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Abstract

The single objective quadratic multiple knapsack problem (QMKP) is a useful model
to formulate a number of practical problems. However, it is not suitable for situations
where more than one objective needs to be considered. In this paper, we extend
the single objective QMKP to the bi-objective case such that we simultaneously
maximize the total profit of the items packed into the knapsacks and the ’makespan’
(the gain of the least profit knapsack). Given the imposing computational challenge,
we propose a hybrid two-stage (HTS) algorithm to approximate the Pareto front
of the bi-objective QMKP. HTS combines two different and complementary search
methods - scalarizing memetic search (first stage) and Pareto local search (second
stage). Experimental assessments on a set of 60 problem instances show that HTS
dominates a standard multi-objective evolutionary algorithm (NSGA II), and two
simplified variants of HTS. We also present a comparison with two state-of-the-
art algorithms for the single objective QMKP to assess the quality of the extreme
solutions of the approximated Pareto front.
Keywords: Quadratic multiple knapsack; bi-objective optimization; constrained

optimization; memetic and hybrid search; local search and Pareto local search.

1 Introduction

Given a set of weight capacity-constrained knapsacks and a set of objects (or
items), each object is associated with a weight, an individual profit and a
paired profit with any other object. The quadratic multiple knapsack problem
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(QMKP) aims to determine a maximum profit assignment (packing plan) of
objects to the knapsacks subject to their capacity constraints [14]. The profit
of a pair is accumulated in the sum only if the two corresponding objects are
allocated to the same knapsack.

The QMKP generalizes two well-known knapsack problems, i.e., the quadratic
knapsack problem (QKP) [28] and the multiple knapsack problem (MKP) [26].
The QMKP is also related to the so-called discounted 0-1 knapsack problem
(DKP) [30]. The DKP is to select items from a set of groups where each group
includes three items and at most one of the three items can be selected. For
each group, the profit of the third item is a discounted profit which is defined
by the interaction of the first two items. This problem remains linear and finds
applications in investment. The QMKP has important applications where re-
sources with different levels of interaction have to be distributed among differ-
ent tasks [14, 31]. A first example involves allocating staff in a company to a
set of groups where group member contributions are calculated both individu-
ally and in pairs; another example concerns an investment scenario where the
knapsacks represent the bounded budgets and the paired values indicate the
impact on expected financial performances when different investment options
are chosen together.

The QMKP is computational challenging since it generalizes the NP-hard
QKP [28]. To solve such problems, exact and heuristic algorithms constitute
two main and complementary solution methods in the literature. Exact algo-
rithms have the theoretical advantage of guaranteeing the optimality of the
solutions found. However given the intrinsic difficulty of NP-hard problems,
the computing time needed to find the optimal solution by an exact algorithm
may become prohibitive for large instances. For instance, for the QKP, the
most powerful exact algorithm can only deal with instances with no more
than 1500 items [29] and typically requires considerable computing time. For
the more complicated QMKP, no exact algorithm has been published in the lit-
erature to the best of our knowledge. On the other hand, heuristic algorithms
aim to find satisfactory sub-optimal solutions (to large problem instances) in
acceptable computing time, but without provable quality guarantee of the at-
tained solutions. This approach is particularly useful when it is difficult or
impossible to obtain an optimal solution. Within the context of approximat-
ing the difficult QMKP, several heuristic algorithms have been reported in
the literature. Representative heuristic algorithms include population-based
algorithms, such as genetic algorithms [14,31], memetic algorithm [32], artifi-
cial bee colony algorithm [33] and evolutionary path relinking algorithm [8].
Besides, neighborhood search and constructive/destructive search approaches
represent another class of effective tools for the QMKP; typical examples in-
clude hill-climbing [14], tabu-enhanced iterated greedy search [13], strategic
oscillation [12] and iterated responsive threshold search (IRTS) [7]. Finally,
note that exact and heuristic approaches complement each other and are use-
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ful for problem solving in different settings. They can even be combined to
create powerful hybrid algorithms.

The QMKP is a useful model to formulate a number of practical problems
[14, 31]. Still it is not suitable for situations where more than one objective
needs to be simultaneously considered. Consider the following staff assign-
ment problem for instance. When company managers allocate staff to form a
set of groups responsible for different products, they may not only consider
the total strength of all groups, but also the balance among the groups for
the sake of fairness and sustainable development. For instance, when several
groups work on different products destined to different types of customers,
in order to pursue a long-term profit, company managers may want to bal-
ance the strength of each group when allocating the group members, such
that each group has enough capability to ensure a high-quality of its products
for the purpose of well satisfying its customers in the long term. In portfolio
investments, an investor may be interested not only by maximizing the to-
tal return of the invested asset mix, but also by ensuring an expected return
of the least profit asset. In these settings, one faces a bi-objective version of
the QMKP, in which both the total profit of the packing plan and the gain
of the least profit knapsack (corresponding to the makespan in scheduling
theory) are to be maximized simultaneously (see Section 2 for the formal def-
inition). To conveniently formulate this type of problems, this work extends
the single objective QMKP to the bi-objective QMKP (BO-QMKP). Apart
from the aforementioned application scenarios, the BO-QMKP model could
find in the future additional applications in other settings where it can be
used to formulate either a whole problem or a subproblem. One notices that
some well-known knapsack problems and more generally other optimization
problems have already a bi-objective or multi-objective counterpart, like the
bi-objective 0-1 knapsack problem [10], the multi-objective multidimensional
knapsack problem [4], the bi-objective unconstrained binary quadratic pro-
gramming problem [21], the bi-objective flow-shop scheduling problems [17],
the bi-objective traveling salesman problem [20], the multi-objective set cov-
ering problem [15] and the bi-objective capacity planning problem [37]. The
BO-QMKP introduced in this work enriches these multi-objective modeling
tools and enlarges the class of practical problems that can be formulated.

On the other hand, solving the BO-QMKP model represents an imposing
computational challenge in the general case since it generalizes the computa-
tionally difficult QMKP model. For this reason, we focuses on elaborating a
heuristic algorithm to approximate the Pareto front of the BO-QMKP. The
proposed hybrid two-stage (HTS) algorithm is based on the general two-stage
approach combining two fundamentally different and complementary search
strategies, namely the scalarizing approach (first stage) and the Pareto-based
approach (second stage). Such a hybrid framework has been successfully ap-
plied to solve a number of challenging multi-objective problems such as the
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bi-objective flow-shop scheduling problems [17], the multi-objective traveling
salesman problem [20] and the bi-objective unconstrained binary quadratic
programming problem [22]. In this work, we adapt this general two-stage ap-
proach to solve our BO-QMKP model and develop dedicated search proce-
dures for each stage of the proposed algorithm. In particular, we devise a
population-based scalarizing memetic search method to effectively solve the
scalarizing subproblems in the first stage and a double-neighborhood Pareto
local search procedure to further the approximation set in the second stage.
By combining complementary search strategies in the two search stages and
using dedicated techniques in each stage, the HTS algorithm aims to push
the approximation set towards the Pareto front on the one hand and ensure
a well-distributed approximation set on the other hand. Thanks to these de-
sirable features, the proposed HTS algorithm proves to be able to attain high
quality approximations as shown in Section 4.

The main contributions of this work can be summarized as follows.

