
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 1

Memetic search for the generalized quadratic
multiple knapsack problem

Yuning Chen and Jin-Kao Hao

Abstract—The generalized quadratic multiple knapsack prob-
lem (GQMKP) extends the classical quadratic multiple knapsack
problem (QMKP) with setups and knapsack preference of the
items. The GQMKP can accommodate a number of real-life
applications and is computationally difficult. In this paper, we
demonstrate the interest of the memetic search approach for
approximating the GQMKP by presenting a highly effective
memetic algorithm (denoted by MAGQMK). The algorithm com-
bines a backbone-based crossover operator (to generate offspring
solutions) and a multi-neighborhood simulated annealing proce-
dure (to find high quality local optima). To prevent premature
convergence of the search, MAGQMK employs a quality-and-
distance pool updating strategy. Extensive experiments on two
sets of 96 benchmarks show a remarkable performance of the
proposed approach. In particular, it discovers improved best
solutions in 53 and matches the best known solutions for 39 other
cases. A case study on a pseudo real-life problem demonstrates
the efficacy of the proposed approach in practical situations.
Additional analyses show the important contribution of the novel
general-exchange neighborhood, the backbone-based crossover
operator as well as the quality-and-distance pool updating rule
to the performance of the proposed algorithm.

Index Terms—Constrained quadratic optimization, Knapsack
problem, Population based search, Heuristics.

I. I NTRODUCTION

T HE generalized quadratic multiple knapsack problem
(GQMKP), as an extension of the classical quadratic mul-

tiple knapsack problem with setups and knapsack preferences
of the items, is a difficult combinatorial optimization problem
recently introduced in [30].

We are given a set ofn objects (also called items)N =
{1, 2, ..., n} which are classified intor disjoint classesC =
{C1, C2, ..., Cr} whereCi ∩ Cj = ∅ for eachi, j, 1 ≤ i 6=
j ≤ r, and a set ofm knapsacksM = {1, 2, ...,m}. Each
knapsackk (k ∈M) has a capacityBk. Let R = {1, 2, ..., r}
be the class index set,ni = |Ci| be the number of objects
of classCi ∈ C (

∑r
i=1 ni = n), σi be the set of knapsacks

to which the items ofCi can be allocated (∀(i, j), 1 ≤ i 6=
j ≤ r, σi and σj can be overlapped),βi (1 ≤ βi ≤ m)

The work was partially supported by the LigeRo project (2009-2014) from
the Region of Pays de la Loire (France) and the PGMO (2014-0024H)
project from the Jacques Hadamard Mathematical Foundation. Support for
Yuning Chen from the China Scholarship Council (2012-2016)was also
acknowledged.

Y. Chen and J.K. Hao (corresponding author) are with the Department
of Computer Science, LERIA, Université d’Angers, 2 Boulevard Lavoisier,
49045 Angers 01, France; J.K. Hao is also affiliated with the Institut
Universitaire de France (e-mail: yuning@info.univ-angers.fr; hao@info.univ-
angers.fr).

Note: This paper has a supplementary document which is downloadable at:
http://www.info.univ-angers.fr/pub/hao/gqmkp.html

Copyright (c) 2012 IEEE

be the maximum number of knapsacks for which the items
of Ci can be selected.Cij ∈ N (i ∈ R, j ∈ {1, 2, ..., ni})
denotes the index of thejth object of theith class. Each class
Ci is associated with a setup resource consumptionsi which
is generated when any item ofCi is assigned to knapsackk
(k ∈M , only onesi is needed when more than one object of
Ci are assigned to knapsackk). Each objecti (i ∈ N) has a
weightwi, and a knapsack-dependent profitpik with respect to
knapsackk (k ∈M) which indicates its knapsack preference.
Each pair of objectsi andj (1 ≤ i 6= j ≤ n) generates a profit
qij which contributes to the optimization objective when these
two objects are allocated to the same knapsack. Additionally,
let xik be the decision variable such thatxik = 1 if object i
is allocated to knapsackk, xik = 0 otherwise; letyuk be the
decision variable such thatyuk = 1 if at least one object of
classu is allocated to knapsackk, yuk = 0 otherwise. Then
the GQMKP can be formulated as a 0-1 quadratic program:

Max
r

∑

u=1

nu
∑

i=1

m
∑

k=1

xCuikpCuik +
n−1
∑

i=1

n
∑

j=i+1

m
∑

k=1

xikxjkqij

(1)

subject to:
r

∑

u=1

(

nu
∑

i=1

xCuikwCuik + yuksu) ≤ Bk, ∀k ∈M (2)

m
∑

k=1

xik ≤ 1, ∀i ∈ N (3)

yuk = 0, ∀u ∈ R, k 6∈ σu (4)
r

∑

k=1

yuk ≤ βu, ∀u ∈ R (5)

xCuik ≤ yuk, ∀u ∈ R, i ∈ {1, ..., nu}, k ∈M (6)

yuk ≤
nu
∑

i=1

xCuik, ∀u ∈ R, k ∈M (7)

xik, yuk ∈ {0, 1}, ∀i ∈ N,u ∈ R, k ∈M (8)

For each knapsackk, constraint 2 requires that the weight
sum of the objects in the knapsack plus the sum of the setup
resource consumption must be no larger than its capacity.
Constraint 3 ensures that each object can be allocated to at
most one knapsack. Constraint 4 indicates that items cannot
be assigned to the knapsacks where they are not allowed.
Constraint 5 requires that for each class, the number of
knapsacks to which its items are allocated must be less than

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 2

or equal to its maximum number. Constraint 6 guarantees that
yuk receives the value of 1 when at least one object of class
u is allocated to knapsackk. Constraint 7 requires thatyuk
receives the value of 0 when no object of classu is allocated
to knapsackk. Constraint 8 requires that each variable takes
the value of 0 or 1.

Notice that the above model is modified from the binary
quadratic model described in [30] and has the advantage of
being more concise.

The GQMKP is NP-hard in the strong sense, since it gener-
alizes the well-known NP-hard quadratic knapsack problem
(QKP) [26]. Indeed, the GQMKP degenerates to the QKP
when the number of knapsacks equals 1, the number of classes
equals the number of objects (i.e.,r = n) and the setup of
each class equals 0. The GQMKP is also a generalization of
the popular quadratic multiple knapsack problem (QMKP) [3],
[12]–[14], which is more complicated than the QKP due to
the presence of multiple knapsacks. Compared to the classical
QMKP, the GQMKP has the following four distinguished
features:

• Class condition. Objects are grouped to different classes.
Those in the same class share common features.

• Setup requirement. A knapsack may contain objects from
different classes. Including more classes in a knapsack
requires additional resource consumption, represented by
a capacity loss when switching from one class to another
class.

• Assignment limitation. Objects from a specific class are
allowed to be assigned to a subset of knapsacks, rather
than all the knapsacks.

• Knapsack preference. Each object has a knapsack prefer-
ence which differentiates the return when it is allocated
to different knapsacks.

As shown in the case study of [30], the GQMKP can be
encountered in companies producing plastic parts which make
use of injection machines. In the studied application, jobs
are considered as objects; injection machines are regarded
as knapsacks and the given planning period is considered
as the capacity of the knapsack. Jobs are first classified to
different classes according to the mold they require. Switching
molds in a machine requires setup time. Molds are fixed
to a limited number of machines due to technical reasons.
A job is preferred to be assigned to certain machines since
its associated mold may not work at the same efficiency at
all machines or the decision maker may have preferences
to have this job assigned to certain machines. Conducting a
job in a machine takes a certain time which is considered
as the weight of the job. Apart from the profit returned by
performing a single job, additional profits can be attained by
assembling similar jobs (i.e., jobs from the same class) to
the same machine for the sake of reducing setup times which
reflects the quadratic nature of this problem. The purpose of
this problem is to determine the jobs to be performed and to
decide the assignment of jobs to the machines while satisfying
all the underlying constraints. The GQMKP may find other
applications in areas like manufacturing systems, computer
design and communications where a set of tasks needs to be

assigned to a number of machines or processors.
In [30], the authors showed the first study dealing directly

with the GQMKP and proposed three solution approaches
to this difficult problem. Based on the 0-1 quadratic model
proposed in their paper, the first approach is based on the
general Gams/Dicopt framework for solving MINP (mixed-
integer nonlinear programming) models by integrating a NLP
(Nonlinear Programming) or MIP (Mixed-Integer Program-
ming) solver that runs under the Gams system. The second
approach is a genetic algorithm (GA). The GA randomly
initializes a population and uses a 2-tournament method for
selection. It employs a specialized uniform-based operator for
crossover and two dedicated operators based on local exchange
and greedy construction for mutation. The GA generates
solutions satisfying all the constraints except for constraint
5 which is allowed to be violated. To evaluate infeasible
solutions, the GA uses a penalized fitness function which is
defined as the original objective function (Eq. 1) plus the
weighted sum of the excess number of knapsacks of each
class. The last approach is a hybrid algorithm combining F-
MSG (modified subgradient algorithm operating on feasible
values) and the GA. In this approach, constraint 5 is included
in the Lagrangian function to construct the sub-problem of the
F-MSG algorithm which is then solved by the GA.

This paper introduces a highly effective population-based
memetic algorithm MAGQMK for the GQMKP. The main
contributions of this work can be summarized as follows.

- From the algorithmic perspective, the proposed approach
integrates several original ingredients. First, we devise
a backbone-based crossover operator for generating off-
spring solutions. This operator is specifically designed for
the GQMKP and aims to maximally preserve common
contributive objects that are shared by parent solutions.
Second, to explore efficiently the search space around an
offspring solution generated by the crossover operator,
we propose a multi-neighbourhood simulated annealing
procedure which relies on three specific and complemen-
tary neighborhoods. Among these three neighborhoods,
the novel general-exchange neighborhood which is first
proposed in this work, potentially helps the algorithm to
explore the solution space more efficiently with its large-
step move size. Finally, we apply a quality-and-distance
pool updating strategy to maintain a healthy diversity of
the population.

