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Memetic search for the generalized quadratic
multiple knapsack problem

Yuning Chen and Jin-Kao Hao

Abstract—The generalized quadratic multiple knapsack prob- be the maximum number of knapsacks for which the items
lem (GQMKP) extends the classical quadratic multiple knapsack of C; can be selected’;; € N (i € R,j € {1,2,...,n;})
problem (QMKP) with setups and knapsack preference of the denotes the index of thﬁth object of theit? class. Each class

items. The GQMKP can accommodate a number of real-life C i iated with t ‘onvhich
applications and is computationally difficult. In this paper, we Ci IS associated with a setup resource consumptjowhic

demonstrate the interest of the memetic search approach for IS generated when any item 6f; is assigned to knapsadk
approximating the GQMKP by presenting a highly effective (k € M, only ones; is needed when more than one object of
memetic algorithm (denoted by MAGQMK). The algorithm com-  C; are assigned to knapsaé)k. Each object (i € N) has a
bines a backbone-based crossover operator (to generate giftng weightw;, and a knapsack-dependent profit with respect to

solutions) and a multi-neighborhood simulated annealing proce- R .
dure (to find high quality local optima). To prevent premature knapsacks (k € M) which indicates its knapsack preference.

convergence of the search, MAGQMK employs a quality-and- Each pair of objects and;j (1 < i # j < n) generates a profit
distance pool updating strategy. Extensive experiments on two g;; which contributes to the optimization objective when these
sets of 96 benchmarks show a remarkable performance of the two objects are allocated to the same knapsack. Additignall

proposed approach. In particular, it discovers improved best | , h ision variabl h i — 1 if obi ;
solutions in 53 and matches the best known solutions for 39 other .et :(I;Im bte ;[j ? dkec S10 cka abf Os;uc;h tha?b“ et Ot:)JeCtch
cases. A case study on a pseudo real-life problem demonstratedS @/l0Calea 10 knapsack, z;, = 0 otherwise, 1ety,, be the

the efficacy of the proposed approach in practical situations. decision variable such that,, = 1 if at least one object of
Additional analyses show the important contribution of the novel classw is allocated to knapsack, ., = 0 otherwise. Then

general-exchange neighborhood, the backbone-based crossov the GQMKP can be formulated as a 0-1 quadratic program:
operator as well as the quality-and-distance pool updating rule

to the performance of the proposed algorithm.

T My m n—1 n m
Index Terms—Constrained quadratic optimization, Knapsack  \[ax T 4 Tir i i
problem, Population based search, Heuristics. ; ; ]; CuskPCuik ;j;l 1;1 ki
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I. INTRODUCTION subject to:

HE generalized quadratic multiple knapsack problem .
(GQMKP), as an extension of the classical quadratic mul- (Z Loy, kWO, k + YukSu) < Br, Vke M 2)
tiple knapsack problem with setups and knapsack prefesence,—; ;—
of the items, is a difficult combinatorial optimization piein m
recently introduced in [30]. Z T < 1, Vie N (3)
We are given a set of objects (also called itemgy = 1
{1,2,...,n} which are classified inte disjoint classe< =

{C1,Cs,...,C,} where C; N C; = () for eachi,j, 1 < i # yq:k =0, Vu€ Rk ¢ o “)

j < r, and a set ofn knapsacksM = {1,2,...,m}. Each

knapsacki (k € M) has a capacity3;. Let R = {1,2,...,r} ;y""' < Buy Vue R )

be the class index set; = |C;| be the number of objects B .

of classC; € C (X1_, n; = n), 0; be the set of knapsacks ~ LCuik = Yuk: Vu € R,i € {L.nub ke M (6)

to which the items ofC; can be allocatedv(:,j),1 < i # N

j < r, o; and o; can be overlapped)3; (1 < 8; < m) Yuk < chcmk, Vu € R,k € M (7)
=1
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or equal to its maximum number. Constraint 6 guarantees thlasigned to a number of machines or processors.
yur receives the value of 1 when at least one object of classin [30], the authors showed the first study dealing directly
u is allocated to knapsack. Constraint 7 requires that,, with the GQMKP and proposed three solution approaches
receives the value of 0 when no object of clasis allocated to this difficult problem. Based on the 0-1 quadratic model
to knapsackk. Constraint 8 requires that each variable takgsroposed in their paper, the first approach is based on the
the value of 0 or 1. general Gams/Dicopt framework for solving MINP (mixed-
Notice that the above model is modified from the binarinteger nonlinear programming) models by integrating a NLP
guadratic model described in [30] and has the advantage(bdnlinear Programming) or MIP (Mixed-Integer Program-
being more concise. ming) solver that runs under the Gams system. The second
The GQMKP is NP-hard in the strong sense, since it gené@pproach is a genetic algorithm (GA). The GA randomly
alizes the well-known NP-hard quadratic knapsack probleifitializes a population and uses a 2-tournament method for
(QKP) [26]. Indeed, the GQMKP degenerates to the QKselection. It employs a specialized uniform-based opefato
when the number of knapsacks equals 1, the number of clasgigssover and two dedicated operators based on local exehan
equals the number of objects (i.e.,= n) and the setup of and greedy construction for mutation. The GA generates
each class equals 0. The GQMKP is also a generalizationseutions satisfying all the constraints except for caaistr
the popular quadratic multiple knapsack problem (QMKP) [3p which is allowed to be violated. To evaluate infeasible
[12]-[14], which is more complicated than the QKP due tgolutions, the GA uses a penalized fitness function which is
the presence of multiple knapsacks. Compared to the cissigefined as the original objective function (Eq. 1) plus the
QMKP, the GQMKP has the following four distinguishedveighted sum of the excess number of knapsacks of each
features: class. The last approach is a hybrid algorithm combining F-
« Class condition. Objects are grouped to different classel\é.SG (modified subgradlgnt algorithm operat!ng on _fea5|ble
. values) and the GA. In this approach, constraint 5 is indude
Those in the same class share common features.