• We introduce for the first time the bi-objective quadratic multiple knapsack
model whose formal definition is provided in Section 2.
• We provide a detailed description of our hybrid two-stage approach which

aims to provide high quality approximation of the Pareto front for the pro-
posed BO-QMKP model (Section 3). We show how HTS makes an original
combination of an elitist evolutionary multi-objective optimization algo-
rithm with a state-of-the-art single-objective responsive threshold search
procedure for its first stage while adopting an effective Pareto-based local
search procedure for the second stage.
• We show experimental studies on a set of 60 benchmark instances to assess

the effectiveness of the proposed HTS algorithm (Section 4). In particu-
lar, our experiments demonstrate that HTS dominates a conventional non-
dominated sorting genetic algorithm (NSGA II) and two simplified variants
of the HTS algorithm.

2 The bi-objective quadratic multiple knapsack problem

In this section, we introduce formally the BO-QMKP model. Given a set of
objects (or items) N = {1, 2, ..., n} and a set of capacity-constrained knapsacks
M = {1, 2, ...,m}. Each object i (i ∈ N) is associated with a profit pi and a
weight wi. Each pair of objects i and j (1 ≤ i 6= j ≤ n) is associated with
a joint profit pij. Each knapsack k (k ∈ M) has a weight capacity Ck. The
BO-QMKP aims to assign the n objects to the m knapsacks (some objects can
remain unassigned) such that both the overall profit of the assigned objects
and the makespan (the gain of the least profit knapsack) are maximized subject
to the following two constraints:
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• Each object i (i ∈ N) can be allocated to at most one knapsack;
• The total weight of the objects assigned to each knapsack k (k ∈M) cannot

exceed its capacity Ck.

Given the above notations, a BO-QMKP solution can be represented as a set
of groups S = {I0, I1, ..., Im} where group Ik ⊂ N (k ∈ M) represents the
set of objects assigned to knapsack k and group I0 contains all unassigned
objects. Then the BO-QMKP can be stated mathematically as follows:

max f1(S) =
∑
k∈M

∑
i∈Ik

pi +
∑
k∈M

∑
i,j∈Ik,i 6=j

pij (1)

max f2(S) = mink∈M{
∑
i∈Ik

pi +
∑

i,j∈Ik,i 6=j
pij} (2)

subject to: ∑
i∈Ik

wi ≤ Ck,∀k ∈M (3)

S ∈ {0, ...,m}n (4)

Equation (1) aims to maximize the total profit of all assigned objects while
Equation (2) aims to maximize the gain of the least profit knapsack (or
makespan). Constraints (3) guarantees that the total weight of the objects
assigned to each knapsack does not exceed its capacity. Constraint (4) re-
quires that each object is allocated to at most one knapsack. Notice that
the BO-QMKP could also be conveniently formulated as a bi-objective 0-1
quadratic program (omitted here since this model is not used in this work).

3 A hybrid two-stage algorithm for the BO-QMKP

Given the computational challenge of the BO-QMKP model in the general
case, we introduce the hybrid two-stage search algorithm which aims to ef-
fectively calculate a high-quality approximation set of the Pareto front for a
given BO-QMKP instance.

3.1 General principle

The proposed two-stage search algorithm for the BO-QMKP is outlined in Al-
gorithm 1. The first stage uses a population-based scalarizing memetic search
method while the second stage employs a Pareto local search method. We
describe below the general principle of the two stages of our HTS approach.
In Sections 3.2 and 3.3, we present in detail the components and particular
features of the first stage and second stage respectively.
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Algorithm 1: Pseudo-code of the HTS algorithm for the BO-QMKP.
Data: P : an instance of the BO-QMKP; ps: subpopulation size;
Result: a Pareto set approximation;

1 STAGE 1: Scalarizing memetic search ;
2 Initialize the archive A ; /* Archive initialization, Sect. 3.2.1 */
3 noNS ← |A| ; /* Record the number of non-dominated solutions */
4 imp← true ;
5 cnt← 1 ;
6 while (imp = true) ∨ (noNS > 1) do
7 imp← false ;
8 step← 1/noNS ;
9 for i : 0→ noNS − 1 do

10 if cnt is odd then
11 start← i ∗ step; end← (i+ 1) ∗ step;
12 else
13 start← (noNS − i+ 1) ∗ step; end← (noNS − i) ∗ step;
14 λ1← rand(start, end); λ2← 1− λ1; λ← (λ1, λ2) ;
15 SP ← construct subpopulation(λ, ps) ;
16 (S1, S2)← randomly select two solutions from SP ;
17 S0 ← crossover(S1, S2) ; /* Solution recombination, Sect. 3.2.3 */
18 S0 ←RTS(S0, λ) ; /* Improve S0, Sect. 3.2.4 */

19 A
′ ← nondominate filter(A ∪ {S0}) ;

20 if A
′ 6= A then

21 imp← true; A← A
′

;
22 break ;

23 cnt← cnt+ 1 ;

24 STAGE 2: Pareto local search ;
25 A←DNPLS(A) ; /* Sect. 3.3 */
26 return A

3.1.1 First stage – scalarizing memetic search

The scalarizing memetic search (SMS) method in the first stage is a critical
component of our HTS algorithm. SMS follows the population-based memetic
framework [16, 25] which combines evolutionary computing and local opti-
mization. To ease the presentation of the principles of SMS, we provide an
illustration of the search process and some important notions in Figure 1.

To approximate the Pareto front of the BO-QMKP, SMS generates, by means
of different weight vectors, a number of scalarizing subproblems with a single
objective. Specifically, given an objective vector F (S) = {f1(S), f2(S)} and a
weight vector λ = {λ1, λ2}, the scalarized objective function of a subproblem
is stated as:

h(S) = λ1 ∗ f1(S) + λ2 ∗ f2(S) (5)

Then, solving a scalarizing subproblem amounts to solving a QMKP, whose
single objective function is exactly h(S). For instance, in Figure 1(a), the four
weight vectors λ1 − λ4 lead to four different scalarizing subproblems.
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Fig. 1. Illustration of the schalarizing memetic search

SMS uses an (unbounded) archive (or population) which is initialized with
a set of high-quality non-dominated solutions produced by the dichotomic
scalarizing local search method (DSLS, Section 3.2.1). In the main body of
SMS, the archive is evolved according to the following three steps.

First, the whole objective space of the BO-QMKP is equally divided into
noNS segments, where noNS denotes the current number of non-dominated
solutions in the archive. In Figure 1(a), noNS = 4 (points A-D) results in
four segments while in Figure 1(b) noNS = 5 (points A-D and F) results in
five segments. Then, SMS launches a round of segment exploration to explore
these noNS segments one by one from a direction determined at the beginning
of the current round of segment exploration. A subproblem is solved for each
segment. The direction of segment exploration changes at each different round.
In odd steps where SMS explores segments from left to right (see Figure 1(a)
for example), the importance in the scalarized objective function decreases
on f1 and increases on f2; similarly, in even steps where SMS explores seg-
ments from right to left (see Figure 1(b) for example), the importance in the
scalarized objective function decreases on f2 and increases on f1.

Second, one new solution is generated for each explored segment. Given a seg-
ment, SMS first randomly generates a weight vector (all weight vectors shown
in Figure 1 are randomly selected from the segment objective space), with
which SMS can assign a fitness to each individual in the current archive, and
the first ps individuals are copied to the subpopulation SP . For instance, in
Figure 1(b), a subpopulation with ps = 3 containing three solutions (B, C
and F) that are closest to the weigh vectors λ3 is constructed for the sub-
problem with respect to λ3 (Section 3.2.2). From SP , two parent solutions are
randomly selected. Then a knapsack-based crossover operator (Section 3.2.3)
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is applied to the parents to generate an offspring solution which is further
improved by the responsive threshold search (RTS) procedure (Section 3.2.4).