- From the computational perspective, the proposed
MAGQMK approach shows a very competitive perfor-
mance on two sets of 96 benchmark instances. In partic-
ular, for the set of 48 small-sized instances, MAGQMK
discovers 6 improved best lower bounds and attains
the best known result for other 39 instances. More
importantly, for the set of 48 large-sized benchmarks,
MAGQMK is able to improve all previous best lower
bounds with only one exception. Finally, a successful
application of the MAGQMK to a pseudo real-life prob-
lem demonstrates its effectiveness in handling large-scale
practical cases.

The remainder of the paper is organized as follows. Section

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 3

II describes in detail the proposed approach. Section III reports
the computational results of MAGQMK on the benchmark
instances and shows comparisons with respect to the state-
of-the-art approaches. Section IV is dedicated to an extensive
investigation of the key ingredients of the proposed approach
to gain a deep understanding of their impacts on the perfor-
mance of the algorithm. Conclusions are drawn in Section V.

II. A MEMETIC ALGORITHM FOR THE GQMKP

Memetic search is a powerful framework that promotes the
idea of combining evolutionary computing and local optimiza-
tion [21]. By offering the possibility for the search process
to effectively explore the space of local optima, memetic
algorithms have proved to be quite effective in solving a
number of difficult combinatorial optimization problems [4],
[8], [15], [20], [22], [23], [32] and in particular knapsackand
quadratic problems [5], [16], [29], [31].

Algorithm 1 shows the working scheme of the proposed
memetic algorithm MAGQMK for the GQMKP. The algorithm
generates an initial population of solutions which are first
ameliorated by the multi-neighborhood simulated annealing
procedure described in Section II-C. Then it repeats an evo-
lution process to improve the population until a predefined
stop condition (typically a fixed number of generations) is
verified. At each generation, the algorithm randomly selects
two parent solutions from the population and recombines
them to generate an offspring solution using a backbone-based
crossover operator (see Section II-D). This newly generated
solution is further improved by the multi-neighborhood simu-
lated annealing procedure. Finally a quality-and-distance based
rule (see Section II-E) is applied to decide if the improved
offspring solution can be inserted into the population. We
present the components of the proposed MAGQMK in the
following subsections.

Algorithm 1 Pseudo-code of MAGQMK for the GQMKP

1: Input: P : a GQMKP instance; p: population size; maxTry:
max number of trials to generate a nonclone solution;

2: Output: the best solution S∗ found;
{ Population initialization, Section II-B }

3: POP ← Pool Initlialization(p,maxTry);
4: p← |POP |; /*p is reset to the number of distinct individuals

eventually obtained.*/
5: S∗ ← Best(POP); /* S∗ records the best solution found so

far. */
{ Main search procedure }

6: while stopping condition not reached do
7: Randomly select two solutions Si and Sj from POP
8: Sc ← Crossover(Si, Sj) /* Apply the backbone-based

crossover operator to generate an offspring solution Sc,
see Section II-D */

9: Sc ← MNSA(Sc) /* Improve Sc with the multi-
neighbourhood simulated annealing procedure, see Sec-
tion II-C */

10: if f(Sc) > f(S∗) then
11: S∗ ← Sc

12: end if
13: POP ← Pool Updating(Sc, POP) /* Update POP with

a quality-and-distance based rule, see Section II-E */
14: end while

A. Search space, solution representation and evaluation func-
tion

For a given GQMKP instance, the search space visited
by our MAGQMK algorithm is composed of all possible
allocations of objects to knapsacks such that the constraints
of Eq. 2–8 are satisfied. In other words, MAGQMK visits
only feasible solutions.

To encode a feasible solution, we adopt an integer vector
S ∈ {0, 1, ...,m}n where n is the number of objects and
m is the number of knapsacks. In this representation, value
S(i) = k (k ∈ M) indicates that objecti is allocated to
knapsackk while S(i) = 0 means that objecti is not allocated
to any knapsack. Such a solution representation can be also
considered as a partition of the set ofn objects intom + 1
groups {I0, I1, ..., Im} such that eachIk (k ∈ M) is the
set of objects allocated to knapsackk while I0 contains the
unallocated objects.

The quality of any candidate solutionS is evaluated directly
by the objective functionf of the GQMKP. Given a solution
S = {I0, I1, ..., Im}, the objective valuef(S) is calculated by
the following formula:

f(S) =
∑

k∈M

(
∑

i∈Ik

pik +
∑

i,j∈Ik,i6=j

qij) (9)

This function defines a total order over the solution space.
Given two solutionS1 andS2, S2 is better thanS1 if f(S2) >
f(S1).

B. Population Initialization

The MAGQMK algorithm uses a randomized greedy con-
struction method (RGCM) to create the initial solutions (in-
dividuals) of its population. RGCM follows the spirit of the
GRASP approach [28] which is able to generate a different
solution for each run thanks to its randomized property. RGCM
relies on the notions ofcontributionandobject densitywhose
definitions are given below. Notice that ourobject density
extends the classical bang-for-buck ratio of ordinary linear
knapsack problems and aims to identify the attractiveness of
items in the GQMKP setting.

• Contribution: Given a solutionS = {I0, I1, ..., Im}, the
contribution of objecti (i ∈ N) to knapsackk (k ∈M)
with respect toS is given by:

V C(S, i, k) = pik +
∑

j∈Ik,j 6=i

qij (10)

• Density: Let ci(i) denote the class index of objecti. The
density of object i (i ∈ N) with respect to knapsack
k (k ∈ M) is defined as its contributionV C(S, i, k)
divided by its weightwi if another object of its class
Cci(i) is already included in knapsackk, or its contribu-
tion divided by the sum of its weight and the setup of its
classsci(i) if object i is the first one of its class to be
included in knapsackk. Formally, we have:

D(S, i, k) =











V C(S, i, k)/wi,

if ∃j 6= i ∈ Cci(i) such thatj ∈ Ik

V C(S, i, k)/(wi + sci(i)), otherwise
(11)

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 4

Starting from an empty solutionS and from the first
knapsack (i.e.,k = 1), RGCM iteratively and randomly selects
an unallocated objecti (i ∈ I0) from a restricted candidate list
RCL(S, k) and assigns it to knapsackk. Let R(S, k) denote
the set of unselected objects that can fit into the knapsackk.
To buildRCL(S, k), we first sort all the objects inR(S, k) in
descending order of their density values (calculated by Equa-
tion 11), and then we put the firstmin{rcl, |R(S, k)|} (rcl is
a parameter) objects intoRCL(S, k). Each timeRCL(S, k)
becomes empty for the current knapsack, the next knapsack is
examined. The construction process is repeated until the last
knapsack (i.e.,k = m) is examined.

The solution constructed by RGCM is further improved
by the simulated annealing procedure (see Section II-C). The
ameliorated solution is either inserted into the population if
it is not a clone of any other individual in the population, or
discarded if it appears already in the population. The popula-
tion initialization procedure is iterated until the population is
filled with p (population size) distinct individuals or no eligible
individual has been generated formaxTry consecutive times.
After the initialization procedure,p is reset to the number of
distinct individuals eventually obtained.

The time complexity of constructing one solution is
bounded byO(n2 log n). The whole population initialization
procedure takesO(p ∗maxTry ∗ n2 log n) time in the worst
case. But for most of the instances we used in this paper,
it is easy to obtainp distinct solutions which makes the time
complexity of initialization procedure close toO(p∗n2 log n).

C. The multi-neighborhood simulated annealing procedure

The importance of local search within a memetic algorithm
has been recognized for a long time (see e.g., [1], [15],
[21], [24], [25]). Our local optimization procedure is based
on the popular Simulated Annealing (SA) method [18] (see
Algorithm 2). Being the first time applied to the GQMKP
problem, our multi-neighborhood SA procedure (denoted by
MNSA) is characterized by its combined use of three different
and complementary neighborhoods (NR, NSW , NGE). MNSA
basically performsnl cycles of temperature cooling and for
each temperature, MNSA runsnsl iterations while at each
iteration, it successively explores its three neighborhoods in a
sequential way. The acceptance of each sampled solutionS

′

is subject to a probability testPr{S → S
′

} which is given
by:

Pr{S → S
′

} =

{

1, if f(S
′

) > f(S)

e(f(S
′

)−f(S))/T , if f(S
′

) ≤ f(S)
(12)

where T is a temperature value. Precisely, a neighboring
solution S

′

is accepted to replace the incumbent solutionS
if a randomly generated valuerd (rd ∈ [0, 1]) is less than
or equal toPr{S → S

′

} (i.e., rd ≤ Pr{S → S
′

}). In what
follows, we introduce the three dedicated neighborhoods.

1) Two traditional neighborhoods:There are two tradi-
tional small-sized neighborhoods (denoted byNR andNSW)
which are defined by two basic move operators: REALLO-
CATE (REAL for short) andSWAP. These two neighborhoods

Algorithm 2 Pseudo-code of the MNSA procedure

1: Input: P : a GQMKP instance; S0: initial solution; T0: initial
temperature; cr: cooling ratio; nl: number of loops; nsl:
number of sub-loops

2: Output: the best solution S∗

3: S ← S0

4: S∗ ← S0 /* S∗ records the best solution found so far */
5: T ← T0 /* Initialize temperature */
6: for i = 1 to nl do
7: T ← T ∗ cr /* Temperature cooling */
8: for j = 1 to nsl do
9: for each N ∈ {NR, NSW } do

10: for k = 1 to n do
11: Search the neighborhood N(S, k) for feasible

moves and accept moves to replace S according
to the probability function (Eq. 12); Update the
best solution S∗

12: end for
13: end for
14: for k = 1 to m do
15: for each class c in knapsack k do
16: Search the neighborhood NGE(S, c, k) for feasible

moves and accept moves to replace S according
to the probability function (Eq. 12); Update the
best solution S∗

17: end for
18: end for
19: end for
20: end for

were first introduced to address the related QMKP [3], [12],
[13] and we adapt them to the GQMKP considered in this
paper.

