Validation on Realworld Problems
In this subsection, we verify the performance of the

proposed algorithm on a realworld problem, multi-target
localization problems in wireless sensor networks. Con-
sider a wireless sensor network with n sensors, whose
positions are denoted by y1, y2, ..., yn. Suppose there are
Nt targets appear concurrently in the detection area.
Each sensor can receive the signal strength from multiple
targets. For sensor i, the measurement data is denoted by
ϕi,1, ϕi,2, ..., ϕi,Nt

.

ϕi,t = P0 − 10np log10(
∥pt − yi∥

d0
) + ϵ (37)

where ϵ ∼ N (0, v) is the measurement noise. P0 is a known
reference power value in dB milliwatts at a reference
distance d0. In this experiment, v is set to 0.1, P0 is set
to 100, d0 is set to 1, and np is set to 2 [49].
A sensor can estimate the distance from targets to itself

according to the signal strength. However, due to the lack
of direction information, it is hard for a single sensor
to locate targets. Therefore, it is necessary for multiple
sensors to cooperate and locate targets. As a result, the
multi-target localization problem is defined as follows:

F (p1, p2, ..., pNt
) =

1

n

n∑
i=1

fi(p1, p2, ..., pNt
) (38)

s.t. fi(∗) =
Nt∑
t=1

[ϕit − (P0 − 10np log10(
∥pt − yi∥

d0
))]2

Here, p1, p2, ..., pNt
are the optimization variables, where

pt ∈ R3 represents the estimated position of target t. fi(∗)
is the local objective function of sensor i, which represents
the estimation error based on the measurement data of
sensor i. F (∗) is the global objective function, which is
the total estimation error of all sensors.
We test the performance of CCSA-DES and compared

algorithms on this problem with different number of
targets. According to the experiment result in Fig. 4, we
can find that the overall performance of CCSA-DES is
better than compared algorithms. Although MASOIE
achieve the close performance with CCSA-DES in the
case of 10 targets. As the number of targets increases,
the estimation error of MASOIE increases rapidly. This is
because the problem dimension increases with the number
of targets. Differently, the performance of our method
CCSA-DES is slightly affected by the increase of the
number of targets, and it can still work well in the case
of 50 targets.

VI. Conclusion
In this work, we propose a multi-agent evolution strat-

egy with cooperative and cumulative step adaptation
for black-box distributed optimization (CCSA-DES). We
design a cumulative method for the neighboring evolution
path in distributed optimization. Based on the neigh-
boring evolution path, an inner adaptation method and
an outer adaptation method are designed for the local

15

10 20 30 40 50
number of targets

10 1

100

101

102

103

es
tim

at
io

n
er

ro
r

0.11 0.17 0.25 0.32 0.41

CCSA-DES(proposed)
MASOIE

GFPDO
RGF

DA-PSO

Fig. 4. Performance of CCSA-DES and compared algorithms on the
multi-target localization problem with different number of targets.

optimization phase and communication phase, respec-
tively. In terms of theoretical analysis, we first discuss
the working principle of the proposed step adaptation
method, and then discuss the system consensus of the
proposed distributed optimization algorithm. In terms of
experimental verification, CCSA-DES achieves competi-
tive solution quality and better consensus performance
compared with state-of-the-art algorithms for black-box
distributed optimization.

In the future, we will study the robustness and dynamic
characteristics of black-box distributed optimization prob-
lems, which exist in complex multi-agent systems, such
as time-varying networks, node failures, etc. Besides,
the applications of the multi-agent evolution strategy on
wireless sensor networks and distributed machine learning
systems are also worth studying.

References
[1] N. Patari, V. Venkataramanan, A. Srivastava, D. K.

Molzahn, N. Li, and A. Annaswamy, “Distributed Op-
timization in Distribution Systems: Use Cases, Limita-
tions, and Research Needs,” IEEE TRANSACTIONS ON
POWER SYSTEMS, vol. 37, no. 5, p. 13, 2022.

[2] D. Molzahn, F. Dörfler, H. Sandberg, S. Low,
S. Chakrabarti, R. Baldick, and J. Lavaei, “A Survey
of Distributed Optimization and Control Algorithms for
Electric Power Systems,” IEEE Transactions on Smart
Grid, vol. PP, pp. 1–1, Jul. 2017.