Finally, the improved offspring solution is inserted into the archive if it is not
equivalent to, or dominated by any solution from the archive. If the solution is
inserted into the archive, SMS breaks the current round of segment exploration
and starts a new round from the opposite direction; otherwise SMS explores
the next segment by following the same direction. In Figure 1(a), SMS gener-
ates an offspring solution E in segment 1 which is dominated by solution A,
so it continues to explore the next segment. In segment 2, SMS successfully
generates a solution F that is not dominated by any existing solution, so SMS
inserts F into the archive, breaks the current round of left-to-right segment
exploration, and starts a new right-to-left exploration as shown in Figure 1(b).

The above process repeats until no insertion to the archive has been made
for a whole round of segment exploration, or the number of non-dominated
solutions is less than two (which rarely happens).

In summary, the first stage with SMS has the following features.

• First, SMS uses a granularity-increasing (GI) strategy to dynamically change
the segments to be explored. GI progressively narrows down the segments
and increases their granularity. Based on these continuously shrinking seg-
ments, diverse and well-distributed weight vectors are defined, which helps
SMS to effectively approximate the whole Pareto front. This property makes
SMS different from the general-purpose scalarizing methods whose weight
vectors are fixed by considering the preference information of decision-
makers.
• Second, SMS uses a direction-altering (DA) strategy to switch its search

direction between odd and even steps to avoid a bias of the search process
towards any of the two objectives, which promotes diversity and uniform
distribution of the non-dominated solutions discovered by the search pro-
cess.
• Last, SMS solves each subproblem with the use of a subpopulation contain-

ing the most relevant solutions with respect to its associated weight vector,
which accelerates the convergence of the approximation set.

One notices that the GI and DA strategies are very simple and easy to im-
plement. They can be conveniently integrated into any scalarizing method in
the context of bi-objective optimization. From their abilities to incorporate
and guide other procedures, these two strategies can be considered as meta-
strategies for bi-objective optimization problem solving. Also, the idea of con-
structing subpopulations can be adopted by any population-based scalarizing
method to make use of the relevant nearby information and to speed up the
convergence of the search process.

8



To further appreciate the strategies and techniques of the population based
SMS algorithm, we provide a detailed presentation of its components in Section
3.2.

3.1.2 Second stage – double-neighborhood Pareto local search

From the non-dominated solution set obtained by SMS in the first stage, HTS
applies a double-neighborhood Pareto local search (DNPLS) in its second stage
to further improve the Pareto front approximation. In contrast to scalarizing
approaches, the selection process in DNPLS is directly guided by the Pareto
dominance relation. This stage not only helps to advance the approximation
set towards the Pareto front, but also enhances the distribution form and
extent of the eventual approximation set obtained by the HTS algorithm.
DNPLS is described in details in Section 3.3.

As shown in Algorithm 1, after the above two search stages, the HTS algorithm
returns the solutions contained in the archive (set A) as an approximation of
the Pareto front. The main components of the HTS algorithm are detailed in
the following sections.

3.2 Components of the scalarizing memetic search of the first stage

3.2.1 Archive initialization

In the first stage of HTS, the population based scalarizing memetic search
algorithm first creates a set of solutions to form its initial population using
the dichotomic scalarizing local search (DSLS) method. Our DSLS method
is inspired by the dichotomic search scheme for exact bi-objective optimiza-
tion [1], and is resulted from incorporating this scheme with local search (the
responsive threshold search [7] in our case). Although our DSLS algorithm
shares similarities with the dichotomic search methods investigated in [18,22],
it has some particular features as we show below.

The outline of our DSLS algorithm is sketched in Algorithm 2. DSLS starts
by identifying a high-quality solution for each individual objective function
(Lines 3-6 of Algorithm 2). We call these solutions as extreme solutions. Pre-
liminary experiments show that these extreme solutions have an important
impact on the performance of the overall algorithm. We thus make a partic-
ular computational effort to guarantee the quality of the extreme solutions.
For each of the two objectives of the BO-QMKP, we run the iterated ver-
sion of the RTS (IRTS) algorithm [7] (10 restarts using perturbed starting
solutions) in order to get a high-quality solution. The seeding solutions for
the IRTS algorithm are generated by a greedy construction method (GCM),
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Algorithm 2: Pseudo-code of the DSLS algorithm for the BO-QMKP.
Data: P : an instance of the BO-QMKP;
Result: a set of non-dominated solutions A;

1 λ1 = (1, 0), λ2 = (0, 1) ;
2 UI ← ∅, UE ← ∅ ;
3 for i : 1 to 2 do
4 S ← Greedy Construct(λi) ;

5 S
′ ← IRTS(S, λi) ;

6 UI ← UI ∪ {S
′} ;

7 while |UI | ≤ 2 do
8 Sort the solutions in UI in decreasing order of their f1 value ;
9 (S1, S2) ← select the first two solutions from UI ;

10 for i : 1 to 2 do
11 normi = |fi(S1)− fi(S2)|/fmaxi ;

12 λ← (norm2/(norm1 + norm2), norm1/(norm1 + norm2)) ;
13 imp← false ;
14 for i : 1 to 2 do
15 S0 ←RTS(Si, λ) ; /* Improve Si, Sect. 3.2.4 */
16 if

(f1(S
1) > f1(S

0))∧(f1(S
0) > f1(S

2))∧(f2(S
2) > f2(S

0))∧(f2(S
0) > f2(S

1)
then

17 UI ← UI ∪ {S0} ;
18 imp← true ;
19 break ;

20 if imp = false then
21 UE ← UE\{S1} ;

22 A← non-dominated solutions from UI ∪ UE ;
23 return A

where at each iteration of the construction process, GCM inserts an unas-
signed object to a knapsack that achieves the best improvement of the current
scalarizing objective function while maintaining the feasibility. The two re-
sulting extreme solutions (one per objective) are included in a set UI . At
each iteration of DSLS, the solutions in UI are sorted in decreasing order
of the first objective value (i.e., f1 value), and then the first two solutions
of UI are selected to form a pair, say (S1, S2). A new weight vector per-
pendicular to the segment defined by S1 and S2 in the objective space is
defined as: λ = (norm2/(norm1 + norm2), norm1/(norm1 + norm2)), where
normi = |fi(S1) − fi(S

2)|/fmaxi (i = 1, 2). fmax1 and fmax2 can be set to a
tight upper bound of the two objectives of the BO-QMKP, but for the sake of
simplicity, they are set here as:

fmax1 =
n∑
i=1

n∑
j=i

pij (6)

fmax2 = fmax1 /m (7)

DSLS then runs RTS on the scalarizing subproblem with respect to λ and
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the resulting solution S0 is inserted into UI if f1(S
1) > f1(S

0) > f1(S
2) and

f2(S
2) > f2(S

0) > f2(S
1). S1 and S2 are successively used as initial solutions

for two independent runs of RTS. Once a S0 is successfully inserted into UI ,
the current iteration finishes; otherwise, S1 is removed from UI and put into
an external set UE before starting the next iteration. The above process (Lines
7-21 of Algorithm 2) is iterated until UI contains less than two solutions, and
the non-dominated solutions from UI ∪ UE are put into A to form the initial
archive.