Setup requirement. A knapsack mav contain obiects from the Lagrangian function to construct the sub-problemhef t
* b req ’ : y ) :MSG algorithm which is then solved by the GA.

different classes. Including more classes in a knapsack hi introd hiahlv effecti lation-based
requires additional resource consumption, represented b);r IS paper introduces a highly efiective population-base

a capacity loss when switching from one class to anoth@emgtic_ algorithm MAGQMK for the GQMKP' The main
class. contributions of this work can be summarized as follows.

o Assignment limitation. Objects from a specific class are - From the algorithmic perspective, the proposed approach
allowed to be assigned to a subset of knapsacks, rather integrates several original ingredients. First, we devise
than all the knapsacks. a backbone-based crossover operator for generating off-

o Knapsack preference. Each object has a knapsack prefer- spring solutions. This operator is specifically designed fo
ence which differentiates the return when it is allocated the GQMKP and aims to maximally preserve common
to different knapsacks. contributive objects that are shared by parent solutions.

As shown in the case study of [30], the GQMKP can be Second, to explore efficiently the search space around an

encountered in companies producing plastic parts whichemak offspring solution g'ene_rated by the crossover operaFor,
use of injection machines. In the studied application, jobs W€ propose a mult|'-ne|ghbourhood s.|.mulated annealing
are considered as objects; injection machines are regarded procedl_Jre which relies on three specific and_complemen-
as knapsacks and the given planning period is considered tary neighborhoods. Among thgse three nelghborhoqu,
as the capacity of the knapsack. Jobs are first classified to the novel general-exchange neighborhood which is first

different classes according to the mold they require. Switg proposed in this _work, potentially h.ellps the glgqrithm to
molds in a machine requires setup time. Molds are fixed explore the solution space more efficiently with its large-

to a limited number of machines due to technical reasons. step move size. Finally, we apply a quality-and-distance

A job is preferred to be assigned to certain machines since pool updati_ng strategy to maintain a healthy diversity of
its associated mold may not work at the same efficiency at the population.

all machines or the decision maker may have preferences mg Slf computﬁtlohnal perspective, th.e_ prop?sed
to have this job assigned to certain machines. Conducting a Q approach shows a very competitive perfor-

job in a machine takes a certain time which is considered mance on two sets of 96 benchmark instances. In partic-

as the weight of the job. Apart from the profit returned by u!ar, for the set of 48 small-sized instances, MAGQM.K
performing a single job, additional profits can be attaingd b discovers 6 improved best lower bou_nds and attains
assembling similar jobs (i.e., jobs from the same class) to -the best known result for other 39. Instances. More
the same machine for the sake of reducing setup times which |mportantly,. for the S?t of 48 Iarge—sged benchmarks,
reflects the quadratic nature of this problem. The purpose of MAGQMK, is able to |mprove.all previous best lower
this problem is to determine the jobs to be performed and to bour_1ds_W|th only one exception. Finally, a s_uccessful
decide the assignment of jobs to the machines while saigfyi application of the MAGQMK toa p:_seudo rgal-hfe prob-
all the underlying constraints. The GQMKP may find other lem d_emonstrates its effectiveness in handling largesscal
applications in areas like manufacturing systems, compute practical cases.

design and communications where a set of tasks needs to b&he remainder of the paper is organized as follows. Section
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Il describes in detail the proposed approach. Sectionplores  A. Search space, solution representation and evaluation-fu
the computational results of MAGQMK on the benchmarkon

instances and shows comparison_s With_ respect to the statg=or a given GQMKP instance, the search space visited
_of-the_-art_approaches. S_ect|0n_ IV is dedicated to an emnsby our MAGQMK algorithm is composed of all possible
investigation of the key ingredients of the proposed api0a,||ocations of objects to knapsacks such that the consirain
to gain a deep understanding of their impacts on the perfey Eq. 2-8 are satisfied. In other words, MAGQMK visits
mance of the algorithm. Conclusions are drawn in Section \dnly feasible solutions.
To encode a feasible solution, we adopt an integer vector
II. A MEMETIC ALGORITHM FOR THE GQMKP S € {0,1,...,m}" wheren is the number of objects and

Memetic search is a powerful framework that promotes the is the number of knapsacks. In this representation, value
idea of combining evolutionary computing and local optiasiz S(i) = k (k € M) indicates that object is allocated to
tion [21]. By offering the possibility for the search prosesknapsack: while S(i) = 0 means that objeatis not allocated
to effectively explore the space of local optima, memeti©® any knapsack. Such a solution representation can be also
algorithms have proved to be quite effective in solving @onsidered as a partition of the setmfobjects intom + 1
number of difficult combinatorial optimization problems],[4 groups {Io,I,...,I,} such that each, (k € M) is the
[8], [15], [20], [22], [23], [32] and in particular knapsacknd set of objects allocated to knapsakkwhile I, contains the
quadratic problems [5], [16], [29], [31]. unallocated objects.