[3] Y. Wang, S. Wang, and L. Wu, “Distributed optimization
approaches for emerging power systems operation: A
review,” Electric Power Systems Research, vol. 144, pp.
127–135, Mar. 2017.

[4] O. Van Cutsem, D. Ho Dac, P. Boudou, and M. Kayal,
“Cooperative energy management of a community of
smart-buildings: A Blockchain approach,” International
Journal of Electrical Power & Energy Systems, vol. 117,
p. 105643, May 2020.

[5] T. Yang, X. Yi, J. Wu, Y. Yuan, D. Wu, Z. Meng, Y. Hong,
H. Wang, Z. Lin, and K. H. Johansson, “A survey of
distributed optimization,” Annual Reviews in Control,
vol. 47, pp. 278–305, 2019.

[6] A. Nedic and A. Ozdaglar, “Distributed Subgradient
Methods for Multi-Agent Optimization,” IEEE Transac-

tions on Automatic Control, vol. 54, no. 1, pp. 48–61, Jan.
2009.

[7] A. Nedić, A. Olshevsky, W. Shi, and C. A. Uribe,
“Geometrically convergent distributed optimization with
uncoordinated step-sizes,” in 2017 American Control Con-
ference (ACC), 2017, pp. 3950–3955.

[8] R. Olfati-Saber and R. Murray, “Consensus problems in
networks of agents with switching topology and time-
delays,” IEEE Transactions on Automatic Control, vol. 49,
no. 9, pp. 1520–1533, Sep. 2004.

[9] A. Nedic, A. Olshevsky, and W. Shi, “Achieving Geomet-
ric Convergence for Distributed Optimization Over Time-
Varying Graphs,” SIAM Journal on Optimization, vol. 27,
Jul. 2016.

[10] H. Li, Q. Lu, and T. Huang, “Convergence Analysis of
a Distributed Optimization Algorithm with a General
Unbalanced Directed Communication Network,” IEEE
Transactions on Network Science and Engineering, vol. 6,
no. 3, pp. 237–248, Jul. 2019.

[11] B. Gharesifard and J. Cortés, “Distributed Continuous-
Time Convex Optimization on Weight-Balanced Di-
graphs,” IEEE Transactions on Automatic Control,
vol. 59, no. 3, pp. 781–786, Mar. 2014.

[12] S. A. Alghunaim and A. H. Sayed, “Distributed Coupled
Multiagent Stochastic Optimization,” IEEE Transactions
on Automatic Control, vol. 65, no. 1, pp. 175–190, Jan.
2020.

[13] A. S. Berahas, R. Bollapragada, N. S. Keskar, and E. Wei,
“Balancing Communication and Computation in Dis-
tributed Optimization,” IEEE Transactions on Automatic
Control, vol. 64, no. 8, pp. 3141–3155, Aug. 2019.

[14] Y. Li, J. Fan, Y. Wang, and K.-L. Tan, “Influence maxi-
mization on social graphs: A survey,” IEEE Transactions
on Knowledge and Data Engineering, vol. 30, no. 10, pp.
1852–1872, 2018.

[15] X.-C. Liao, W.-N. Chen, Y.-H. Jia, and W.-J. Qiu, “To-
wards scalable dynamic traffic assignment with streaming
agents: A decentralized control approach using genetic
programming,” IEEE Transactions on Emerging Topics
in Computational Intelligence, vol. 8, no. 1, pp. 942–955,
2024.

[16] M.-H. Tayarani-N, X. Yao, and H. Xu, “Meta-heuristic
algorithms in car engine design: A literature survey,” IEEE
Transactions on Evolutionary Computation, vol. 19, no. 5,
pp. 609–629, 2014.

[17] F.-F. Wei, W.-N. Chen, Q. Li, S.-W. Jeon, and J. Zhang,
“Distributed and expensive evolutionary constrained opti-
mization with on-demand evaluation,” IEEE Transactions
on Evolutionary Computation, 2022.

[18] H. Zhu and Y. Jin, “Real-time federated evolutionary
neural architecture search,” IEEE Transactions on Evo-
lutionary Computation, vol. 26, no. 2, pp. 364–378, 2021.

[19] X.-Q. Guo, F.-F. Wei, J. Zhang, and W.-N. Chen, “A
classifier-ensemble-based surrogate-assisted evolutionary
algorithm for distributed data-driven optimization,” IEEE
Transactions on Evolutionary Computation, 2024.