3.2.2 Subpopulation construction

At each iteration of SMS, the algorithm deals with a subproblem that is as-
sociated with a weight vector λ = (λ1, λ2). A subpopulation of individuals,
from which two parent solutions that participate in the subsequent crossover
procedure are selected, is temperately constructed. For λ = (λ1, λ2), λ1 is a
real value randomly selected from the interval [start, end] (as to how to obtain
start and end, see Lines 10-13 of Algo. 1), and λ2 = 1 − λ1. With λ, each
individual in the archive A is assigned a fitness value. The individuals in A
are then sorted in decreasing order of their fitness values, and the subpopu-
lation is composed of the first ps individuals. One notices that the solutions
included in the subpopulation are those obtained by solving the subproblems
of previous iterations, each subproblem being associated with a weight vector
different from λ. The solutions in the current subpopulation can be considered
as the representatives of the ps previous subproblems whose associated weight
vectors are the ps closest ones to λ. According to [38], the optimal solution
of the subproblem associated to λi should be close to that of the subproblem
associated to λj if λi is close to λj. Therefore, we argue that the informa-
tion of the subproblems whose weight vectors are close to that of the current
subproblem should be helpful for solving the current subproblem.

3.2.3 Knapsack-based crossover operator

After subpopulation construction, two different individuals are randomly se-
lected from the subpopulation, which are to be recombined using the knapsack-
based crossover (KBX) operator to produce a single offspring solution. KBX
works as follows. Given two parent solutions S1 = {I10 , I11 , ..., I1m} and S2 =
{I20 , I21 , ..., I2m} (the fitness of S1 is always better than that of S2 with respect
to the current subproblem), KBX randomly selects two knapsacks of objects
I1i (i 6= 0) and I2j (j 6= 0) from them, respectively. Then, the whole solution
of S1 is copied to the offspring solution S0 = {I00 , I01 , ..., I0m}, with only one
knapsack of objects I0i (corresponding to I1i of S1) replaced by I2j . Such an off-
spring solution may be infeasible and two cases may happen: 1) some objects
appear twice, 2) some objects are missing in the new solution. For the first
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case, KBX removes the duplicated objects from the old knapsacks (other than
the newly replaced knapsack I0i ) of S0. For the second case, KBX first sorts
the missing objects in random order and then for each of them, KBX tries to
assign it to a knapsack I0k (k > 0) that can accommodate it without violating
the capacity constraint. If there are multiple such knapsacks, one knapsack is
randomly chosen; if no such knapsack exists, KBX assigns the object to I00 .

After each crossover operation, the new offspring solution is improved by a
local optimization procedure which is explained in the next section.

3.2.4 Responsive threshold search component

To optimize a single objective subproblem defined with a scalarized objective
function, any approach to the conventional QMKP can be applied in general.
In our case, we apply the responsive threshold search (RTS) algorithm [7]
which is one of the best performing approaches for the QMKP.

RTS basically alternates between a threshold-based exploration phase (Explo-
ration for short) and a descent-based improvement phase (Improvement for
short). Exploration is based on three move operators (i.e., REALLOCATE,
EXCHANGE and DROP ) and Improvement is based on two operators (i.e.,
REALLOCATE, EXCHANGE). In Exploration phase, RTS accepts any
encountered neighboring solution that satisfies a responsive quality threshold,
while in Improvement phase, RTS continues accepting the first met improving
neighboring solutions until no improvement can be found. If the local opti-
mum obtained in the Improvement phase has a better objective value than
the recorded best local optimum value, RTS updates this recorded value and
restarts a new round of Exploration-Improvement phases. RTS terminates
when the recorded best local optimum value has not been improved for a pre-
defined consecutive times of Exploration-Improvement phases. More details
about RTS can be found in [7].

The current single objective subproblem (QMKP) with respect to a weight
vector λ = (λ1, λ2), that is to be solved by RTS, takes the following form:

max h(S) = λ1 ∗ g1(S) + λ2 ∗ g2(S) (8)

subject to: ∑
i∈Ik

wi ≤ Ck,∀k ∈M (9)

S ∈ {0, ...,m}n (10)

where g1(S) and g2(S) are the normalized objective functions which are defined
as follows:

g1(S) = f1(S)/fmax∗1 (11)

g2(S) = f2(S)/fmax∗2 (12)

12



In the above equations, fmax∗1 and fmax∗2 are the normalized max objective
values for f1 and f2 which are calculated as follows: let the two extreme solu-
tions of the archive initialization phase (see Section 3.2.1) be S∗1 and S∗2 where
f1(S

∗
1) > f1(S

∗
2) and f2(S

∗
2) > f2(S

∗
1), then

fmax∗1 = fmax1 (13)

fmax∗2 = (f2(S
∗
2)− f2(S∗1)) ∗ fmax1 /(f1(S

∗
1)− f1(S∗2)) (14)

The introduction of the normalized objective functions g1(S) and g2(S) in
Equation (8) is to avoid a possible bias of the scalarized single objective func-
tion with respect to any of the two objective functions of the BO-QMKP when
the two objective values are of different scales.

3.3 The double-neighborhood Pareto local search of the second stage

At the end of the first stage, HTS obtains a set of high-quality and non-
dominated solutions produced by the SMS algorithm. These solutions form
an approximation of the Pareto front. The second stage of HTS aims to
further improve the quality of the approximation by a Pareto local search
method. Pareto local search extends iterative improvement algorithms for
single-objective optimization to the multi-objective case [27]. In contrast to
the scalarizing approach like SMS, which uses a single-objective acceptance
criterion, Pareto local search accepts solutions based on a Pareto dominance
relation. Our Pareto local search algorithm (see Algorithm 3) in the second
stage of HTS relies on two dedicated neighborhoods NR and NE which are in-
duced by two well-known move operators: REALLOCATE and EXCHANGE
(see [7] for the definition of these two operators), and the resulting algorithm
is called a double-neighborhood Pareto local search (DNPLS) algorithm.

The input of DNPLS is an initial archive (set A) of non-dominated solutions
provided by the SMS algorithm. DNPLS uses another set AF to contain cur-
rently unvisited solutions from A. DNPLS starts by marking all solutions in A
as unvisited (Lines 1-2 of Algo. 3) and puts all of them to AF (Line 3 of Algo.
3). At each iteration, DNPLS first randomly selects an unvisited solution S0

from AF . Then DNPLS explores the two neighborhoods NR and NE of S0 in
a serial way (Line 7-11 of Algo. 3). Any feasible neighboring solution which is
not dominated by S is marked unvisited (Line 9 of Algo. 3) and added to the
archive A followed by a non-dominated solutions filtering (Line 10 of Algo.
3). S0 is marked visited after the neighborhood exploration and the unvisited
solution set AF is updated accordingly. DNPLS repeats the above process un-
til AF becomes empty (i.e., all solutions in the archive A have been visited).
At the end of the second stage, the solutions of the archive A form the final
result of the whole HTS algorithm.
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Algorithm 3: Pseudo-code of DNPLS algorithm for the BO-QMKP.
Data: P : an instance of the BO-QMKP; A: an initial set of non-dominated

solutions;
Result: final set of non-dominated solutions A;

1 for each S ∈ A do
2 visited(S)← false ;

3 AF ← A ;
4 while AF 6= ∅ do
5 S0 ← randomly extract a solution from AF ;
6 AF ← AF \{S0} ;
7 for each N ∈ {NR, NE} do
8 for each S ∈ N(S0) do
9 if S is not dominated by S0 then

10 visited(S)← false ;
11 A← nondominate filter(A ∪ {S}) ;

12 visited(S0)← true ;
13 AF ← {S ∈ A|visited(S) = false} ;

14 return A

4 Experimental study

In this section, we present experimental studies of the proposed approach 
on a set of well-known QMKP instances. After a brief introduction of ex-
perimental setup, we divide the experiments into five parts. The first part is 
dedicated to parameter calibration. The second part is dedicated to computa-
tional results of the HTS algorithm and a comparison against two state-of-the-
art single-objective algorithms. The purpose of the third part is to compare 
the performance of HTS against a popular baseline multi-objective algorithm 
(NSGA-II [9]). The fourth part is to compare the performance of HTS with 
its two simplified versions of HTS, allowing to appreciate the impact of each 
component of HTS. Finally, part five shows a graphical study which allows us 
to visualize the behaviour of HTS and its reference algorithms.