Algorithm 1 shows the working scheme of the proposed The quality of any candidate solutighis evaluated directly
memetic algorithm MAGQMK for the GQMKP. The algorithmby the objective functiory of the GQMKP. Given a solution
generates an initial population of solutions which are first = {lo,I1, ..., I,» }, the objective valug (.S) is calculated by
ameliorated by the multi-neighborhood simulated anngalitthe following formula:
procedure described in Section II-C. Then it repeats an evo- .
lution process to improve the population until a predefined 1(8) = kzx;(z;pm + , IZ 4q”) ©)
stop condition (typically a fixed number of generations) is _ , reA el BTN _
verified. At each generation, the algorithm randomly select ThiS funct|on.def|1nes a t20tal2 order over thel s_olut|02n space.
two parent solutions from the population and recombin&“’?n two solutionS™ andS™, .5 is better tharb™ if f(.5%) >
them to generate an offspring solution using a backboneebad (5 )-
crossover operator (see Section II-D). This newly gendrate ) o
solution is further improved by the multi-neighborhood gim B- Population Initialization
lated annealing procedure. Finally a quality-and-distamsed ~ The MAGQMK algorithm uses a randomized greedy con-
rule (see Section II-E) is applied to decide if the improvestruction method (RGCM) to create the initial solutions-(in
offspring solution can be inserted into the population. Weividuals) of its population. RGCM follows the spirit of the
present the components of the proposed MAGQMK in tHéRASP approach [28] which is able to generate a different
following subsections. solution for each run thanks to its randomized property. RIGC

relies on the notions afontributionandobject densitywvhose
Algorithm 1 Pseudo-code of MAGQMK for the GQMKP  definitions are given below. Notice that oobject density
1: Input: P: a GQM K P instance; p: population size; mazTry: €Xtends the classical bang-for-buck ratio of ordinary dine

max number of trials to generate a nonclone solution; knapsack problems and aims to identify the attractivenéss o
2: Output: the best solution S* found; items in the GQMKP setting.
{ Population initialization, Section II-B } « Contribution: Given a solutionS = {Iy, I, ..., I, }, the

3: POP < Pool_Initlialization(p, mazTry);

4: p < |POPY; I*p is reset to the number of distinct individuals contribution of objecti (i € N) to knapsack: (k € M)

eventually obtained.*/ with respect toS is given by:

5: S* < Best(POP); [* S* records the best solution found so .
far. */ (POP) VC(S,i k) = pir + Z i (10)
{ Main search procedure } JEIR,j#1

6: while stopping condition not reached do
7:  Randomly select two solutions S; and S; from POP
8. S. < Crossover(S;,S;) I* Apply the backbone-based

» Density: Let ci(7) denote the class index of objectThe
density of objecti (i € N) with respect to knapsack

crossover operator to generate an offspring solution S.., k (k € M) is defined as its contributioC'(S,4, k)
see Section I1-D */ _ _ divided by its weightw; if another object of its class
90 Sc <« MNSA(S) /* Improve S. with the multi- C.i(i) is already included in knapsadk or its contribu-
Hglngn?gi;hwd simulated annealing procedure, see Sec- tion divided by the sum of its weight and the setup of its
10:if f(S.) > f(S*) then f:IaSSSCi(Z—_) if object ¢ is the first one of its class to be
11: S* LS. included in knapsack. Formally, we have:
12:  end if V(S ik
13 POP + Pool_Updating(S., POP) * Update POP with (8,3, k) /wi,
a quality-and-distance based rule, see Section II-E */ D(S,i, k) = if 3j # 1 € Cei) such thatj € I
14: end while VO(S,i,k)/(w; + seqy),  Otherwise

(11)
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Starting from an empty solutior§ and from the first Algorithm 2 Pseudo-code of the MNSA procedure
knapsack (i.e.k = 1), RGCM iteratively and randomly selects 1: Input: P: a GQM K P instance; Sy: initial solution; Tp: initial
an unallocated objedt(i € Iy) from a restricted candidate list ~ temperature; cr: cooling ratio; ni: number of loops; nsi:
RCL(S,k) and assigns it to knapsaék Let R(S, k) denote number of sub-loops
the set of unselected objects that can fit into the knapgack 2f Output: the best solution 5

. . . . . 3: S < S()
To build RCL(S, k), we first sort all the objects IR(S, k) in 4. g+ . g, /* §* records the best solution found so far */
descending order of their density values (calculated byaEqus: T « Ty /* Initialize temperature */
tion 11), and then we put the firstin{rcl, |R(S, k)|} (rcl is  6: fori=1tonldo _
a parameter) objects intBCL(S, k). Each timeRCL(S, k) ; fzgaf Ti“fg T/;;I’e(zjnc:perature cooling */
becomes empty for the CL_Jrrent knapsr?lck, the next kn_apsack9|:s fgr each N € {Nx, Nsw} do
examined. The construction process is repeated until ste g, for k=1tondo
knapsack (i.e.k = m) is examined. 11: Search the neighborhood N(S,k) for feasible

The solution constructed by RGCM is further improved moves and accept moves to replace S according

by the simulated annealing procedure (see Section II-C3. Th to the probability function (Eq. 12); Update the
. o . . 5 best solution S

ameliorated solution is either inserted into the popufatio .. end for

it is not a clone of any other individual in the population, of3. end for

discarded if it appears already in the population. The ppul4: for k=1tomdo

tion initialization procedure is iterated until the popida is 15 for each class c in knapsack k do _

filled with p (population size) distinct individuals or no eligiblel®: Search the neighborhood N (5, ¢, k) for feasible

individual has been generated faraaTry consecutive times.

After the initialization procedurey is reset to the number of

moves and accept moves to replace S according
to the probability function (Eg. 12); Update the
best solution S*

distinct individuals eventually obtained. 17: end for
The time complexity of constructing one solution id8: end for
bounded byO(n2logn). The whole population initialization ;(9); eng”fgrfor

procedure take® (p * maxTry * n?logn) time in the worst
case. But for most of the instances we used in this paper,

it is easy to obtairp distinct solutions which makes the time N
lexity of initializati d | @ 2] ~were first introduced to address the related QMKP [3]_, [12_],

complexity of initialization procedure close @(p-n"logn) [13] and we adapt them to the GQMKP considered in this

paper.