[20] A. Kargarian, J. Mohammadi, J. Guo, S. Chakrabarti,
M. Barati, G. Hug, S. Kar, and R. Baldick, “Toward dis-
tributed/decentralized dc optimal power flow implementa-
tion in future electric power systems,” IEEE Transactions
on Smart Grid, vol. 9, no. 4, pp. 2574–2594, 2016.

[21] X. He, Z. Zheng, C. Chen, Y. Zhou, C. Luo, and Q. Lin,
“Distributed Evolution Strategies for Black-Box Stochas-
tic Optimization,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 12, pp. 3718–3731, 2022.

[22] T.-Y. Chen, W.-N. Chen, X.-Q. Guo, Y.-J. Gong, and
J. Zhang, “A multiagent co-evolutionary algorithm with
penalty-based objective for network-based distributed op-
timization,” IEEE Transactions on Systems, Man, and

16

Cybernetics: Systems, vol. 54, no. 7, pp. 4358–4370, 2024.
[23] D. Yuan and D. W. C. Ho, “Randomized gradient-free

method for multiagent optimization over time-varying
networks,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 26, no. 6, pp. 1342–1347, Jun. 2015.

[24] Y. Pang and G. Hu, “Randomized Gradient-Free Dis-
tributed Optimization Methods for a Multiagent System
with Unknown Cost Function,” IEEE Transactions on
Automatic Control, vol. 65, no. 1, pp. 333–340, 2020.

[25] D. Wang, J. Yin, and W. Wang, “Distributed Random-
ized Gradient-Free Optimization Protocol of Multiagent
Systems over Weight-Unbalanced Digraphs,” IEEE Trans-
actions on Cybernetics, vol. 51, no. 1, pp. 473–482, 2021.

[26] D. Yuan, D. W. Ho, and S. Xu, “Zeroth-Order Method for
Distributed Optimization with Approximate Projections,”
IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 2, pp. 284–294, 2016.

[27] A. Das and F. Lewis, “Cooperative adaptive control for
synchronization of second-order systems,” International
Journal of Robust and Nonlinear Control, vol. 18, no.
March 2014, pp. 557–569, 2010.

[28] J. Li, C. Wu, Z. Wu, and Q. Long, “Gradient-free
method for nonsmooth distributed optimization,” Journal
of Global Optimization, vol. 61, no. 2, pp. 325–340, 2015.

[29] Y. Tang, J. Zhang, and N. Li, “Distributed Zero-Order Al-
gorithms for Nonconvex Multiagent Optimization,” IEEE
Transactions on Control of Network Systems, vol. 8, no. 1,
pp. 269–281, Mar. 2021.

[30] M. Ayar, S. Obuz, R. D. Trevizan, A. S. Bretas, and
H. A. Latchman, “A distributed control approach for
enhancing smart grid transient stability and resilience,”
IEEE Transactions on Smart Grid, vol. 8, no. 6, pp. 3035–
3044, 2017.

[31] D. K. Mishra, M. J. Ghadi, A. Azizivahed, L. Li, and
J. Zhang, “A review on resilience studies in active dis-
tribution systems,” Renewable and Sustainable Energy
Reviews, vol. 135, p. 110201, 2021.

[32] Z. Li, X. Lin, Q. Zhang, and H. Liu, “Evolution strategies
for continuous optimization: A survey of the state-of-the-
art,” Swarm and Evolutionary Computation, vol. 56, no.
July 2019, 2020.

[33] Y. Jin, M. Olhofer, and B. Sendhoff, “A framework for
evolutionary optimization with approximate fitness func-
tions,” IEEE Transactions on evolutionary computation,
vol. 6, no. 5, pp. 481–494, 2002.

[34] I. Loshchilov, T. Glasmachers, and H.-G. Beyer, “Large
scale black-box optimization by limited-memory matrix
adaptation,” IEEE Transactions on Evolutionary Compu-
tation, vol. 23, no. 2, pp. 353–358, 2018.

[35] N. Hansen, “The CMA Evolution Strategy: A Tutorial,”
pp. 1–39, 2016. [Online]. Available: http://arxiv.org/abs/
1604.00772

[36] H.-G. Beyer and B. Sendhoff, “Simplify your covariance
matrix adaptation evolution strategy,” IEEE Transactions
on Evolutionary Computation, vol. 21, no. 5, pp. 746–759,
2017.