For an objecti, let ki ∈ {0, 1, ...,m} be the knapsack
to which the object is allocated, letS ⊕ OP denote the
neighboring solution generated by applying move operator
’OP ’ to S. OurREALandSWAPmove operators are described
as follows:

- REAL(i , k): This move operator displaces an objecti
from its current knapsackki ∈ {0, 1, ...,m} to another
knapsackk (k 6= ki, k 6= 0). All neighboring solutions
of a given objecti0 induced by this move operator are
given by:

NR(S, i0) = {S′ : S′ = S ⊕ REAL(i0, k), k ∈
M \ {ki0}}

- SWAP(i , j): This move operator swaps a pair of objects
(i, j) where 1) one of them is an assigned object and the
other is not assigned, or 2) both of them are assigned but
belong to different knapsacks. All neighboring solutions
of a given objecti0 induced by theSWAPoperator are
given by:

NSW (S, i0) = {S′ : S′ = S ⊕ SWAP(i0, j), j 6= i0 ∈
N, ki0 6= kj ∈M ∪ {0}}

2) New general-exchange neighborhood for the GQMKP:
The above two neighborhoods are small-sized in the sense that
they include those neighboring solutions that require at most
two changes of the incumbent solution. However, we observed

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 5

that MNSA with merely these small neighborhoods does not
perform well for the highly constrained GQMKP. To reinforce
the search ability of MNSA, we introduce a novel large-sized
neighborhoodNGE based on the General-Exchange operator
(GENEXC for short), which is specifically designed for the
GQMKP. UnlikeREAL andSWAP , GENEXC may modify
two or more values of the current solution to generate a
neighboring solution.

- GENEXC (ki , ci , kj , cj): This move operator basically
exchanges objects of classci from knapsackki with
objects of classcj (cj 6= ci) from knapsackkj (kj 6= ki).
However, simply exchanging those objects may possibly
result in infeasible solutions. To always maintain feasibil-
ity, our GENEXCoperator employs a remove-construct
method to achieve a feasible ”exchange” functionality.
Precisely,GENEXC (ki , ci , kj , cj) removes all the ob-
jects ofCci that are currently allocated to knapsackki,
and removes all the objects ofCcj (cj 6= ci) that are
currently allocated to knapsackkj (kj 6= ki). Then it
greedily fills knapsackki with unallocated objects of class
Ccj which have the highest density values according to
the definition of Section II-B; similarly it greedily fills
knapsackkj with unallocated objects of classCci having
the highest density values. It checks all the constraints
before inserting an unallocated item into the target knap-
sack. If the insertion induces infeasibility, it skips this
item and tests the next item with the highest density value.
This GENEXC operator allows a transition between
structurally different feasible solutions which cannot be
reached by theSWAP and REAL operators in certain
cases. To illustrate this, consider a simple GQMKP
instance shown in Figure 1. The important data of the
instance is displayed on the left and two feasible solutions
are displayed on the right of the figure. In this example,
a transition fromSolution1to Solution2is by no means
possible by applying theSWAPor REALoperator, which
however, can be easily achieved byGENEXC with a
singleGENEXC (ki = 1 , ci = 3 , kj = 2 , cj = 1) move,
i.e., exchange the objects of class 3 in knapsack 1
with the objects of class 1 in knapsack 2. For some
cases where a transition from one solution to another
requires numerous combinations ofSWAP and REAL
operators,GENEXCcan realize the transition much more
easily, making the neighborhood search more focused and
straightforward. This benefit fundamentally comes from
the fact that exchanging two classes of items from two
different knapsacks never violates Constraint 5 (a class
of items can be assigned only to some knapsacks) which
is a hard constraint of the GQMKP.
Then the neighboring solutions of a given knapsackki0
and a given classci0 induced by theGENEXCoperator
are given by:
NGE(S, ki0 , ci0) = {S′ : S′ = S ⊕
GENEXC (ki0 , ci0 , kj , cj), kj 6= ki0 ∈ M, cj 6=
ci0 ∈ R}

In Section IV-B, we will investigate the effectiveness of
these three neighborhoods and show the particular role of the

13,n 3,m 3r

1 {1,2,7,8,11,12},C 2 {5,6},C
3 {3,4,9,10,13}C

1 {1,2,3}, !
2 {1, 2}, !

3 {1,2,3} !

1 3, ! 2 1, ! 3 2 !

{3,2,1,4,2,3,2,3,2,2,4,2,7}w

1 2 3 10B B B

0k

1k

2k

3k

0k

1k

2k

3k

1Solution

2Solution

1C

2C

3C

Fig. 1: An example forGENEXCneighborhood.

NGE neighborhood.

D. Backbone-based crossover operator

Apart from the local optimization procedure, crossover
constitutes another key component of our MAGQMK algo-
rithm. A successful crossover operator is usually expectedto
incorporate domain specific heuristics and should be able to
transmit meaningful features (building blocks) from parents
to offspring. To devise a specialized crossover operator with
strong ”semantics” for our problem, we consider the GQMKP
as a constrained grouping problem [6], [7]. As described in
Section II-A, a solution of the GQMKP can be viewed as
a partition of n objects intom + 1 groups. For grouping
problems, it is more natural and straightforward to manipulate
groups of objects rather than individual objects. Such an idea
of designing crossover operators has been proved to be very
successful in solving a number of grouping problems such
as graph coloring [9], [19], [27], bin packing [7] and graph
partitioning [2], [11]. In our case, we must additionally take
into account the various constraints of our problem.

Preliminary experiments show that high quality local optima
share many grouping objects. It is thus expected that objects
that are always grouped together are very likely to be part of
a global optimum or a high quality solution. Following this
observation, the general idea of our proposed crossover oper-
ator is to preserve the contributive identical object groupings
(backbone) of maximal size from parent solutions to offspring,
and to choose the groupings for the rest objects with equal
probability from two parents.

Definition 1: Given two parent solutionsS1 =
{I10 , I

1
1 , ..., I

1
m} andS2 = {I20 , I

2
1 , ..., I

2
m}, let H denote the

set of common objects that has identical object grouping of
S1 and S2, i.e., H = ∪mk=0(I

1
k ∩ I2k). The backboneHb

of S1 and S2 is the subset ofH such that each object
of Hb is a contributive object to both parent solutions, i.e.,
Hb = H\(I10 ∩ I20).

This backbone definition excludes the non-contributive ob-
jects (i.e., unallocated objects) of the parent solutions since
they are typically small-density and are unlikely to be part
of optimal solutions. Based on the notion of backbone, we
consider, for each parent solution,m groups of allocated ob-
jects taken from allm+1 groups for crossover. The proposed
backbone-based crossover procedure consists of three main

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 6

Algorithm 3 Pseudo-code of the backbone-based crossover
procedure

1: Input: Two parent solutions S1 = {I10 , I
1

1 , ..., I
1

m} and S2 =
{I20 , I

2

1 , ..., I
2

m}
2: Output: An offspring solution S0 = {I00 , I

0

1 , ..., I
0

m}
/* Step 1: Group matching */

3: Let E = {(g1i , g
2

j)|i ∈ M, j ∈ M} denote the set of
all m × m group (knapsack) combinations of S1 and S2.
Compute the number of common objects wg1

i
g2
j

for each

group combination (g1i , g
2

j) ∈ E.
4: J ← ∅
5: repeat
6: Choose the combination (g1i , g

2

j) with the largest wg1
i
g2
j

from E
7: J ← J ∪ {(g1i , g

2

j)}
8: Remove from E all combinations associated with g1i and

g2j
9: until E = ∅

/* Adjust the group numbering */
10: rd← random{0, 1}
11: for each (g1i , g

2

j) ∈ J do
12: if rd=0 then
13: Assign label g1i to group g2j of S2

14: else
15: Assign label g2j to group g1i of S1

16: end if
17: end for

/* Step 2: Create a partial solution based on backbone */
18: for i := 1 to m do
19: I0i = ∅
20: Hb

i ← I1i ∩ I2i ; NH1

i ← I1i \H
b
i ; NH2

i ← I2i \H
b
i

21: I0i ← I0i ∪Hb
i

22: R1(S0, i) ⊆ NH1

i denotes a subset of objects of NH1

i

that can fit into I0i , R2(S0, i) ⊆ NH2

i denotes a subset of
objects of NH2

i that can fit into I0i
23: l← 1
24: while R1(S0, i) 6= ∅ or R2(S0, i) 6= ∅ do
25: if l is odd or R2(S0, i) 6= ∅, then A← 1, else A← 2
26: Choose an object o with the highest density from

RA(S0, i)
27: I0i ← I0i ∪ {o}; NHA

i ← NHA
i \{o}

28: Update R1(S0, i) and R2(S0, i)
29: l← l + 1
30: end while
31: end for

/* Step 3: Complete the partial solution */
32: Groups are sorted in random order in SG, R(S0, i) denotes

a subset of unselected objects that can fit into I0i ;
33: for each i ∈ SG do
34: while R(S0, i) 6= ∅ do
35: Choose an object o with the highest density from

R(S0, i)
36: I0i ← I0i ∪ {o}
37: Update R(S0, i)
38: end while
39: end for

steps, as illustrated in Algorithm 3. The details of these three
steps are described as follows.

• Group matching. In the context of the GQMKP, two
different groups from two parent solutions which share
the most common objects typically have different group
numbers. For example, group one of the first solution
might correspond to group two of the second solution,
with possibly most objects in common. Therefore, the

first step of the crossover is to properly identify a perfect
matching of the groups in order to find out the largest
number of common objects of the two parent solutions.
This amounts to find a maximum weight matching in a
complete bipartite graphG = (V,E) whereV consists
of m left vertices andm right vertices which correspond
respectively to the groups of the first and second solu-
tions; each edge(g1i , g

2
j) ∈ E is associated with a weight

wg1

i
g2

j
, which is defined as the number of identical objects

in group g1i of solution 1 and groupg2j of solution 2.
The maximum weight matching problem can be solved
by using the classical Hungarian algorithm [17]. How-
ever, calling this algorithm for each crossover application
would be too computationally expensive (O(n+m3)) in
our case. Instead, we apply a fast greedy algorithm to seek
a near-optimal weight matching. Our greedy algorithm
iteratively chooses an edge(g1i , g

2
j) ∈ E with the largest

wg1

i
g2

j
, and then deletes fromE all edges incident to

vertex g1i and to vertexg2j . This procedure is repeated
until E becomes empty (lines 3-9 of Algorithm 3).
Steps 1 ends by adjusting the group numbering. We ran-
domly select one solution and adjust its group numbering
according to the matched groups of the other solution
(lines 10-17 of Algorithm 3).