C. The multi-neighborhood simulated annealing procedure For an objecti, let k; € {0,1,...,m} be the knapsack

The importance of local search within a memetic algorithi Which the object is allocated, le§ © OP denote the
has been recognized for a long time (see e.g., [1], [13]e|ghbormg solution generated by applying move operator

[21], [24], [25]). Our local optimization procedure is bdse’OP’ to S. OurREALandSWAPmMove operators are described

on the popular Simulated Annealing (SA) method [18] (se%"S follows:

Algorithm 2). Being the first time applied to the GQMKP
problem, our multi-neighborhood SA procedure (denoted by
MNSA) is characterized by its combined use of three differen
and complementary neighborhood$4, Nsw, Nag). MNSA
basically performsnl cycles of temperature cooling and for
each temperature, MNSA runss/ iterations while at each
iteration, it successively explores its three neighbodsoo a
sequential way. The acceptance of each sampled solstion
is subject to a probability tesPr{S — S’} which is given

by:

Lot f(8) > f(9)
UIEN=FEN/T iE £(8) <

Pr{§—51}= { £8)

12)
where T is a temperature value. Precisely, a neighboring
solution S" is accepted to replace the incumbent solutin
if a randomly generated valued (rd € [0,1]) is less than
or equal toPr{S — S} (i.e.,rd < Pr{S — S'}). In what
follows, we introduce the three dedicated neighborhoods.

1) Two traditional neighborhoods:There are two tradi-
tional small-sized neighborhoods (denoted /By and Ngw )

- REAL(i,k): This move operator displaces an objéct
from its current knapsack; € {0,1,...,m} to another
knapsackk (k # k;,k # 0). All neighboring solutions
of a given objectiy induced by this move operator are
given by:

Ng(S,ip) = {8 : & =

M\ {kio }}

SWAP(i,7): This move operator swaps a pair of objects
(4,4) where 1) one of them is an assigned object and the
other is not assigned, or 2) both of them are assigned but
belong to different knapsacks. All neighboring solutions
of a given objecti, induced by theSWAPoperator are
given by:

S @ REAL(io, k), k €

Nsw (S,ig) = {S' + 8" = S @& SWAP(ig,5),j # io €
N, ki, # kj € MU{0}}

2) New general-exchange neighborhood for the GQMKP:
The above two neighborhoods are small-sized in the sense tha

which are defined by two basic move operators: REALLGhey include those neighboring solutions that require astmo
CATE (REALfor short) andSWARPR These two neighborhoodstwo changes of the incumbent solution. However, we observed
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that MNSA with merely these small neighborhoods does not | ,_3 ,,-3 ,-3 .. Solution]
perform well for the highly constrained GQMKP. To reinforce C=(L2.7.8,1112}, C, = (5,6}, C, = 3,4,9,10,13} 3

the search ability of MNSA, we introduce a novel large-sized o =123, =2}, o, =(.2.3)
neighborhoodN¢x based on the General-Exchange operator 53 pol  p=2

(GENEXC for short), which is specifically designed for the w:{3’2’1,4’2’3’2’3’2:2’4’2’7} ‘

GQMKP. Unlike REAL and SWAP, GENEXC may modify BB 510

two or more values of the current solution to generate a
neighboring solution.

(O represents an object fromC,
[ Jrepresents an object fromC,
- GENEXC(k;, ¢i, kj, ¢;): This move operator basically Crepresents an object fronC,

exchanges objects of clags from knapsackk; with

objects of class; (c; # ¢;) from knapsacke; (k; # k;). Fig. 1: An example folGENEXCneighborhood.

However, simply exchanging those objects may possibly

result in infeasible solutions. To always maintain fedsibi

ity, our GENEXC operator employs a remove-construciv,., neighborhood.

method to achieve a feasible "exchange” functionality.

Precisely, GENEXC (k;, ¢;, kj, ¢;) removes all the ob-

jects of C., that are currently allocated to knapsack D. Backbone-based crossover operator

and removes all the objects @f.; (c; # ¢;) that are

: Apart from the local optimization procedure, crossover
currently allocated to knapsadk; (k; # k:). Then it = .,ngfitutes another key component of our MAGQMK algo-
greedily fills knapsack; with unallocated objects of class i, m - A successful crossover operator is usually expeted
C., which have the highest density values according {3.qrporate domain specific heuristics and should be able to
the deﬁnmonlof Section 1I-B; §|m|larly it greedlly.ﬁlls transmit meaningful features (building blocks) from pasen
knapsackk; with unallocated objects of clags., having 5 oftspring. To devise a specialized crossover operatth wi
the highest density values. It checks all the constralrgf.rong "semantics” for our problem, we consider the GQMKP
before inserting an unallocated item into the target knaps 5 ‘-onstrained grouping problem [6], [7]. As described in
sack. If the insertion induces infeasibility, it skips thiSSection Il-A, a solution of the GOMKP can be viewed as
item and tests the next item with the highe_sf[ densityvalug.pamﬁOn of n objects intom + 1 groups. For grouping
This GENEXC operator allows a transition betweery spiems it is more natural and straightforward to mardgil
structurally different feasible solutions which cannot bg,,ns of objects rather than individual objects. Such @a id
reached by theSWAP and REAL operators in cerain ot yesigning crossover operators has been proved to be very
cases. To illustrate this, consider a simple GQMKE cessful in solving a number of grouping problems such
!nstance _shqwn in Figure 1. The |mportant. data of _t graph coloring [9], [19], [27], bin packing [7] and graph
instance is displayed on the left and two feasible SOIUI'O%rtitioning [2], [L1]. In our case, we must additionallykea
are displayed on the right of the figure. In this exampley:, account the various constraints of our problem.