4.1 Experimental setup

Test instances. The experiments were carried out on a set of 60 well-known 
QMKP benchmark instances which were commonly used in almost all exist-
ing QMKP literature. These instances were modified from the quadratic single 
knapsack instances that were first introduced in [2] and can be downloaded at 
http://cedric.cnam.fr/~soutile/QKP/QKP.html. The QMKP benchmarks 
are characterized by three factors: 1) the number of objects n ∈ {100, 200}; 2) 
density d ∈ {0.25, 0.75}, which means the number of non-zero profit coef-
ficients of the objective function divided by the number of all coefficients; 3) 
the number of knapsacks m ∈ {3, 5, 10}. For each instance, the capacity of
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each knapsack is set to 80% of the sum of all object weights divided by the
number of knapsacks.

Computational environment. Our HTS algorithm was coded in C++ 1

and compiled by GNU gcc 4.1.2 with the ’-O3’ flag. HTS as well as the other
competing algorithms in the experiments were independently run 30 times on
a computer with an AMD Opteron 4184 processor (2.8GHz and 2GB RAM)
running Ubuntu 12.04. When solving the DIMACS machine benchmarks 2

without compilation optimization flag, our machine requires 0.40, 2.50 and
9.55 seconds respectively for graphs r300.5, r400.5 and r500.5.

Performance measures. To evaluate the quality of the approximation set
obtained by our HTS algorithm and other competing algorithms, we use the
well-known epsilon and hypervolume indicators [39].

• Epsilon indicator (Iε): This indicator gives the minimum multiplicative fac-
tor by which an approximation set has to be shifted in the objective space
in order to slightly dominate the reference set.
• Hypervolume difference indicator (I−H): Given an approximation set A, let

the hypervolume value of A be IH(A). The Hypervolume difference indica-
tor of set A is calculated as: I−H(A) = IH(R)−IH(A), where R is a reference
set which is the best-identified approximation complied from the approxi-
mation sets of all tested configurations. Intuitively, this indicator measures
the portion of the objective space that is dominated by R but not by A.
The hypervolume indicator is one of the most commonly used measures for
evaluating the multi-objective optimization algorithms, since it is the only
unary measure which is consistent with the Pareto dominance relation [5],
i.e., it allows to obtain a total order between approximation sets.

In our experiments, these two indicators were computed based on the nor-
malized objective vectors of the non-dominated solutions. For any objective
vector, its two objective values are normalized within the interval [1,2] with
respect to the fmin∗∗ = {fmin∗∗1 , fmin∗∗2 } and fmax∗∗ = {fmax∗∗1 , fmax∗∗2 }, where
fmin∗∗i (resp. fmax∗∗i , i = 1, 2) is the minimal (resp. maximal) value of fi among
all the results obtained over the 30 runs of all compared algorithms. The point
(0.9,0.9) was used as the reference point in our experiment. Our computational
results reported in the following sections were obtained by the performance
assessment software package PISA [19], which implements exactly the above
computational procedure. For both indicators, a lower value is always better.

1 The best non-dominated solution values are available at http://www.info.univ-
angers.fr/pub/hao/bi-qmkp.html
2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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4.2 Parameter calibration

The proposed HTS relies on four parameters, among which three parameters
from the RTS component were well-tuned in our previous work [7] and their
settings in HTS are directly extracted from [7]. The only new parameter in-
troduced in this work is the subpopulation size (ps, see Section 3.2.2). To
calibrate ps, we have given four possible values: 4, 8, 12 and 16. With each
value of ps, HTS was run 30 times on the 60 QMKP benchmarks. The com-
putational results in terms of Iε and I−H are shown in Table 1. From Table 1,
we observe that ps = 8 is the best setting. Indeed, in terms of both indica-
tors, ps = 8 attains the largest number of instances for which it performs the
best, the smallest average indicator-value and the smallest standard deviation
among the four compared settings. From Table 1, we also learn that the value
of ps should be neither too small nor too large. When ps is too small, the
solutions included in the subpopulation could be too similar (too close to the
current weight vector) which is not helpful for the diversification. When ps is
too large, the two parent solutions selected for crossover could be too different
(too far away from the current weight vector), leading to a much deteriorated
offspring solution, which slows down the convergence of the algorithm.

Table 1
Statistical results of HTS with four different settings of subpopulation size on the
60 QMKP benchmarks. #Bests counts the number of instances on which the cor-
responding ps value achieves the best indicator-value among the four possible ps
values. For each ps value, Avg. and SD respectively show the average and the stan-
dard deviation of the 60 average indicator-values obtained on the 60 test instances.
A higher value is better for #Bests while a smaller value is better for Avg. and SD.
Bold values correspond to the best setting for the statistical item and the indicator
under consideration.

Iε I−H

ps=4 ps=8 ps=12 ps=16 ps=4 ps=8 ps=12 ps=16

#Bests 11 32 26 22 13 30 29 21

Avg. 0.184035 0.174198 0.174910 0.175684 0.138575 0.131301 0.131505 0.132318

SD 0.046144 0.042367 0.042727 0.043029 0.041283 0.038827 0.038850 0.038887

4.3 Computational results of HTS and comparisons with QMKP algorithms

This section reports the computational results of our HTS algorithm on the
set of 60 benchmark instances, which are summarized in Table 2. Columns 1
to 5 give the characteristics of the instances, including the number of objects
(n), density (d), number of knapsacks (m), instance identity number (I) and
capacity of each knapsack (C). Columns 10 to 15 list our results with HTS,
which are respectively the two objective values of the leftmost solution (f left1

and f left2 ), the two objective values of the rightmost solution (f right1 and f right2 ),
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the number of non-dominated solutions compiled from the results of 30 runs
(#NS) and the average computational time when the program terminates
(CPU(s)).

From the objective values displayed in Table 2, we learn that the leftmost
and rightmost solutions obtained by HTS are two mutually non-dominated
solutions. Obviously, the leftmost solution is much better than the rightmost
solution in the first objective value, while much worse in the second one. These
two solutions represent the two extreme points of the approximate Pareto
front obtained by HTS. Looking at the number of non-dominated solutions,
a clear trend is observed: when the density of the instance remains the same,
the number of non-dominated solutions obtained by HTS increases with the
number of items; when the number of items remains the same, it increases with
the density of the instance. As to the computational efficiency, it is observed
that the time required by HTS generally increases when the number of non-
dominated solutions identified is larger.