• Create a partial solution based on backboneHb. Let
I1i and I2i denote the set of objects of theith group
in solution 1 and solution 2 respectively;Hb

i denotes
the index set of the common objects (backbone) of the
ith group, i.e.,Hb

i = I1i ∩ I2i ; NH1
i and NH2

i denote
the index set of the unshared objects of theith group
of solution 1 and solution 2, i.e.,NH1

i = I1i \Hi,
NH2

i = I2i \Hi. Let I0i denote the set of objects of the
ith group in offspring solution (I0i = ∅ at the beginning).
For each pair of matched groups, we first conserve the
backbone (i.e., all common objects) to the corresponding
group of the offspring solution, i.e.,I0i ← I0i ∪Hb

i . Let
R1(S0, i) ⊆ NH1

i denote a subset of objects ofNH1
i

that can be allocated toI0i while satisfying all constraints
(Eq. 2-8),R2(S0, i) ⊆ NH2

i denotes a subset of objects
of NH2

i that can be allocated toI0i while satisfying all
constraints (Eq. 2-8). We then alternatively choose an
object with the highest density fromR1(S0, i) on odd
steps and fromR2(S0, i) on even steps. Once an object
is selected and included intoI0i , it is removed from the
respective set (NH1

i or NH2
i); R1(S0, i) andR2(S0, i)

are updated accordingly. This procedure continues until
both R1(S0, i) andR2(S0, i) become empty. We apply
this procedure to allm groups, and we finally obtain a
partial offspring solution with some groups (knapsacks)
possibly far from being fully filled (lines 18-31 of Algo-
rithm 3).

• Complete the partial solution. In order to complete
the partial offspring solution, we allocate some of the
unassigned objects to the groups (knapsacks) based on
a greedy construction strategy. Specifically, we put the
m groups (knapsacks) in a setSG in random order. Let
R(S0, i) denote the set of unselected objects that can be

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 7

allocated toI0i while satisfying all constraints (Eq. 2-8).
For each groupi ∈ SG, we continue choosing an object
with the highest density fromR(S0, i) until R(S0, i)
becomes empty. This procedure is terminated when all
knapsacks are examined (lines 32-38 of Algorithm 3).

1
S

2
S

1
S

2
S

0k

1k

2k

3k

0k

3k

1k

2k

0k

1k

2k

3k

0k

1k

2k

3k

0k

1k

2k

3k

S

0k

1k

2k

3k

Step 1

Step 2

Step 3

A best group matching

S

A partial offspring solution

Parent solutions A completed offspring solution

represents an object which does not tell the group it belongs to.

represents an object which constitutes the backbone.

Fig. 2: Illustration of the backbone-based crossover step.

To illustrate the main steps of the backbone-based crossover
operator, we use the case of Figure 2 as a working example.
The example involves an instance of 19 items and 3 knapsacks,
and operates with two parent solutionsS1 andS2. In the first
step, the knapsacks ofS1 andS2 are matched using the fast
greedy algorithm and the results are: (S1-k1 matches toS2-
k3), (S1-k2 matches toS2-k1) and (S1-k3 matches toS2-k2).
In the second step, a partial offspring solution is constructed by
first conserving the backbone objects (striped objects in Figure
2), and then alternatively adding objects with the highest
density values from the parent solutions (item 7 fromS1-k1,
18 fromS1-k2, 2 fromS2-k1 and 11 fromS2-k2 are selected
in Figure 2). In the third step, the partial solution is completed
by allocating some unassigned items (those in virtual knapsack
k0 of the offspring solution) to other knapsacks (items 15 and
16 are allocated tok1; items 17 is allocated tok2; items 4 and
6 are allocated tok3).

Given that calculating the edge weight and finding the
maximum weight matching take respectivelyO(n) andO(m2)
time, our proposed greedy algorithm for group matching can
be realized in timeO(n+m2) in step 1. In step 2 and step 3,
finding the highest density object takesO(n) time in the worst
case and this can repeat at mostn times. So our backbone-
based crossover procedure can be realized inO(m2 + n2) in
the worst case.

E. Pool updating strategy

Avoiding premature convergence is another key issue for
population-based algorithms. To address this issue, we pro-
pose a quality-and-distance pool updating strategy to decide
whetherS0, the newly generated offspring, should be inserted
into the population or be discarded. This quality-and-distance
strategy, as its name implies, considers both the solution
quality and the distance between individuals in the population
to ensure the population diversity.

Algorithm 4 Quality-and-distance pool updating procedure

1: Require: A populationPOP = {S1, S2, ..., Sp} and an off-
spring solutionS0

2: Ensure: Updated populationPOP
3: InsertS0 into the population:POP ← POP ∪ {S0}
4: for eachSi ∈ POP do
5: CalculateAvgDisti,POP according to Eq. 14
6: CalculateQDF (Si) according to Eq. 15
7: end for
8: Identify the worst solutionSw: Sw = argmax{QDF (Si)|Si ∈

POP)}
9: if S0 6= Sw then

10: Remove the worst solution from the population:POP ←
POP\{Sw}

11: else
12: RemoveS0 from the population:POP ← POP\{S0}
13: end if

Since the GQMKP can be viewed as a grouping problem,
the well-known set-theoretic partition distance [10] seems
quite appropriate. Given two solutionsS1 andS2, the distance
between themDist(S1, S2) can be computed as:

Dist(S1, S2) = n− Sim(S1, S2) (13)

where the similaritySim(S1, S2) is a complementary measure
of the distance representing the maximum number of elements
of S1 that do not need to be displaced to obtain the solutionS2.
We apply the group matching algorithm used in Section II-D
to identify the similaritySim(S1, S2). Given a population
POP = {S1, S2, ..., Sp} and a distance matrixDist with
Distij denoting the distance between individualsSi andSj

(i 6= j and i, j ∈ {1, ..., p}), the average distance betweenSi

and any other individual inPOP is given by:

AvgDisti,POP = (
∑

Sj∈POP,j 6=i

Distij)/p (14)

The general scheme of our quality-and-distance pool up-
dating procedure is described in Algorithm 4. The offspring
solutionS0 is first inserted into the population. Then all the
solutions in the population are evaluated using the following
quality-and-distance fitness (QDF for short) function:

QDF (Si) = α ∗OR(f(Si))+ (1−α)∗DR(AvgDisti,POP)
(15)

whereOR(f(Si)) andDR(AvgDisti,POP) represent respec-
tively the rank of solutionSi with respect to its objective
value and the average distance to the population, andα is
a parameter empirically set toα = 0.6. With this parameter
setting, Eq. 15 ensures that the best individual in terms of
objective value will never be removed from the population,
which formalizes the elitism property of our pool-updating
strategy. The worst solutionSw corresponds to the individual
with the largest QDF value. IfS0 is different fromSw, we
replaceSw with S0, otherwise we discardS0.

The distance matrixDist is a memory structure that we
maintain throughout the search. Each time a new solutionS0

is inserted into the population, the distance betweenS0 and
any other solution inPOP needs to be calculated, which
takesO(p ∗ (n + m2)) time (given that the greedy group

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 8

matching procedure takesO(n+m2) time, see Section II-D).
The other distances are extracted directly fromDist. The
resting operations of the pool updating procedure, including
calculating AvgDisti,POP , QDF (Si) and identifying the
worst solution, takeO(p2 + 2 ∗ p) time. Dist is updated if
S0 is accepted andSw is removed which takesO(p) time.
According to the above analysis, our pool updating procedure
can be realized inO(p ∗ (n+m2 + p)) time.

III. C OMPUTATIONAL EXPERIMENTS

This section is dedicated to experimental assessment of the
proposed MAGQMK algorithm. For this purpose, we show
computational results on 96 benchmark instances available
in the literature and make comparisons with the current best
performing algorithms. To complete this section, we also show
a case study on a pseudo real-life problem concerning plastic
parts production with injection machines.

A. Experimental settings

Test instances. The 96 GQMKP benchmark instances
belong to two different sets and are available at:
http://endustri.ogu.edu.tr/Personel/Akademikpersonel/
Tugba SaracTest Instances/G-QMKP-instances.rar:

• Set I: This set is composed of 48 small-sized instances
which are characterized by their number of objectsn =
30, number of knapsacksm ∈ {1, 3}, number of classes
r ∈ {3, 15}, densityd ∈ {0.25, 1.00}. Optimal solutions
are unknown for these instances.

• Set II: The second set includes 48 large-sized instances
with the number of objectsn = 300, number of knap-
sacksm ∈ {10, 30}, number of classesr ∈ {30, 150},
densityd ∈ {0.25, 1.00}. Optimal solutions are unknown
for these instances.

The above two sets of instances were first generated in
[30] where the authors considered 12 factors that can affect
the problem structure. They examined each factor with two
levels which, if a full factorial experiment is conducted, leads
to 4096 different types of problems. To sample a subset of
problems from such a large number, they selected 32 types of
test problems where all factors are double leveled. With this
design, they generated two sets of 96 benchmarks that we use
in this paper.