a transmon fromS_qutlonlto Solution2is by no means Preliminary experiments show that high quality local ogtim
possible by applying thSWAP_or REAL operator, Wh'Ch share many grouping objects. It is thus expected that abject
h_owever, can be easily achieved BENEXC with a that are always grouped together are very likely to be part of
single GENEXC(k; = 1,¢; = 3, k; = 2,¢; = 1) move, o global optimum or a high quality solution. Following this
.., exchan_ge the objects qf class 3 in knapsack oqaservation, the general idea of our proposed crossovef ope
with the objects of C."T"SS Lin knapsack_ 2. For SOM&or is to preserve the contributive identical object gingp
cases where a transition from one solution to anOth&Kackbone) of maximal size from parent solutions to offsgyi

requires numerous combinations S'WAP and REAL and to choose the groupings for the rest objects with equal
operatorsGENEXCcan realize the transition much morepr bability from two parents

easily, making the neighborhood search more focused an - ) : . T
straightforward. This benefit fundamentally comes fror.rgj 1 efinition ~ 1: Given two parent solutionss” =

: . 1,01 .. I Y and S? = {12,137, ..., 12}, let H denote the
;h;ef?tt tEa; ex;hkan%glgetwqog?esseéo?]f t'te.mf gromctlw et of common objects that has identical object grouping of
imerent xnapsacks never vi N straint 5 (a cla and S?, i.e.,, H = U (I} N I?). The backboneH"

of items can be assigned only to some knapsacks) whigp S and §2 is the subset ofFf such that each object

Is a hard cor_13tramF of the GQMKP' . of H® is a contributive object to both parent solutions, i.e.,
Then the neighboring solutions of a given knapsagk HY — H\(I1 N I2)
- 0 0/

and a given class;, induced by theGENEXCoperator This backbone definition excludes the non-contributive ob-

are given by: ) , jects (i.e., unallocated objects) of the parent solutionses
NGE(Sv kiovcio) = {S : S = S ® h i | II-d i d likel b
GENEXC (ke o e by £ ki € M, % they are typically small-density and are unlikely to be part
o e R to2 o2 Myr By )5 g 0 I of optimal solutions. Based on the notion of backbone, we
0

consider, for each parent solutiom, groups of allocated ob-
In Section IV-B, we will investigate the effectiveness ofects taken from alin + 1 groups for crossover. The proposed
these three neighborhoods and show the particular roleeof ttackbone-based crossover procedure consists of three main
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Algorlthm 3 Pseudo-code of the backbone-based crossover first Step of the crossover is to proper|y |dent|fy a perfect
procedure

1:

2:

3:

10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:
21:
22:

23:
24:
25:
26:

27:
28:
29:
30:
31:

32:

33:
34:
35:

36:
37:
38:
39:

Input: Two parent solutions S* = {I{,I{,..., I}, } and S? =
{18, 13, .... I}

Output: An offspring solution S° = {I§, I{, ..., I%,}

[* Step 1: Group matching */

Let £ = {(9i,9])|i € M,j € M} denote the set of
all m x m group (knapsack) combinations of S' and S2.
Compute the number of common objects Wgig2 for each

group combination (g;,g7) € E.

T 0
: repeat

Choose the combination (g;,g7) with the largest w,:

from FE

J— JU{(g:,97)}
Remove from E all combinations associated with g; and

g;

2
9j

cuntil E=0

/* Adjust the group numbering */
rd < random{0,1}
for each (g;,g;) € J do
if »d=0 then
Assign label g; to group g7 of S*
else
Assign label g7 to group g; of S*
end if
end for
[* Step 2: Create a partial solution based on backbone */
for::=1tomdo
=0
HY « I} NI, NH} « I}\H?; NH? < I?\H?
9« 1°uH!
R'(S°)i) C NH} denotes a subset of objects of NH}
that can fit into 12, R*(S°,4) C N H? denotes a subset of
objects of N H? that can fit into I}
l+1
while R(S°,i) # 0 or R*(S°,4) # 0 do
if s odd or R*(S°,4) # 0, then A + 1, else A « 2
Choose an object o with the highest density from
RA(S°,4)
2 — 1?U{o}; NH{ « NH"\{o}
Update R*(S, i) and R*(S°, 1)
l—1+1
end while
end for
[* Step 3: Complete the partial solution */
Groups are sorted in random order in SG, R(S°, i) denotes
a subset of unselected objects that can fit into 17;
for each i € SG do
while R(S°,i) # 0 do
Choose an object o with the highest density from
R(S°,4)
I? « I U {o}
Update R(S°,1)
end while
end for

steps, as illustrated in Algorithm 3. The details of thegegh
steps are described as follows.

o Group matching. In the context of the GQMKP, two
different groups from two parent solutions which share
the most common objects typically have different group
numbers. For example, group one of the first solution
might correspond to group two of the second solution,
with possibly most objects in common. Therefore, the

matching of the groups in order to find out the largest
number of common objects of the two parent solutions.
This amounts to find a maximum weight matching in a
complete bipartite graplix = (V, E) whereV consists

of m left vertices andn right vertices which correspond
respectively to the groups of the first and second solu-
tions; each edggy;, g7) € E is associated with a weight
Waig2, which is defined as the number of identical objects
in group g/ of solution 1 and groupy? of solution 2.
The maximum weight matching problem can be solved
by using the classical Hungarian algorithm [17]. How-
ever, calling this algorithm for each crossover applicatio
would be too computationally expensiv@ (. + m?)) in

our case. Instead, we apply a fast greedy algorithm to seek
a near-optimal weight matching. Our greedy algorithm
iteratively chooses an edde;, g7) € E with the largest
wgig2, and then deletes front’ all edges incident to
vertex g! and to verteng-. This procedure is repeated
until £ becomes empty (lines 3-9 of Algorithm 3).

Steps 1 ends by adjusting the group numbering. We ran-
domly select one solution and adjust its group numbering
according to the matched groups of the other solution
(lines 10-17 of Algorithm 3).