Now we turn to our first computational study which aims to assess the quality
of the leftmost extreme point (i.e., the best solution in terms of f1) of the ap-
proximate Pareto set reached by the HTS algorithm. As indicated in similar
studies presented in [15,23,34], this assessment is interesting since even if the
leftmost extreme point alone cannot fully characterize the whole approxima-
tion set, it does convey useful information about the quality of the approx-
imation when it is used together with other assessment indicators. For this
purpose, we apply some state-of-the-art single objective QMKP algorithms to
optimize the first objective f1 (i.e., the total profit of the packing plan, corre-
sponding to the objective of the QMKP) and use the output best solutions,
which are supposed to be of high quality in terms of f1 value, as references
for our assessment. In our case, we consider two recent best performing single
objective QMKP algorithms: the tabu-enhanced iterated greedy (TIG) algo-
rithm [13] and the iterated responsive threshold search algorithm (IRTS) [7].

For this study, we run these two algorithms 30 times on the same computer
where HTS was run. For both IRTS and TIG, we set a specific time limit
for each instance, which is exactly the computational time consumed by HTS
indicated in column CPU(s) of Table 2. The outcome of the IRTS and TIG
algorithms is a single best solution, based on which we can calculate its two
corresponding objective values (f1 and f2). The final results of IRTS and TIG
are displayed in columns 6-7 and 8-9 of Table 2 respectively. Since the QMKP
algorithms consider only the total profit of the packing plan (i.e., f1) during
the optimization process, we focus on comparing their best solutions to the
leftmost solution of HTS (the non-dominated solution with the highest total
profit). For each instance, the non-dominated solution(s) among the three
solutions in comparison (i.e., the best solutions of IRTS and TIG, as well as
the leftmost solution of HTS) are highlighted in bold. If the non-dominated
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solution is unique, it is also starred.

Table 2
Computational results of HTS and comparisons with two state-of-the-art single ob-
jective QMKP algorithms. For each instance, the non-dominated solution(s) among
the three solutions in comparison, namely the two best solutions of IRTS and TIG as
well as the leftmost solution of HTS, are indicated in boldface. If the non-dominated
solution is unique, it is also marked with an asterisk.

Instance IRTS [7] TIG [13] HTS

n d m I C f1 f2 f1 f2 f left1 f left2 fright1 fright2 #NS CPU(s)
100 25 3 1 688 29286 6293 29138 6374 29286 6293 28894 9624 11 8.2
100 25 3 2 738 28491 7446 28491 7446 28491 7446 27860 9276 13 9.54
100 25 3 3 663 27179 8640 27039 6241 27179 8640 26908 8936 9 5.92
100 25 3 4 804 28593 7551 28593 7551 28593∗ 9302∗ 28410 9426 3 7.63
100 25 3 5 723 27892 8303 27892 8303 27892 8303 27553 9169 10 8.38
100 25 5 1 413 22581 2896 22379 2679 22581 2896 21995 4377 16 12.6
100 25 5 2 442 21704∗ 3621∗ 21623 2587 21678 2744 21523 4250 6 7.77
100 25 5 3 398 21239 3256 21166 3070 21239 3256 20823 4113 13 10.5
100 25 5 4 482 22181 3379 22181 3379 22181 3379 21761 4310 13 10.1
100 25 5 5 434 21669 2904 21669 2904 21669 2904 21210 4213 12 8.74
100 25 10 1 206 16221 942 16139 654 16221 942 15173 1483 23 22.08
100 25 10 2 221 15700 714 15561 744 15700 714 15259 1464 15 15.61
100 25 10 3 199 14893 698 14860 816 14927∗ 838∗ 13993 1368 18 17.98
100 25 10 4 241 16181 1000 16180 1000 16181 1000 15290 1491 16 16.77
100 25 10 5 217 15326 701 15227 701 15326 701 14609 1436 11 18.78
200 25 3 1 1381 101442 20236 100349 15894 101465 18416 100127 33362 33 103.08
200 25 3 2 1246 107958 12870 107898 12988 107958 12870 101547 33780 80 54.08
200 25 3 3 1335 104589∗ 16510∗ 104488 16214 104567 15811 99745 33177 85 113.06
200 25 3 4 1413 100098 18553 98824 17497 100098 18553 98677 32875 23 39.18
200 25 3 5 1358 102311 18096 101973 15559 102311 18096 99203 32995 35 47.97
200 25 5 1 828 75623 8435 74367 7417 75567 9131 73741 14687 29 70.16
200 25 5 2 747 80033 6230 79480 6367 80033 6230 74558 14838 46 75.06
200 25 5 3 801 78043 7293 77695 7196 78043 7293 73038 14564 45 63.82
200 25 5 4 848 74111∗ 8843∗ 73132 8403 74073 8688 72829 14487 22 47.7
200 25 5 5 815 76610 7811 76118 7762 76610 7811 73258 14596 46 65.14
200 25 10 1 414 52259 2277 51362 2604 52259 2277 49825 4946 32 82.51
200 25 10 2 373 54830 2169 54199 2153 54830 2169 50695 5030 37 181.74
200 25 10 3 400 53605∗ 2650∗ 52989 2310 53586 2575 50071 4910 42 144.73
200 25 10 4 424 51151 2281 50591 2480 51135 2458 49568 4868 22 85.72
200 25 10 5 407 53621 2383 52981 2504 53598 2839 49599 4909 40 116.39
100 75 3 1 669 69977 7823 69935 8006 69977 7823 64030 21310 40 9.28
100 75 3 2 714 69504 8970 69504 8970 69504 8970 63633 21188 69 13.68
100 75 3 3 686 68832 10614 68811 8986 68832 10614 64706 21512 42 9.08
100 75 3 4 666 70028 8499 70028 8499 70028 8499 62783 20909 78 11.73
100 75 3 5 668 69692 9373 69692 9373 69692 9373 65498 21737 46 11.45
100 75 5 1 401 49421 3582 49397 3554 49421 3582 43565 8693 32 15.25
100 75 5 2 428 49400 3452 49350 3499 49365 3858 42850 8537 52 18.71
100 75 5 3 411 48495 3788 48495 3788 48495∗ 3816∗ 44177 8776 47 25.44
100 75 5 4 400 50246 3692 50246 3692 50246 3692 42982 8570 61 12.28
100 75 5 5 400 48753 4170 48752 4368 48753 4170 44543 8857 32 12.62
100 75 10 1 200 30296 1052 30111 842 30296 1052 26155 2501 53 153.55
100 75 10 2 214 31101 1179 31032 941 31129∗ 1184∗ 25491 2458 37 63.45
100 75 10 3 205 29908 926 29829 987 29908 926 26125 2536 40 76.28
100 75 10 4 200 31762 1057 31657 1191 31762 1057 25546 2514 57 58.52
100 75 10 5 200 30507∗ 1049∗ 30279 1049 30465 958 27030 2637 48 28.84
200 75 3 1 1311 270718 29712 270718 29712 270718 29712 238288 79407 231 121.16
200 75 3 2 1414 257288 38726 257288 38726 257156 38420 237784 79231 151 50.09
200 75 3 3 1342 270069 31536 270069 31536 270069 31536 241151 80310 204 59.14
200 75 3 4 1565 246993 38734 246746 36900 246961 38794 231224 77011 107 61.44
200 75 3 5 1336 279598 31892 279598 31892 279598 31892 242174 80715 207 74.4
200 75 5 1 786 185097∗ 13690∗ 184917 12557 185076 13671 158498 31624 127 78.82
200 75 5 2 848 174812 14404 174739 14626 174836 14220 158785 31706 83 66.28
200 75 5 3 805 186767∗ 13705∗ 186670 12904 186745 12999 161095 32184 119 72.9
200 75 5 4 939 166874∗ 15174∗ 166611 16125 166815 14126 153731 30662 66 68.29
200 75 5 5 801 193310∗ 13852∗ 193100 12712 193240 13558 161412 32217 92 90.47
200 75 10 1 393 112987 3951 112892 3772 113140∗ 4598∗ 93527 9246 79 836.65
200 75 10 2 424 105846 3829 105353 4315 105597 4849 93269 9218 72 537.29
200 75 10 3 402 114561 3651 114216 3442 114551 4079 93884 9305 89 209.18
200 75 10 4 469 99307 4643 98355 4686 99017 5490 90491 8988 54 230.15
200 75 10 5 400 117141 3209 116640 3994 117026 3415 94586 9369 93 528.8