Parameters. To report computational results of our
MAGQMK algorithm, we adopt the parameter values shown
in Table I, which are fixed in the following manner. For each
of the four parameters (p, nl, nsl, cr), we tested several
potential values while fixing the other parameters to our
specified default values, and then chose the value yielding
the best performance. An analysis in Section IV-A explains
why the value of 200 is chosen for the length of the MNSA
chain (nl) which is a critical parameter of MAGQMK. For
the initial temperature (T0), we use a formula (see Table I)
to determine its value. The formula is identified as follows.
Preliminary experiments suggest a quadratic relation between
T0 and the objective value of the initial solution (denoted as
f0), in the form ofT0 = a ∗ (f0+ b)2/c+d. We then selected
four representative instances whose initial objective values (f0)

TABLE I: Parameter settings of the MAGQMK algorithm

Parameters Description Value Section
p population size 10 II-B

maxTry max number of trials to
generate a nonclone so-
lution

20 II-B

nl number of loops 200 II-C
nsl number of sub-loops 2 II-C

T0 initial temperature
5.0 ∗ (f0 + 5000)2

100000000
+ 2.0 II-C

cr cooling ratio 0.99 II-C

range from small to large and we tuned manually a bestT0 for
each instance. With four pairs of (T0,f0) values, we obtain the
formula by solving four simultaneous equations. In summary,
the parameter values of Table I are used in all the experiments
reported in this section even if fine-tuning the parameters could
lead to better results.

Our MAGQMK algorithm was coded in C++1 and compiled
by GNU gcc 4.1.2 with the ’-O3’ option. The experiments
were conducted on a computer with an AMD Opteron 4184
processor (2.8GHz and 2GB RAM) running Ubuntu 12.04.
When solving the DIMACS machine benchmarks2 without
compilation optimization flag, the run time on our machine
is 0.40, 2.50 and 9.55 seconds respectively for graphs r300.5,
r400.5 and r500.5.

B. Computational results of the MAGQMK algorithm

In this section, we show computational results obtained by
our MAGQMK algorithm on the two sets of 96 benchmark in-
stances under two different stopping criteria: a short timelimit
of 100 generations and a long time limit of 500 generations.
We use the second stopping criterion to investigate the long-
run behavior of our MAGQMK algorithm on the set of 48
large-sized instances. For each stopping criterion and foreach
instance, our algorithm was executed 30 times independently.

The computational results obtained by our MAGQMK
algorithm on the instances of Set I and Set II are dis-
played respectively in Table A1 and Table A2 in the
supplementary document (available at http://www.info.univ-
angers.fr/pub/hao/gqmkp.html). In these two tables, column
1 to 4 give the characteristics of each instance, including
the instance identity number (No.), number of knapsacks (k),
number of classes (r) and density (d). Column 5 shows the best
known results3 (fbk) which are compiled from the best results
of the three best performing algorithms reported in [30]. Our
results are displayed in the remaining columns including the
overall best objective value over 30 runs (fbest), the average
value of the 30 best objective values (favg), the standard
deviation of the 30 best objective values (sd), the earliest CPU
time in seconds over the 30 runs when thefbest value is first
reached (tbest) and the average value of the 30 CPU time when
the best solution is first encountered in each run (tavg).

1The best solution certificates are available at http://www.info.univ-angers.
fr/pub/hao/gqmkp.html

2dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
3When we examine the solution certificates reported in [30] which are pro-

vided at http://endustri.ogu.edu.tr/Personel/Akademikpersonel/TugbaSarac
Test Instances/G-QMKP-instances.rar, we find that the reportedresults for In-
stance 10-1 (15256.01) and Instance 10-2 (13058.94) correspond to infeasible
solutions and consequently they will not be used as reference.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 9

0 5 10 15 20 25 30 35 40 45 50
−20

−15

−10

−5

0

5

10

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

Best Result of MAGQMK (100 Gens)

Best Known Result (BKR)

Improved BKR

(a) Best results on Set I

0 5 10 15 20 25 30 35 40 45 50
−25

−20

−15

−10

−5

0

5

10

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

Average Result of MAGQMK (100 Gens)

Best Known Result (BKR)

(b) Average results on Set I

0 5 10 15 20 25 30 35 40 45 50
−2

0

2

4

6

8

10

12

14

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

R1: Best Result of MAGQMK (100 Gens)

R2: Best Result of MAGQMK (500 Gens)

Best Known Result (BKR)

R2 where R2>R1

(c) Best results on Set II

0 5 10 15 20 25 30 35 40 45 50
−4

−2

0

2

4

6

8

10

12

14

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

R1: Average Result of MAGQMK (100 Gens)

R2: Average Result of MAGQMK (500 Gens)

Best Known Result (BKR)

R2 where R2>R1

(d) Average results on Set II

Fig. 3: Computational results of the MAGQMK on two sets of benchmark instances

To give a general picture of MAGQMK’s performance with
respect to the best known results, we also provide four plots
of our best and average results for both sets of instances in
Figure 3. The horizontal axis of these plots shows the instance
serial number that indicates the order in which the instances
appear in Table A1 and Table A2. The vertical axis shows the
gap of our results (either best or average) to the best known
results in percentage, calculated as (f − fbk)×100/fbk where
f is the best or average solution value. A gap larger than zero
means MAGQMK obtains a new best known result for the
corresponding instance.

For the 48 small-sized instances of Set I, Table A1 and
Figure 3(a) show that our MAGQMK algorithm is able to
attain the best known results for 45 out of 48 (93.75%) cases
including 7 improved best lower bounds (see values starred in
Table A1 and the green square points in Figure 3(a)). For 37
out of 48 instances, even our average results are better than
or equal to the previous best known lower bounds (see Figure
3(b)). Moreover, MAGQMK has a perfect standard deviation
(sd=0.00) for 38 out of 48 instances, which means that one run
is sufficient for MAGQMK to attain its best solution for these
instances. Finally, MAGQMK is computationally very efficient
and reaches the best solution within a very short computing
time (typically less than 1 second). Indeed, across all instances
of Set I, the average value of the best solution time (tbest) is
0.07 seconds and the average value of the average solution
time is 0.35 seconds.

For the 48 large-sized instances of Set II, Table A2 and

Figure 3(c) disclose that, within a short time limit (100
generations), our MAGQMK algorithm performs remarkably
by improving all the previous best known results except one
case (Instance 1-2). Moreover, even its average results reach
or improve the previous best lower bounds for 45 out of
48 cases (93.75%, see Figure 3(d)). The average standard
deviation is 43.37 which is small with respect to the best
objective values that are more than 10 thousands for many
cases. Finally, we observe that these results are obtained within
a reasonable computing time: the average value of the best
solution time is 601.57 seconds and the average value of the
average computing time is 693.02 seconds.

When a long time limit is available, our MAGQMK al-
gorithm is able to discover even better results. In particular,
MAGQMK (500 Gens) discovers 28 improved best lower
bounds (see the magenta square points in Figure 3(c)) with
respect to the results of MAGQMK (100 Gens). The average
results of MAGQMK (500 Gens) are more interesting which
are better than those of MAGQMK (100 Gens) for 44 out
of 48 cases (see the magenta square points in Figure 3(d)).
Moreover, MAGQMK (500 Gens) decreases the average value
of standard deviation (sd) from 43.37 (of MAGQMK (100
Gens)) to 36.02. The average value of the best solution time
is 2673.27 seconds and the average value of the average
computing time is 3025.82 seconds, which remain reasonable.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 10

0 5 10 15 20 25 30 35 40 45 50
−70

−60

−50

−40

−30

−20

−10

0

10

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

Result of GAM (1 Run)

Result of Hybrid (1 Run)

Avg. Result of GA (3 Runs)

Avg. Result of MAGQMK (30 Runs)

(a) Comparative results on Set I

0 5 10 15 20 25 30 35 40 45 50
−70

−60

−50

−40

−30

−20

−10

0

10

20

Instance

G
a

p
 t

o
 t

h
e

 B
K

R
 (

%
)

Result of GAM (1 Run)

Result of Hybrid (1 Run)

Avg. Result of GA (3 Runs)

Avg. Result of MAGQMK (30 Runs)

(b) Comparative results on Set II

Fig. 4: Comparative results of the MAGQMK with three state-of-the-art algorithms.

C. Comparisons with state-of-the-art algorithms

To further assess the performance of our proposed
MAGQMK, we carry out a comparative study between our
algorithm with 3 best performing algorithms proposed in [30]
that achieve state-of-the-art results:

• The Gams/Dicopt solver [30]. The Gams/Dicopt solver
is a program used for solving MINP (mixed-integer
nonlinear programming) problems by integrating a NLP
(Nonlinear Programming) or MIP (Mixed-Integer Pro-
gramming) solver that runs under the Gams system.
The reported results of Gams/Dicopt were obtained by
executing one run of the algorithm within a time limit of
13000 seconds for each instance.

• A genetic algorithm [30] (GA). For each instance, the GA
was run 3 times where each run was imposed a time limit
of 13000 seconds. The reported results include the best
lower bound, the average value of the 3 best objective
values of 3 runs and the average value of the 3 best
solution time (in CPU seconds) of 3 runs when the best
solution is first encountered.

• A hybrid algorithm combining F-MSG algorithm and GA
[30]. The reported results of the hybrid algorithm were
obtained by executing one run of the algorithm within a
time limit of 13000 seconds for each instance.

The evaluation of the above 3 reference algorithms were
performed on a PC with an Intel Core i7 processor (2.8 GHz
and 8 GB RAM). This machine is faster than our computer
with a factor of 1.16 according to the Standard Performance
Evaluation Corporation (www.spec.org).

One notices that the reported results of the three reference
algorithms were obtained by executing one run or three runs
of the algorithm while our reported results were attained by
running MAGQMK 30 times. Notice also that MAGQMK
belongs to the family of stochastic algorithms for which
executing multiple runs is a common practice in the literature.
Given the above remarks, to compare our best results over
30 runs to the reference best results of no larger than 3 runs
may be considered unfair. To make the comparison as fair
as possible, we focus on the average results (instead of the
best results) obtained by our MAGQMK algorithm for this
comparative study.