[37] C. Igel, T. Suttorp, and N. Hansen, “A computational
efficient covariance matrix update and a (1+ 1)-cma for
evolution strategies,” in Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
2006, pp. 453–460.

[38] O. Ait Elhara, A. Auger, and N. Hansen, “A median
success rule for non-elitist evolution strategies: Study of
feasibility,” in Proceedings of the 15th annual conference
on Genetic and evolutionary computation, 2013, pp. 415–
422.

[39] N. Hansen, A. Atamna, and A. Auger, “How to assess
step-size adaptation mechanisms in randomised search,”
in Parallel Problem Solving from Nature–PPSN XIII: 13th

International Conference, Ljubljana, Slovenia, September
13-17, 2014. Proceedings 13. Springer, 2014, pp. 60–69.

[40] S. Meyer-Nieberg and H.-G. Beyer, “Self-adaptation in
evolutionary algorithms,” in Parameter setting in evolu-
tionary algorithms. Springer, 2007, pp. 47–75.

[41] H.-G. Beyer, M. Dobler, C. Hämmerle, and P. Masser, “On
strategy parameter control by meta-es,” in Proceedings of
the 11th Annual conference on Genetic and evolutionary
computation, 2009, pp. 499–506.

[42] M. Hellwig and H.-G. Beyer, “Analysis of a meta-es on
a conically constrained problem,” in Proceedings of the
Genetic and Evolutionary Computation Conference, 2019,
pp. 673–681.

[43] D. Wilson, K. Veeramachaneni, and U.-M. O’Reilly,
“Cloud scale distributed evolutionary strategies for high
dimensional problems,” in European Conference on the
Applications of Evolutionary Computation. Springer,
2013, pp. 519–528.

[44] Q. Duan, G. Zhou, C. Shao, Y. Yang, and Y. Shi,
“Distributed evolution strategies for large-scale optimiza-
tion,” in Proceedings of the Genetic and Evolutionary
Computation Conference Companion, 2022, pp. 395–398.

[45] T.-Y. Chen, W.-N. Chen, F.-F. Wei, X.-M. Hu, and
J. Zhang, “Multi-agent swarm optimization with adaptive
internal and external learning for complex consensus-
based distributed optimization,” IEEE Transactions on
Evolutionary Computation, pp. 1–1, 2024.

[46] E. Warchulski and J. Arabas, “A New Step-Size Adapta-
tion Rule for CMA-ES Based on the Population Midpoint
Fitness,” 2021 IEEE Congress on Evolutionary Computa-
tion, CEC 2021 - Proceedings, pp. 825–831, 2021.

[47] W. Ai, W. Chen, and J. Xie, “A general framework for
population-based distributed optimization over networks,”
Information Sciences, vol. 418–419, pp. 136–152, Dec.
2017.

[48] M. K. Jalloul and M. A. Al-Alaoui, “A distributed particle
swarm optimization algorithm for block motion estimation
using the strategies of diffusion adaptation,” in 2015
International Symposium on Signals, Circuits and Systems
(ISSCS), Jul. 2015, pp. 1–4.

[49] G. Mao, B. Fidan, and B. D. Anderson, “Wireless sensor
network localization techniques,” Computer Networks,
vol. 51, no. 10, pp. 2529–2553, 2007.

http://arxiv.org/abs/1604.00772
http://arxiv.org/abs/1604.00772

	Introduction
	Preliminaries
	Problem Definition of Distributed Optimization
	Cumulative step adaptation method

	Case Study for Evolution Path in Distributed Optimization
	Multi-Agent Evolution Strategy with CCSA
	Framework
	Cooperative and Cumulative Step Adaptation (CCSA)
	How to construct a neighboring evolution path
	How to adapt the step size

	The working principle of CCSA
	Consensus Discussion

	Experiments
	Experiment Settings and Benchmarks
	Parameter Investigation
	Historical Weight
	Communication Interval
	Conflict Angle Threshold

	Ablation Experiment for CCSA
	Comparison with State-of-the-art Algorithms
	Validation on Realworld Problems

	Conclusion
	Biographies
	Tai-You Chen
	Wei-Neng Chen
	Jin-Kao Hao
	Yang Wang
	Jun Zhang