Table 2 discloses that HTS easily outperforms TIG. Indeed, HTS always finds
a solution that is equal to or dominates TIG for all test instances. Compared
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to the best performing IRTS algorithm, HTS remains very competitive. Specif-
ically, HTS is able to identify 34 non-dominated solutions that match those
found by IRTS. More importantly, HTS discovers 5 solutions that are not
reached by IRTS. In terms of the total number of non-dominated solutions
found, HTS also achieves a result that is comparable to IRTS (39 v.s. 44).
Among the 36 non-dominated solutions of HTS that have the same f1 value
as IRTS, there are 34 of them having exactly the same value in terms of f2,
with only two exceptions (Instance 100 25 3 4 and 100 75 5 3). This is due to
the quadratic nature of the BO-QMKP problem where one item is associated
with all other items of the same knapsack with a crossproduct value. Thus,
a change of the assignment of a single item can lead to a large difference of
the f1 value. This implies that a f1 value is less likely to correspond to multi-
ple different solutions and explains why HTS and IRTS find exactly the same
solutions in 34 instances. From this study, we learn that though the compu-
tational resources of HTS are evenly allocated to two objectives, the resulting
best solutions in terms of the first objective (f1) are quite good even compared
to their state-of-the-art results obtained by the best performing single objec-
tive algorithms, which devote all their efforts on f1. This study demonstrates
clearly that the leftmost part of the (approximate) Pareto set discovered by
HTS is of high quality. To further assess the quality of the whole approx-
imation set, additional comparative studies are carried out in the following
sections.

4.4 Comparative results of HTS with NSGA-II

In this section, we turn to a comparison of the proposed HTS algorithm against
NSGA-II [9], which is a well-known representative of the traditional multi-
objective evolutionary algorithms without local search. In this experiment for
solving the BO-QMKP, NSGA-II employs the same solution representation
and crossover operator as HTS. The mutation is a random implementation
of the exchange operator. That is, two objects from two different knapsacks
are randomly selected and exchanged. The parameter settings of NSGA-II are
displayed in Table 3. NSGA-II was run 30 times under the same computational
environment as HTS.

Table 3
Parameter settings for the NSGA-II developed for the BO-QMKP.

Parameter description Value

Population size 100

Crossover rate 1.0

Mutation rate 0.1

Max generation 100∗n

The comparative results in terms of the epsilon indicator (Iε) and the hyper-
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volumn indicator (I−H) are summarized in the box-and-whisker plot of Figure
2. Here, each instance is indicated by a number, ranging from 1 to 60, ac-
cording to the order it appears in Table 2. The x-axis of the plot indicates
the instances while the y-axis shows the indicator values. Recall that, for each
instance, each algorithm was run 30 times, resulting in 30 approximation sets,
and thus 30 indicator values. The box-and-whisker inside the plot provides
a number of statistical information including the minimum and maximum of
the indicator values (the ends of the whiskers), the first and third quartiles
(the bottom and top of the box) and the median (the point inside the box).
Concerning the Iε indicator, Figure 2(a) shows that HTS performs much bet-
ter than NSGA-II across the whole instance set. Indeed, the box-and-whisker
plots of HTS are typically below those of the NSGA-II. HTS always achieves a
smaller median Iε value compared to NSGA-II for all instances. For 55 out of
60 instances, even the maximum Iε value of HTS is smaller than the minimum
Iε value of NSGA-II. A similar observation can be made for the I−H indica-
tor, and the superiority of HTS appears to be even more obvious. Indeed,
from Figure 2(b), it can be observed that the box-and-whiskers of HTS are
totally below those of NSGA-II, without any overlap at any instance. More-
over, the boxes of HTS are typically very small, indicating a small variation of
the results and a strong robustness of the proposed algorithm. We applied a
Mann-Whitney test to compare the two groups of approximation sets of each
instance. All the resulting p-values are much smaller than 0.05, indicating that
HTS is significantly better than NSGA-II for all the test instances in terms
of both Iε and I−H . Furthermore, HTS is much more efficient than NSGA-II in
terms of the average CPU time in seconds across the whole instance set (84.6
v.s. 543.17).

4.5 Comparative results of HTS with two simplified algorithm variants

This section is dedicated to a performance comparison of HTS with its two
simplified variants: SMS and DSLS. The SMS version was obtained by remov-
ing the Pareto local search component (the second stage) from HTS; while
the DSLS version was obtained by removing the memetic search component
from SMS, merely keeping the archive initialization component. These exper-
iments allow us to appreciate the impact of the removed components over the
performance of the proposed HTS algorithm.

All algorithms (HTS, SMS and DSLS) were run 30 times on the set of 60
benchmark instances. The computational results in terms of the average indi-
cator values (for both Iε and I−H) are summarized in Figure 3. For the sake of
better readability, we do not provide the detailed box-and-whisker plots which
embody numerous overlaps. Complementary to Figure 3, we also provide in
Table 4, a summary of the computational results in terms of the average in-
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Fig. 2. Comparison of HTS with NSGA-II with respect to the epsilon indicator and
the hypervolume difference indicator on 60 benchmark instances. For each instance
and each indicator, the box-and-whisker summarizes the 30 values obtained by each
compared algorithm. A lower indicator-value is better.

dicator values, the number of non-dominated solutions and the CPU times in
seconds for 12 instance classes, each of which (named as n d m) includes 5
instances with the same number of items (n), the same density (d) and the
same number of knapsacks (m). The values reported in Table 4 are the average
of the 5 results of each instance class.

Figure 3 shows that compared to the simplest DSLS algorithm, the SMS al-
gorithm performs much better in terms of both Iε and I−H values across the
whole instance set. Indeed, the blue lines indicating the indicator values of
SMS are consistently below the black lines representing the indicator values of
the DSLS. Also, the average number of non-dominated solutions identified by
SMS are higher than those of DSLS for 11 out of 12 instance classes (except for
100 25 3). Due to the inclusion of an additional memetic search component,
SMS consumes on average more computing time than DSLS. However, the
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Fig. 3. Comparison of HTS with two simplified algorithm variants with respect to the
epsilon indicator and hypervolume difference indicator on 60 benchmark instances.
For each instance and each indicator, the value plotted is the average of the 30
values obtained by each compared algorithm. A lower indicator-value is better.

Table 4
Comparative results of HTS with its two simplified algorithm variants. 60 bench-
marks are divided into 12 instance classes, each containing 5 instances. The values
in the table are the average of the 5 results for each instance class. A smaller value
is better for both Iε and I−H indicators.