The comparative results of MAGQMK with the 3 reference
algorithms on the 48 small-sized instances of Set I and the 48
large-sized instances of Set II are summarized in Table A3 and
Table A4 respectively in the supplementary document (avail-
able at http://www.info.univ-angers.fr/pub/hao/gqmkp.html).
In these two tables, we list the identity number of the instance
in the first column (columnINST). For Gams/Dicopt and the
Hybrid algorithm which were executed only once, we indicate
the obtained best objective value (f) and the best CPU time
(in seconds) when the best solution is first encountered. For
GA and MAGQMK which were executed more than one run,
we give the average value of the best objective values (favg)
and the average value of the best CPU times (tavg). We also
provide the overall best objective value (fbest) obtained by GA
and MAGQMK for reference purposes. The entry in bold in
each row indicates the best objective value for each instance
reached by all the algorithms. The underlined value denotes
the referencefbest value of GA or MAGQMK that matches or
improves on the bold value. In the last two rows, we indicate
for each algorithm, the number of values highlighted (either
in bold or underlined, row#Bests) and the average value of
computing time (rowAvg.). Finally, in reference to the results
of the GA algorithm which was run 3 times, the last three
columns of Tables A3 and A4 provide the results of 3 runs
of our MAGQMK algorithm. These results are displayed for
the understanding of MAGQMK’s behavior when less runs are
applied. From these data, we observe that the average results
of MAGQMK vary slightly when the number of runs changes.
This finding justifies our practice of using average results for
comparative study.

The comparative results are also illustrated using plots in
Figure 4, which gives the gaps of our average results to the
best known results, in comparison with GA’s average results,
and the results of the GAM and Hybrid algorithms [30].

From Table A3 and Figure 4(a), we observe that MAGQMK
attains 37 best results (values in bold in Table A3) on the 48
small-sized instances of Set I, which is the largest among the
results of the 4 algorithms in comparison. Among these 37
best results, 7 correspond to the unique best results which
means they were never discovered by the 3 previous reference
algorithms. As for the CPU time, MAGQMK requires on

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 11

TABLE II: Computational results of the MAGQMK on the pseudo real-life instance

GA MAGQMK
nf/ni fbest favg tavg No.Gens fbest favg tavg

10/10 15518.60 15315.40 820.6 20 Gens 16012.30 15879.10 901.02
50/30 15660.70 15578.80 3136.44 60 Gens 16013.30 15897.00 1688.20
1200/150 15884.3 15669.1 9133.48 100 Gens 16018.80 15908.502611.21

average 0.35 seconds across Set I which is much shorter than
the time required by the Hybrid algorithm (2.48 seconds),
and is very competitive to the other two reference algorithms.
Moreover, our MAGQMK algorithm displays a very stable
behavior that is not observed for GA which was also executed
multiple runs. Indeed, MAGQMK achieves a success rate of
100% (i.e., favg = fbest) for 39 out of 48 cases (81.25%)
while GA has only 8 such cases (16.67%). When we apply
the statistical Wilcoxon test with a significance factor of 0.05
for pairwise comparisons, the resulting p-values of 1.97E-4
for MAGQMK v.s. Hybrid, and 1.072E-7 for MAGQMK v.s.
GA show a clear dominance of MAGQMK over Hybrid and
GA. Though the associated p-value of 0.4613 for MAGQMK
v.s. Gams/Dicopt does not disclose a significant difference
between these two methods, the superiority of the positive sum
rank (205) over the negative sum rank (146) demonstrates that
MAGQMK competes very well with Gams/Dicopt.

An even more favorable comparison is observed in Table
A4 and Figure 4(b) for the 48 large-sized instance of Set
II. Specifically, our MAGQMK algorithm is able to attain
a unique best result for 46 out of 48 cases (95.83%) while
the Gams/Dicopt solver and the Hybrid algorithm share the
remaining two cases. Moreover, MAGQMK consumes on
average 693.02 seconds in terms of computing time which is
much less than that consumed by the 3 reference algorithms
(693.02 v.s. 5184.91 of Gams/Dicopt, 3612.71 of Hybrid and
2598.33 of GA). Our MAGQMK algorithm easily dominates
the GA. Indeed, GA obtains 0 best result while MAGQMK
attains 46. Additionally, the overallbestobjective value (fbest)
of GA is worse than ouraverageresult (favg) for 46 out of 48
cases. To estimate the validity of our conclusion, we apply the
Wilcoxon test with a significance factor of 0.05 to compare
MAGQMK with the Gams/Dicopt, Hybrid and GA algorithms
respectively. The associated p-values of 7.816E-13, 6.253E-13
and 1.421E-14 confirm a clear dominance of MAGQMK over
the three reference algorithms on the instances of Set II.

D. Application of MAGQMK to a pseudo real-life problem

As indicated in Section I, one real-life application of the
GQMKP is the plastic parts production with injection ma-
chines in a plastic production company [30]. In this sec-
tion, we study the performance of our MAGQMK algo-
rithm on a pseudo real-life GQMKP instance (denoted by
pseudo-RLGQMKP). This pseudo-RLGQMKP instance sim-
ulates closely the real-life problem involving plastic parts
production used in [30] in terms of both problem size and
characteristics4. The data file of the pseudo-RLGQMKP in-

4The data file of the real-life problem in [30] is no longer available, as
confirmed by the authors. We generated the pseudo real-life instance with the
instance generator and the problem features provided by theauthors of [30]
(Dr. T. Saraç and Dr. A. Sipahioglu). We are grateful to themfor this help.

stance as well as its detailed characteristics are available at
http://www.info.univ-angers.fr/pub/hao/gqmkp.html.

The pseudo real-life problem is very large-sized with 500
jobs (objects) and 40 machines (knapsacks). Its resulting
mathematical model has 12840 constraints and 44000 binary
decision variables. The pairwise profit parameterqij alone
involves 124750 values. Such a large-sized and non-linear
instance poses a real challenge for any existing GQMKP
algorithm. As stated in [30], the Gams/Dicopt solver even
failed to find a feasible solution for a problem with such
difficulty when a time limit of 13000 seconds was given.
To test the ability of our MAGQMK algorithm, we ran it
30 times on the pseudo-RLGQMKP instance under the time
limits of 100 generations, 60 generations and 20 generations
respectively. The first stopping condition (100 generations) is a
standard one that was used in previous experiments, while the
last two stopping conditions (60 and 20 generations) are used
specifically in this experiment to meet the potential efficiency
requirement in real situation. The computational results of
MAGQMK on the pseudo-RLGQMKP instance are displayed
in Table II. For the purpose of comparison, we also report the
results obtained by the GA algorithm described in [30]5 for
30 times under three different stopping conditions that were
used in [30]. The stopping condition of the GA [30] relies
on two criteria:nf (a fixed number of generations) andni

(the number of generations without improvement). From Table
II, we observe that the best performance of our MAGQMK
algorithm in terms of both best result and average result is
achieved under the longest time condition (100 generations).
However, the decrease of the solution quality is marginal when
the time limit is reduced. Indeed, when using the shortest
time limit (20 generations), the best and average solution
quality decrease by only 0.04% and 0.18% respectively, but
with a saving of 28 minutes, compared to the results of
using 100 generations. Now if we compare the results of
our MAGQMK algorithm with those of the GA algorithm,
it is clear that MAGQMK easily dominates the reference
algorithm. MAGQMK, even with its shortest time limit (20
generations, 901.02 seconds), outperforms the GA algorithm
with its longest time budget (nf/ni = 1200/150, 9133.48
seconds) in terms of average performance. Finally, one notes
that MAGQMK’s results remain more stable than GA’s results
across the three time conditions. This experiment demonstrates
that the proposed MAGQMK algorithm is able to handle
effectively large real-life cases even under a reduced time
condition.

5Since the source code of the GA algorithm [30] is not available to us, we
have implemented the algorithm strictly following the description presented
in the original paper.

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 12

IV. A NALYSIS

In this section, we perform additional empirical analyses
to gain a deeper understanding of the running behavior of
the proposed algorithm and the effectiveness of its underlying
mechanisms. Specifically, we explore the running profile of
the algorithm, the effectiveness of the three proposed neigh-
borhoods and the efficacy of the pool updating strategy.

A. Running profile

The best (resp. average) running profile is given by the
function: i 7→ f(i), where i is the number of iterations
and f(i) is the best (resp. average) objective value known
at iterationi. The running profile is a natural way to observe
the evolution of the (best or average) objective value during a
search process. We mention that the number of loops (nl)
of MNSA which represents the search depth of the local
optimization procedure is a critical parameter which affects the
performance of the proposed MAGQMK algorithm. To under-
stand how this parameter influences the algorithm behavior,we
use the running profile to investigate our MAGQMK algorithm
with four different values of the parameternl: nl =50, 100,
200, 400. We consider four representative instances selected
from Set II: 3 1, 9 1, 11 2 and 192. These instances are
of reasonable size and difficulty which are characterized by
different levels ofk (number of knapsacks),r (number of
classes) andd (density). We mention that the observation
below on these 4 instances are also valid for other tested
instances. For each of the 4 representative instances and for
each value ofnl, we performed 30 runs of MAGQMK, each
run being given 22000 loops (number of temperature cooling).
Figure 5 shows the best and average running profiles of
MAGQMK with the 4 different values ofnl. The figure shows
also the running profiles of MNSA alone for comparative
purpose. MNSA is also executed 30 times with the parameter
values in Table I and initial solutions generated by the RGCM
procedure (Section II-B).

From Figure 5, we observe that MAGQMK withnl = 200
always attains the best performance in terms of both best
and average objective value. Such a performance cannot be
reached by using other values ofnl for the four representative
instances. Withnl = 50, MAGQMK typically displays the
worst performance. Withnl = 100 andnl = 400, the quality
of the best solution found by MAGQMK changes on different
instances meaning that none of these two values is definitely
better than the other. We observe also that withnl = 200
andnl = 400, the best objective value increases more quickly
at the beginning than with the other two values. Moreover,
nl = 200 andnl = 400 preserve a better population diversity
than nl = 50 and nl = 100, which effectively avoids a
premature convergence of the algorithm and makes the search
progress steadily. The above observations on the best running
profiles are also valid for the average profiles. This analysis
confirms that the value of 200 is a reasonable choice for
parameternl.