Create a partial solution based on backbonef’. Let

I} and I? denote the set of objects of thé" group

in solution 1 and solution 2 respectivelyi? denotes
the index set of the common objects (backbone) of the
ith group, i.e.,H? = I} N I?; NH} and NH? denote
the index set of the unshared objects of e group

of solution 1 and solution 2, i.e NH} = I}\H,,
NH? = I?\H;. Let I? denote the set of objects of the
ith group in offspring solution I’ = () at the beginning).
For each pair of matched groups, we first conserve the
backbone (i.e., all common objects) to the corresponding
group of the offspring solution, i.eI? « I? U H?. Let
R'(S%/i) C NH} denote a subset of objects ofH}

that can be allocated tff while satisfying all constraints
(Eq. 2-8),R?(S%,i) C NH? denotes a subset of objects
of NH? that can be allocated t&’ while satisfying all
constraints (Eq. 2-8). We then alternatively choose an
object with the highest density from!(S° i) on odd
steps and fromk?(S°,4) on even steps. Once an object
is selected and included intf, it is removed from the
respective set\{H; or NH?); R'(5°,i) and R*(S°, )

are updated accordingly. This procedure continues until
both R*(S°,7) and R?(S°,i) become empty. We apply
this procedure to alln groups, and we finally obtain a
partial offspring solution with some groups (knapsacks)
possibly far from being fully filled (lines 18-31 of Algo-
rithm 3).

o Complete the partial solution. In order to complete

the partial offspring solution, we allocate some of the
unassigned objects to the groups (knapsacks) based on
a greedy construction strategy. Specifically, we put the
m groups (knapsacks) in a s€tG in random order. Let
R(SY,i) denote the set of unselected objects that can be
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allocated toI? while satisfying all constraints (Eqg. 2-8).Algorithm 4 Quality-and-distance pool updating procedure
For each group € SG, we continue choosing an object 1: Require: A population POP = {S*,$%,...,S”} and an off-
with the highest density fromR(S°, i) until R(S°,q) spring solutionS® _

becomes empty. This procedure is terminated when afi- Ensure: Updated populatiol?OP

. 0 ; 0 . 0
knapsacks are examined (lines 32-38 of Algorithm 3). Lgrseer;ghé?tg t;‘ggogg'a“o”POP < POPU{ST}

3
4
5. CalculateAvgDist;, pop according to Eq. 14
6
7
8

S s ‘ CalculateQDF(S*) according to Eq. 15
KOO LOOOW | ' - end for
HEOOMOW OO [ 1000) : Identify the worst solutior§™: S* = argmaz{QDF(S")|S* €
HBOOO G HOOW® O 210 00) POP)}
HOOOOB]HOO®E®] HB@WOO 9: if S°# S then

Parent solutions A completed offspring solution 10: Remove the worst solution from the populatioROP <
@Stepl ﬁStepS POP\{S5"}

= - < 11: else _
HEOO®  TREOEH 600000000 12:  Removes" from the populationPOP «+ POP\{S"}
HGOOOEHOPHOD™  HBBO ] 13 end if
HOGOG W) LOHHOD) 277100
HBEGO O] OO ) Heew |

A best group matching A partial offspring solution Since the GQMKP can be viewed as a grouping problem,
() represents an object which docs not el the group it belongs t. the well-known set-theoretic partition distance [10] ssem
@) represents an object which constittes the backbore. quite appropriate. Given two solutios§ and.S?, the distance

. 1 2 .
Fig. 2: lllustration of the backbone-based crossover step PEMWeen thenDist(S", 5%) can be computed as:

Dist(S*, 8%) = n — Sim(S*, S?) (13)
To illustrate the main steps of the backbone-based crossove
operator, we use the case of Figure 2 as a working exampidiere the similaritySim(S', S?) is a complementary measure
The example involves an instance of 19 items and 3 knapsac®sthe distance representing the maximum number of elements
and operates with two parent solutiofis and $2. In the first of S! that do not need to be displaced to obtain the soluitn
step, the knapsacks of' and S? are matched using the fastWe apply the group matching algorithm used in Section II-D
greedy algorithm and the results aré’{k; matches tas?- t0 identify the similarity Sim(S',.5%). Given a population
ks), (S'-k, matches toS2-k;) and (S'-k; matches tS2-k,). FPOP = {S%,8%,...,57} and a distance matriDist with
In the second step, a partial offspring solution is conseaiby ~ Disti; denoting the distance between individuals and 5’
first conserving the backbone objects (striped objectsgarei (¢ 7 j andi, j € {1,...,p}), the average distance betwegh
2), and then alternatively adding objects with the highedhd any other individual iPOP is given by:
density values from the parent solutions (item 7 fréfk,, . .
18 from S'-k,, 2 from S2-k; and 11 fromS2-k, are selected AvgDisti pop = ( , Z . 4Dwt”’)/p (14)
in Figure 2). In the third step, the partial solution is coetpd Si€POP,j#i
by allocating some unassigned items (those in virtual kaelps The general scheme of our quality-and-distance pool up-
ko of the offspring solution) to other knapsacks (items 15 artthting procedure is described in Algorithm 4. The offspring
16 are allocated t&;; items 17 is allocated té,; items 4 and solution S° is first inserted into the population. Then all the
6 are allocated td:s). solutions in the population are evaluated using the folhgwi
Given that calculating the edge weight and finding thguality-and-distance fitness (QDF for short) function:

maximum weight matching take respectivélyn) andO(m?) ; ; )
time, our proposed greedy algorithm for group matching c&APEF(SY) = axOR(f(S")) + (1 — a) x DR(AvgDisti pop)
be realized in timeD(n +m?) in step 1. In step 2 and step 3, , ) (15)
finding the highest density object tak€%n) time in the worst whereOR(f(S*)) and DR(AvgDist; pop) represent respec-
case and this can repeat at mastimes. So our backbone- tively the rank of solutionS® with respect to its objective