DSLS SMS HTS
Instance Iε I−H NoNS CPU(s) Iε I−H NoNS CPU(s) Iε I−H NoNS CPU(s)
100 25 3 0.28 0.23 8.80 5.59 0.12 0.08 8.60 7.87 0.10 0.07 9.20 7.93
100 25 5 0.35 0.32 10.00 6.42 0.13 0.10 11.40 9.87 0.12 0.09 12.00 9.94
100 25 10 0.24 0.22 9.20 8.03 0.13 0.10 14.60 18.13 0.12 0.09 16.60 18.24
200 25 3 0.33 0.27 19.20 23.12 0.19 0.12 35.80 69.54 0.14 0.08 51.20 71.47
200 25 5 0.34 0.27 23.00 30.79 0.18 0.11 26.20 63.83 0.15 0.09 37.60 64.38
200 25 10 0.35 0.31 22.40 36.72 0.21 0.14 25.00 121.89 0.15 0.10 34.60 122.22
100 75 3 0.35 0.31 13.20 4.77 0.17 0.12 26.00 10.68 0.13 0.10 55.00 11.04
100 75 5 0.36 0.32 17.00 5.81 0.19 0.13 31.80 16.63 0.15 0.10 44.80 16.86
100 75 10 0.35 0.30 21.80 7.88 0.20 0.15 41.40 75.90 0.17 0.12 47.00 76.13
200 75 3 0.35 0.31 12.20 18.99 0.21 0.15 22.80 33.49 0.12 0.08 180.00 73.25
200 75 5 0.36 0.31 24.20 25.23 0.21 0.14 37.20 73.05 0.15 0.09 97.40 75.35
200 75 10 0.34 0.29 26.40 35.42 0.25 0.18 58.00 467.46 0.17 0.11 77.40 468.41
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average time of 80.69 seconds (less than 1.35 min) of SMS across the whole
instance set is quite acceptable in practice. The above observation confirms
the effectiveness of the memetic search component of the SMS algorithm.

HTS, which combines SMS and the Pareto local search component, further
improves on SMS in terms of approximation quality. From Table 4, it can be
seen that HTS is always slightly better than SMS in terms of Iε and I−H for all
instance classes. Moreover, compared to SMS, HTS substantially enlarges the
number of non-dominated solutions found, with a very small increase of the
average computing time. This observation implies that HTS can marginally
advance the (approximate) Pareto fronts identified by SMS. In fact, these
approximate Pareto fronts are already quite good which are difficult to be
further improved. However, compared to SMS, HTS is able to enrich the non-
dominated solutions contained in the approximation set using a small amount
of additional time, which helps to discover more non-dominated solutions and
promotes a more uniform distribution of these solutions.

4.6 Graphical study

Graphical representations are well suited to visualize the behaviour of bi-
objective optimization methods. In this section, we provide a set of plots of
the non-dominated solutions obtained by the compared algorithms on selected
instances. To this end, we selected one instance from each combination of n d,
leading to four representative instances: 100 25 10 1, 100 75 5 3, 200 25 5 1
and 200 75 10 3 (instance names are in the form of n d m I). Figure 4 il-
lustrates the non-dominated solutions obtained on the four representative in-
stances by HTS, SMS, DSLS and NSGA-II. For each algorithm and each in-
stance, the non-dominated solutions are compiled from the 30 approximation
sets obtained in 30 runs.

From Figure 4, it can be observed that NSGA-II attains the worst convergence
among the four compared algorithms. It is even much worse than DSLS, the
most simplified variant of the proposed HTS algorithm, not to mention the
others. This observation is true for all four selected instances. The disappoint-
ing performance of NSGA-II could be due to the fact that it lacks an effective
intensification-oriented search procedure (contrary to the RTS procedure used
in HTS and its variants) and consequently it is unable to ensure a suitable
balance between diversification and intensification of its search process.

By comparing DSLS with SMS, the latter always achieves more efficient and
better distributed solutions than the former. Indeed, the black diamonds rep-
resenting SMS are typically closer to the upright corner (where the true Pareto
front locates) than the blue squares of DSLS. The most obvious example is
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Fig. 4. Non-dominated solutions obtained by 30 runs of the four compared algo-
rithms for four representative instances.

Figure 4(a), followed by the other three. Also, the black diamonds cover more
better the objective space than the blue squares. Indeed, the blue squares
do not reach some specific parts of the objective space, such as the left area
of Figure 4(b) and the middle-right area of Figure 4(b),(d). These areas are
however filled by the black diamonds. Compared to SMS, HTS obtains an
even better spread of the solutions and sometimes achieves a better conver-
gence of the approximation sets. Indeed, in the middle-left area of Figure 4(c),
middle-right area of Figure 4(b) and right area of 4(d), the red asterisks of
HTS appear at the places where the black diamonds of the SMS are absent,
making the non-dominated solutions of HTS well spread in the whole objec-
tive space. Also, some red-asterisk solutions of HTS in Figure 4(b) dominate
their nearby black-diamond solutions of SMS.

5 Conclusion

In this paper, we introduced the bi-objective quadratic multiple knapsack
problem (BO-QMKP), that aims to maximize both the total profit of the
packing plan and the makespan (the gain of the weakest knapsack). With
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an additional objective, the BO-QMKP enriches the single objective QMKP
model and opens the way for more practical problems to be conveniently
formulated and solved.

Like the single objective case, solving the BO-QMKP represents an imposing
computational challenge. To approximate effectively the Pareto front of a BO-
QMKP instance, we introduced the hybrid two-stage (HTS) algorithm, which
combines respectively the scalarizing strategy and the Pareto-based strategy
in its two stages. The first stage of HTS relies on a scalarizing memetic search
method, that integrates a state-of-the-art responsive threshold search algo-
rithm for the single objective QMKP with the evolutionary framework. The
second stage is a double-neighborhood Pareto local search which is character-
ized by its two dedicated neighborhoods. By allowing the generation of both
supported and unsupported solutions, the proposed HTS approach aims to
find a well-covered and well-distributed Pareto set approximation.

Experimental studies on a set of 60 well-known QMKP benchmarks showed
that the proposed approach obtains significantly better results than the con-
ventional NSGA-II algorithm without local search, demonstrating the inter-
est of including an intensification-oriented local search method in HTS. The
comparative studies of HTS with its two simplified algorithm variants addi-
tionally demonstrated the dominance of HTS and highlight the contribution
of the memetic search framework and the Pareto local search component used
by HTS. Finally, we also showed experimental evidences that the population
based HTS approach is very competitive with the state-of-the-art QMKP al-
gorithms when only the first objective is considered.

This study opens the way for some future work. First, it would be mean-
ingful to study the BO-QMKP features through a fitness landscape analy-
sis [36], which would help to improve the proposed HTS algorithm. Second, for
the purpose of better solving the BO-QMKP model, it would be interesting
to investigate other solution methods, for instance, the well-known epsilon-
constraint method [6] which is widely used in multiple objective optimization
and other types of multi-objective algorithms like those proposed in [3,11,24].
Third, given the success of hybridizing scalarizing approaches with Pareto lo-
cal search in the context of the BO-QMKP, it would be relevant to apply such
a hybridization methodology to other bi-objective problems. Finally, we hope
that the BO-QMKP model will attract additional research effort as to new
solution methods and practical applications.
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bi-objective flow-shop scheduling problems. Computers & Operations Research
2011; 38(8): 1219-1236.
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