Concerning the best running profile of MNSA, we observe
that even if the best objective value increases sharply at the
beginning, the search soon reaches a point from which the

best objective value can no longer be improved. The same
is also observed on the average running profile of MNSA.
Even MAGQMK with the least interesting parameternl = 50
can always obtain a solution that is better than the best
solution obtained by MNSA. Comparing the running profiles
of MAGQMK and MNSA shows a clear interest of the
memetic framework and our proposed crossover operator.

B. Effectiveness of the three neighborhoods

The neighborhood is a critical element that affects the
efficacy of a local search procedure. Our proposed MAGQMK
algorithm relies on three dedicated neighborhoods:NR (the
neighborhood induced by theREAL operator),NSW (the
neighborhood induced by theSWAPoperator) andNGE (the
neighborhood induced by theGENEXCoperator), which are
explored in a sequential way in the MNSA procedure. In this
section, we investigate the influence of each neighborhood
over the performance of the proposed algorithm. For this
purpose, we propose six weakened versions of MAGQMK,
including three versions with a single neighborhood and
three others with double neighborhoods. Except the disabled
neighborhood(s), these MAGQMK variants share the same
components as the standard MAGQMK algorithm. For the
sake of simplicity, we denote these variants as MAR, MA S,
MA G, MA RnS, MA RnG and MA SnG, where for ex-
ample, MA R indicates an algorithm variant with onlyNR

neighborhood, and MARnS indicates a variant withNR and
NSW neighborhoods. We tested these six variants as well
as the standard MAGQMK algorithm on the 48 large-sized
instances of Set II. Each algorithm was run 30 times with 100
generations per run. We calculate for each instance the Best-
Gap and the AvgGap, which are computed as (f−f∗)×100/f∗

wheref is the best or average solution value andf∗ is the
best result found by the standard MAGQMK algorithm. The
experimental results are shown in Figure 6 where the left
part (a)-(b) and the right part (c)-(d) are dedicated to the
one-neighborhood variants and the two-neighborhood variants
respectively. The instances are displayed in the same orderas
they are presented in Table A4. Statistical data are summarized
in Table III where for each algorithm variant and for both
BestGap and AvgGap, we list the minimum and the average
value over 48 gaps (row MIN and AVG). Notice that gaps are
in negative values and thus a smaller value means a larger gap.

Figure 6 discloses that for each algorithm variant, the
gap values (no matter BestGap or AvgGap) are typically
below zero, which means all six algorithm variants perform
worse than the standard MAGQMK algorithm. Moreover, the
performance of the one-neighborhood variants always falls
behind the two-neighborhood variants in terms of both the
average and the minimum gap values (see Table III). These
observations confirm that each of the three neighborhoods
makes a significant contribution to the overall performanceof
MAGQMK. Among the three one-neighborhood algorithms,
MA G which employs the singleNGE neighborhood attains
the best performance in terms of the average gap value,
followed by MA S and finally MA R. In the three two-
neighborhood variants, again the two algorithms withNGE

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 13

0 0.5 1 1.5 2 2.5

x 10
4

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

Loop

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e
 o

f
3
0
 r

u
n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(a) 3 1 Best Profile

0 0.5 1 1.5 2 2.5

x 10
4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3
x 10

4

Loop

O
b
je

c
ti
v
e
 v

a
lu

e

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(b) 3 1 Average Profile

0 0.5 1 1.5 2 2.5

x 10
4

8700

8800

8900

9000

9100

9200

9300

Loop

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e
 o

f
3
0
 r

u
n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(c) 9 1 Best Profile

0 0.5 1 1.5 2 2.5

x 10
4

8600

8700

8800

8900

9000

9100

9200

9300

Loop

O
b
je

c
ti
v
e

 v
a

lu
e

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(d) 9 1 Average Profile

0 0.5 1 1.5 2 2.5

x 10
4

6400

6450

6500

6550

6600

6650

6700

6750

6800

Loop

B
e
s
t
o
b
je

c
iv

e
 v

a
lu

e
 o

f
3
0
 r

u
n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(e) 11 2 Best Profile

0 0.5 1 1.5 2 2.5

x 10
4

6350

6400

6450

6500

6550

6600

6650

6700

6750

Loop

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
a

lu
e

 o
f

3
0

 r
u

n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(f) 11 2 Average Profile

0 0.5 1 1.5 2 2.5

x 10
4

7300

7400

7500

7600

7700

7800

7900

8000

8100

Loop

B
e
s
t
o
b
je

c
ti
v
e
 v

a
lu

e
 o

f
3
0
 r

u
n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(g) 19 2 Best Profile

0 0.5 1 1.5 2 2.5

x 10
4

7000

7100

7200

7300

7400

7500

7600

7700

7800

Instance

A
v
e

ra
g

e
 o

b
je

c
ti
v
e

 v
a

lu
e

 o
f

3
0

 r
u

n
s

MAGQMK (nl=50)

MAGQMK (nl=100)

MAGQMK (nl=200)

MAGQMK (nl=400)

MNSA

(h) 19 2 Average Profile

Fig. 5: Running profiles of the MAGQMK with four differentnl values on four representative instances.

as one of its neighborhoods (i.e., MARnG and MA SnG) show an overall better performance than the one without

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 14

0 5 10 15 20 25 30 35 40 45 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Instance

G
a

p
 t

o
 t

h
e

 b
e

s
t

re
s
u

lt
 o

f
s
ta

n
d

a
rd

 M
A

G
Q

M
K

 (
%

)

Best Result of MA_R

Best Result of MA_S

Best Result of MA_G

(a) One-neighbourhood BestGap

0 5 10 15 20 25 30 35 40 45 50
−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

Instance

G
a

p
 t

o
 t

h
e

 b
e

s
t

re
s
u

lt
 o

f
s
ta

n
d

a
rd

 M
A

G
Q

M
K

 (
%

)

Average Result of MA_R

Average Result of MA_S

Average Result of MA_G

(b) One-neighbourhood AvgGap

0 5 10 15 20 25 30 35 40 45 50
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Instance

G
a

p
 t

o
 t

h
e

 b
e

s
t

re
s
u

lt
 o

f
s
ta

n
d

a
rd

 M
A

G
Q

M
K

 (
%

)

Best Result of MA_SnG

Best Result of MA_RnG

Best Result of MA_RnS

(c) Two-neighbourhood BestGap

0 5 10 15 20 25 30 35 40 45 50
−40

−35

−30

−25

−20

−15

−10

−5

0

5

Instance

G
a

p
 t

o
 t

h
e

 b
e

s
t

re
s
u

lt
 o

f
s
ta

n
d

a
rd

 M
A

G
Q

M
K

 (
%

)

Average Result of MA_SnG

Average Result of MA_RnG

Average Result of MA_RnS

(d) Two-neighbourhood AvgGap

Fig. 6: BestGap and AvgGap of six algorithm variants to the standard MAGQMK.

TABLE III: Statistical data of BestGap and AvgGap.

MA R MA S MA G MA RnS MA SnG MA RnG
BestGap AVG. -12.42 -7.67 -6.05 -5.92 -3.89 -2.36

MIN. -41.28 -46.49 -20.57 -35.76 -28.05 -8.29
AvgGap AVG. -14.57 -9.40 -8.70 -7.15 -5.05 -3.06

MIN. -45.19 -49.22 -28.28 -38.15 -31.38 -8.98

it (i.e., MA RnS). These observations demonstrate that the
neighborhoodNGE , which is specifically designed for the
GQMKP, is the most critical one among the three neighbor-
hoods employed.

C. Impact of the pool updating strategy

As described in Section II-E, we employ a quality-and-
distance (QD) rule to update the solution pool so as to maintain
a healthy diversity of the population. To evaluate the merit
of this strategy, we compare it to a traditional ”Pool Worst”
strategy (denoted asPW) which simply replaces the worst
solution in terms of objective value in the pool with a new
offspring solution. We ran two algorithm variants (standard
MAGQMK and MAGQMKPW) 30 times on the 48 large-
sized instances of Set II. MAGQMK and MAGQMKPW are
the same except for the pool updating strategy. Table IV
summarizes the statistical data of the computational results.
For each algorithm variant, Table IV lists the average value
of the best results over 48 instances (columnAvg.fbest),
the average value of the average results over 48 instances
(column Avg.favg). Table IV also lists, for the best result
and the average result respectively, the number of instances

where MAGQMK performs better than MAGQMKPW (col-
umn# > 0) and where MAGQMK performs equally well as
MAGQMKPW (column# = 0).

From Table IV, we observe that compared to
MAGQMKPW , MAGQMK achieves a better average
value for both the best result (21882.41 vs. 21849.57) and
the average result (21791.55 vs. 21781.08) obtained over
the 48 instances. Moreover, MAGQMK attains a best result
which is better than or equal to that of MAGQMKPW for
43 out of 48 cases (36 better, 7 equal), and an average result
which is better than or equal to that of MAGQMKPW for 32
out of 48 cases (30 better, 2 equal). The above observation
indicates that MAGQMK reaches a better performance than
MAGQMKPW which confirms the usefulness of our proposed
quality-and-distance pool updating strategy.

To gain some insights on the inner working of the quality-
and-distance (QD) pool updating strategy, we provide in
Figure 7 the evolution of the population diversity in function of
the generations on the four representative instances that were
used in Section IV-A. The population diversity is defined as
the average distance between all individuals in the population
where the distance measure is the set-theoretic partition dis-

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 15

TABLE IV: Statistical data of two pool updating strategies on the 48 large-sized instances of Set II.