based crossover procedure can be realize@([m? + n?) in value and the average distance to the population, arid
the worst case a parameter empirically set to = 0.6. With this parameter

setting, Eq. 15 ensures that the best individual in terms of
) objective value will never be removed from the population,
E. Pool updating strategy which formalizes the elitism property of our pool-updating
Avoiding premature convergence is another key issue fstrategy. The worst solutiof* corresponds to the individual
population-based algorithms. To address this issue, we pvdth the largest QDF value. 15° is different from S*, we
pose a quality-and-distance pool updating strategy todeecreplaceS™ with S°, otherwise we discarg®.
whetherS?, the newly generated offspring, should be inserted The distance matrixDist is a memory structure that we
into the population or be discarded. This quality-andatise maintain throughout the search. Each time a new solusidn
strategy, as its name implies, considers both the soluti@ninserted into the population, the distance betw&€nand
quality and the distance between individuals in the poputat any other solution inPOP needs to be calculated, which
to ensure the population diversity. takes O(p * (n + m?)) time (given that the greedy group
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matching procedure take3(n + m?) time, see Section I1-D). TABLE I: Parameter settings of the MAGQMK algorithm

The other distances are extracted directly frdmist. The Parameters Description Value Section

i i H H i ) population size 10 11-B
resting pperaﬂong of the pool updating pr(_)cedL_lre_, inclgdi manTry max number of tials to 20 B
calculating AvgDist; pop, QDF(S*) and identifying the generate a nonclone so-

i 2 H . i H lution

wgr;t solution, takeO(p. + 2% p) tlme.. Dist is updat.ed if o number of 100ps 200 e
SY is accepted and™ is removed which take®)(p) time. nsl number of sub-loops 2 I-C
According to the.above analysis, our p_ooI updating prooedur 7, initial temperature 5-0’;(f0 + 5000 120 IC
can be realized i) (p * (n + m? + p)) time. er cooling ratio 0.99' 10000000 Il-C

I1l. COMPUTATIONAL EXPERIMENTS
This section is dedicated to experimental assessment of [Ra9e from small to large and we tuned manually a Fgsor

proposed MAGQMK algorithm. For this purpose, we sho each instance. With four pairs df{, fy) values, we obtain the

. : . _formula by solving four simultaneou ions. In summar
computational results on 96 benchmark instances availa e y g S equ_ato s. In summary
parameter values of Table | are used in all the expersnent

in the literature and make comparisons with the current ber%{eorted in this section even if fine-tuning the parametewd:
performing algorithms. To complete this section, we alsawsh P 9 P

: . lead to better results.
;ai?;zriggztigg ai?s ei:ji(();tirgr?lrlr?i:cﬁirr?s;em concerning plasﬁ Our MAGQMK algorithm was coded in C+and compiled
' by GNU gcc 4.1.2 with the -O3’ option. The experiments
) ) were conducted on a computer with an AMD Opteron 4184
A. Experimental settings processor (2.8GHz and 2GB RAM) running Ubuntu 12.04.
Test instances. The 96 GQMKP benchmark instancesVhen solving the DIMACS machine benchmarksithout
belong to two different sets and are available atompilation optimization flag, the run time on our machine
http://endustri.ogu.edu.tr/Personel/Akadenpi&rsonel/ is 0.40, 2.50 and 9.55 seconds respectively for graphs $300.
Tugba Sarac Test Instances/G-QMKP-instances.rar: r400.5 and r500.5.
o Set I: This set is composed of 48 small-sized instances
which are characterized by their number of objectss B. Computational results of the MAGQMK algorithm
30, number of knapsacks: € {1,3}, number of classes |n this section, we show computational results obtained by
r € {3,15}, densityd € {0.25,1.00}. Optimal solutions our MAGQMK algorithm on the two sets of 96 benchmark in-
are unknown for these instances. stances under two different stopping criteria: a short tiimé
« Set Il: The second set includes 48 large-sized instancgs100 generations and a long time limit of 500 generations.
with the number of objects = 300, number of knap- We use the second stopping criterion to investigate the-long
sacksm € {10,30}, number of classes € {30,150}, run behavior of our MAGQMK algorithm on the set of 48
densityd € {0.25,1.00}. Optimal solutions are unknown |arge-sized instances. For each stopping criterion anédoh
for these instances. instance, our algorithm was executed 30 times independentl
The above two sets of instances were first generated inThe computational results obtained by our MAGQMK
[30] where the authors considered 12 factors that can affedgorithm on the instances of Set | and Set Il are dis-
the problem structure. They examined each factor with twdayed respectively in Table Al and Table A2 in the
levels which, if a full factorial experiment is conductedatls supplementary document (available at http://www.infoztin
to 4096 different types of problems. To sample a subset afigers.fr/pub/hao/ggmkp.html). In these two tables, roolu
problems from such a large number, they selected 32 typesloto 4 give the characteristics of each instance, including
test problems where all factors are double leveled. With thihe instance identity numbefNp.), number of knapsacks),
design, they generated two sets of 96 benchmarks that we nseber of classes) and density{). Column 5 shows the best
in this paper. known result3 (f,) which are compiled from the best results
Parameters. To report computational results of ourof the three best performing algorithms reported in [30]r Ou
MAGQMK algorithm, we adopt the parameter values showresults are displayed in the remaining columns includirgy th
in Table I, which are fixed in the following manner. For eaclbverall best objective value over 30 runf.:), the average
of the four parametersp( nl, nsl, cr), we tested several value of the 30 best objective valueg,{,), the standard
potential values while fixing the other parameters to outeviation of the 30 best objective valuegl), the earliest CPU
specified default values, and then chose the value yielditige in seconds over the 30 runs when tfg; value is first
the best performance. An analysis in Section IV-A explaineached..:) and the average value of the 30 CPU time when
why the value of 200 is chosen for the length of the MNSAhe best solution is first encountered in each rtin0.
chain (/) which is a critical parameter of MAGQMK. For | _ B , o ,
the initial temperatureT),), we use a formula (see Table |)fr/pl'g/(;;)g/sgqsn(::(u;!ﬂ?mclertlﬂcates are available at http://wafav.univ-angers.
to determine its value. The formula is identified as follows. 2gfmax: ftp://dimacs.rutgers.edu/pub/dsi/clique/
Preliminary experiments suggest a quadratic relation &etw  3when we examine the solution certificates reported in [30] ki@ pro-