MAGQMK MAGQMK PW fbest-fPW
best favg-fPW

avg

Avg.fbest Avg.favg Avg.fbest Avg.favg # > 0 # = 0 # > 0 # = 0
21882.41 21791.55 21849.57 21781.08 36 7 30 2

0 10 20 30 40 50 60 70 80 90 100
130

135

140

145

150

155

Generation

D
iv

e
rs

it
y

MAGQMK_PW

MAGQMK

(a) 3 1

0 10 20 30 40 50 60 70 80 90 100
245

246

247

248

249

250

251

252

253

Generation

D
iv

e
rs

it
y

MAGQMK_PW

MAGQMK

(b) 9 1

0 10 20 30 40 50 60 70 80 90 100
188.9

189

189.1

189.2

189.3

189.4

189.5

189.6

189.7

189.8

189.9

Generation

D
iv

e
rs

it
y

MAGQMK_PW

MAGQMK

(c) 11 2

0 10 20 30 40 50 60 70 80 90 100
198

198.5

199

199.5

200

200.5

201

201.5

202

202.5

203

Generation

D
iv

e
rs

it
y

MAGQMK_PW

MAGQMK

(d) 19 2

Fig. 7: Diversity in function of generations on four representative instances.

tance introduced in Section II-E. We also provide the diversity
evolution of the ”Pool Worst” (PW) strategy for comparative
purpose. From Figure 7, we can make two observations: 1) the
diversity decreases regularly for both pool updating strategies;
2) the diversity is better preserved with the QD updating
strategy compared to the PW strategy; indeed, the magenta
line (QD updating strategy) is generally above the blue line
(PW strategy) for all tested instances.

V. CONCLUSION

In this paper, we have presented an effective memetic
algorithm (MAGQMK) for the generalized quadratic multiple
knapsack problem (GQMKP). GQMKP is a useful model in
practice while representing a real computational challenge.
The proposed MAGQMK algorithm combines a dedicated
backbone-based crossover operator for solution recombination
and a multi-neighborhood simulated annealing procedure for
local optimization. A quality-and-distance based pool updating
strategy ensures a healthy diversity of the population.

Computational assessments on two sets of 96 benchmark
instances reveal that the proposed approach is highly effective

compared to the state-of-the-art methods. For the set of 48
small-sized instances, MAGQMK is able to attain 45 best
known results where 7 of them correspond to improved best
known results. For the set of 48 large-sized benchmarks, our
algorithm performs even better by improving all previous best
lower bounds except for one case. We have also compared
MAGQMK with 3 best performing algorithms published very
recently [30] and showed that MAGQMK dominates these ref-
erence algorithms both in solution quality and computational
efficiency. An application of the MAGQMK approach to a
pseudo real-life problem additionally demonstrates the efficacy
of the proposed algorithm for practical cases.

Furthermore, we have compared MAGQMK and its under-
lying simulated annealing procedure to show the interest of
the population-based memetic framework and our backbone-
based crossover operator. We have illustrated the effectiveness
of the proposed dedicated neighborhoods (in particular, the
novel general-exchange neighborhood) and the interest of the
proposed quality-and-distance pool updating strategy.

Finally, it is expected that the ideas behind the crossover
operator and the neighborhoods developed in the work would
be useful to other constrained knapsack problems and more

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL.XXX, NO.XXX, XXX XXX 16

generally constrained grouping problems.

REFERENCES

[1] N. K. Bambha, S. S. Bhattacharyya, J. Teich, E. Zitzler. Systematic
integration of parameterized local search into evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 8(2):137–155, 2004.

[2] U. Benlic, J.K. Hao. A multilevel memetic approach for improving
graph k-partitions. IEEE Transactions on Evolutionary Computation,
15(5):624–472, 2011.

[3] Y. Chen, J.K. Hao. Iterated responsive threshold searchfor the quadratic
multiple knapsack problem.Annals of Operations Research, 226(1):
101–131, 2015.

[4] X. Chen, Y.S. Ong, M.H. Lim, and K.C. Tan. A multi-facet survey on
memetic computation.IEEE Transaction on Evolutionary Computation,
15(5):591–607, 2011.

[5] P.C. Chu, J.E. Beasley. A genetic algorithm for the multidimensional
knapsack problem.Journal of heuristics4(1):63–86, 1998.

[6] E. Falkenauer. New representations and operators for GAs applied to
grouping problems.Evolutionary Computation, 2: 123–144, 1992.

[7] E. Falkenauer. Genetic algorithms and grouping problems.New York:
Wiley, 1998.

[8] L. Feng, Y.-S. Ong, M.-H. Lim, I.W.H. Tsang. Memetic searchwith
inter-domain learning: A realization between CVRP and CARP.IEEE
Transactions on Evolutionary Computation, 19(5): 644–658, 2015.

[9] P. Galinier, J.K. Hao. Hybrid evolutionary algorithms for graph coloring.
Journal of Combinatorial Optimization, 3(4): 379–397, 1999.

[10] D. Gusfield. Partition-Distance: A Problem and Class ofPerfect Graphs
Arising in Clustering.Information Processing Letters, 82(3): 159–164,
2002.

[11] P. Galinier, Z. Boujbel, M.C. Fernandes. An efficient memetic algorithm
for the graph partitioning problem.Annals of Operations Research,
191(1): 1–22, 2011.

[12] C. Garćıa-Mart́ınez, F. Glover, F.J. Rodriguez, M. Lozano, R. Martı́.
Strategic oscillation for the quadratic multiple knapsack problem.Com-
putational Optimization and Applications, 58(1): 161–185, 2014.

[13] C. Garćıa-Mart́ınez, F.J. Rodriguez, M. Lozano. A tabu-enhanced iter-
ated greedy algorithm: A case study in the quadratic multiple knapsack
problem.European Journal of Operational Research, 232(3): 454–463,
2014.

[14] A. Hiley, B. Julstrom. The quadratic multiple knapsack problem and
three heuristic approaches to it.In Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO), 547–552, 2006.

[15] J.K. Hao. Memetic algorithms in discrete optimization.In F. Neri, C.
Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithms. Studies in
Computational Intelligence 379, Chapter 6, 73–94, 2012.

[16] A. Jaszkiewicz. On the performance of multiple-objective genetic local
search on the 0/1 knapsack problem: A comparative experiment.IEEE
Transaction on Evolutionary Computation, 6(4):402–412, 2002.

[17] H.W. Kuhn. The Hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2: 83–97, 1955.

[18] S. Kirkpatrick, Jr. CD. Gelatt, M.P. Vecchi. Optimization by simulated
annealing.Science, 220: 671–80, 1983.

[19] Z. Lu, J.K. Hao. A memetic algorithm for graph coloring.European
Journal of Operational Research, 203(1): 241–250, 2010.

[20] P. Merz, B. Freisleben. Fitness landscapes, memetic algorithms, and
greedy operators for graph bipartitioning,Journal of Evolutionary Com-
putation, 8(1): 61–91, 2000.

[21] P. Moscato, C. Cotta. A gentle introduction to memetic algorithms.
In F. Glover and G. Kochenberger (Eds.), Handbook of Metaheuristics,
Kluwer, Norwell, Massachusetts, USA, 2003.

[22] Y. Mei, X. Li, X. Yao. Cooperative coevolution with route distance
grouping for large-scale capacitated arc routing problems.IEEE Trans-
actions on Evolutionary Computation, 18(3): 435–449, 2014.

[23] F. Neri, C. Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithms.
Studies in Computational Intelligence 379, Springer, 2012.

[24] Y.S. Ong, A.J. Keane. Meta-lamarckian learning in memeticalgorithms.
IEEE Transactions on Evolutionary Computation, 8(2): 99–110, 2004.

[25] Y.S. Ong, M.H. Lim, X. Chen. Research frontier: memetic computation-
past, present & future.IEEE Computational Intelligence Magazine, 5(2):
24–36, 2010.

[26] D. Pisinger. The quadratic knapsack problem-a survey.Discrete Applied
Mathematics, 155: 623–48, 2007.

[27] D.C. Porumbel, J.K. Hao, P. Kuntz. An evolutionary approach with
diversity guarantee and well-informed grouping recombination for graph
coloring. Computers and Operations Research, 37(10): 1822–1832,
2010.

[28] M. Resende, C. Ribeiro. Greedy randomized adaptive search procedures.
Handbook of Metaheuristics 2003, 57: 219-249.

[29] T. Saraç A. Sipahioglu. A genetic algorithm for the quadratic multiple
knapsack problem. Advances in Brain, Vision, and Artificial Intelligence.
Lecture Notes in Computer Science, Volume 4729, pp 490–498, 2007.

[30] T. Saraç A. Sipahioglu. Generalized quadratic multiple knapsack prob-
lem and two solution approaches.Computers& Operations Research,
43: 78–89, 2014.

[31] A. Singh, A.S. Baghel. A new grouping genetic algorithmfor the
quadratic multiple knapsack problem. Evolutionary Computation in
Combinatorial Optimization. Lecture Notes in Computer Science, 4446,
pp. 210–218, 2007.

[32] K. Tang, Y. Mei, X. Yao. Memetic algorithm with extended neighbor-
hood search for capacitated arc routing problems.IEEE Transactions
on Evolutionary Computation, 13(5): 1151–1166, 2009.

Yuning Chen received the B.Eng. and M.Eng.
degrees from the National University of Defense
Technology (NUDT), Changsha, China, in 2010 and
2012 respectively. He is currently pursuing the Ph.D.
degree in Computer Science at the LERIA labo-
ratory, University of Angers, France. His research
interests include evolutionary computation, memetic
algorithms, meta-heuristics and multiobjective opti-
mization for quadratic knapsack problems and other
combinatorial optimization problems.

Jin-Kao Hao is a Distinguished Professor (Pro-
fesseur des Universités de classe exceptionnelle)
with the Computer Science Department, University
of Angers (France) and is Senior Fellow with the
Institut Universitaire de France. From 2003-2015, he
was the head of the Computer Science Laboratory
LERIA. He has authored or co-authored over 200
peer-reviewed publications and co-edited 9 books
in Springers LNCS series. His research interests
include design of effective algorithms and intelligent
computational methods for solving large-scale com-

binatorial search problems. He has served as an Invited Memberof over 180
program committees of international conferences and is on theeditorial board
of seven International Journals. J.-K. Hao graduated in 1982 from the National
University of Defense Technology (School of Computer Science) (China). He
received the Master degree (Oct. 1987) from the National Institute of Applied
Sciences (INSA Lyon, France), the Ph.D. in Constraint Programming (Feb.
1991) from the University of Franche-Comté, and the Professorship Diploma
HDR (Habilitationà Diriger des Recherches) (Jan. 1998) from the University
of Science and Technology of Montpellier (France).