T, and the Objective value of the initial solution (denoted a@ded at http://endustri.ogu.edu.tr/Personel/Akademétsonel/TugheSarac
in the f T — b)2 4. We th lected Test Instances/G-QMKP-instances.rar, we find that the repggsdlts for In-
fo), in the form of Ty = a* (fo +b)*/c+d. We then selected gnce 10-1 (15256.01) and Instance 10-2 (13058.94) gmmesto infeasible

four representative instances whose initial objectiveiesl(f,) solutions and consequently they will not be used as referenc
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Fig. 3: Computational results of the MAGQMK on two sets of tlemark instances

To give a general picture of MAGQMK's performance withFigure 3(c) disclose that, within a short time limit (100
respect to the best known results, we also provide four plajenerations), our MAGQMK algorithm performs remarkably
of our best and average results for both sets of instancesbinimproving all the previous best known results except one
Figure 3. The horizontal axis of these plots shows the ingtarcase (Instance 1-2). Moreover, even its average resulth rea
serial number that indicates the order in which the instancer improve the previous best lower bounds for 45 out of
appear in Table A1 and Table A2. The vertical axis shows td& cases (93.7%, see Figure 3(d)). The average standard
gap of our results (either best or average) to the best knodeviation is 43.37 which is small with respect to the best
results in percentage, calculated gs—( fyr)x 100/ f,, where objective values that are more than 10 thousands for many
f is the best or average solution value. A gap larger than zerases. Finally, we observe that these results are obtaiitleich w
means MAGQMK obtains a new best known result for tha reasonable computing time: the average value of the best
corresponding instance. solution time is 601.57 seconds and the average value of the

For the 48 small-sized instances of Set |, Table Al arRyerage computing time is 693.02 seconds.
Figure 3(a) show that our MAGQMK algorithm is able to
attain the best known results for 45 out of 48 (93cjxases
including 7 improved best lower bounds (see values starred i

Table Al and the green square points in Figure 3(a)). For 37\when a long time limit is available, our MAGQMK al-
out of 48 instances, even our average results are better tahithm is able to discover even better results. In paricul
or equal to the previous best known lower bounds (see FigWFAGQMK (500 Gens) discovers 28 improved best lower
3(b)). Moreover, MAGQMK has a perfect standard deviatioounds (see the magenta square points in Figure 3(c)) with
(sd=0.00) for 38 out of 48 instances, which means that one 'WBspect to the results of MAGQMK (100 Gens). The average
is sufficient for MAGQMK to attain its best solution for thesegegylts of MAGQMK (500 Gens) are more interesting which
instances. Finally, MAGQMK is computationally very effiole are petter than those of MAGQMK (100 Gens) for 44 out
and reaches the best solution within a very short computigg 48 cases (see the magenta square points in Figure 3(d)).
time (typically less than 1 second). Indeed, across aldimsts \oreover, MAGQMK (500 Gens) decreases the average value
of Set I, the average value of the best solution time.() IS of standard deviations() from 43.37 (of MAGQMK (100
0.07 seconds and the average value of the average soluiiféhs)) to 36.02. The average value of the best solution time
time is 0.35 seconds. is 2673.27 seconds and the average value of the average
For the 48 large-sized instances of Set Il, Table A2 armbmputing time is 3025.82 seconds, which remain reasonable
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Fig. 4: Comparative results of the MAGQMK with three stafetee-art algorithms.

C. Comparisons with state-of-the-art algorithms The comparative results of MAGQMK with the 3 reference
To further assess the performance of our propos@orithms on the 48 small-sized instances of Set | and the 48

MAGQMK, we carry out a comparative study between odfrge-sized instances of Set Il are summarized in Table A3 an
algorithm with 3 best performing algorithms proposed in] [30Table A4 respect|vel_y in th_e supplementary document (avail
that achieve state-of-the-art results: able at http://www.info.univ-angers.fr/pub/hao/ggntkml).

. . In these two tables, we list the identity number of the inséan
o The Gams/Dicopt solver [30]. The Gams/Dicopt solvel” . ' .
is a program used for solving MINP (mixed-integenthe first column (columd N ST). For Gams/Dicopt and the

. : : . brid algorithm which were executed only once, we indicate
nonlinear programmin roblems by integrating a NLP"”. . . ' .
(Nonlineaerr%gramm%)g? or MIP (I)\//Iixedg—glnteg%r Pro-the obtained best objective valug)(and the best CPU time
gramming) solver that runs under the Gams syste in seconds) when the best solution is first encountered. For

The reported results of Gams/Dicopt were obtained b and ![\:I]AGQMK wh|c|h we][ethexicuttedbmo;g thanl one run,
executing one run of the algorithm within a time limit of € give the average vajue ol the best objeclive va Yes)
13000 seconds for each instance and the average value of the best CPU timgs,j. We also
: . ) : rovide the overall best objective valug(;) obtained by GA

« A genetic algorithm [30] (GA). For each instance, the G/QIPOI MAGQMK for reference purposes. The entry in bold in

was run 3 times where each run was imposed a time | ch row indicates the best objective value for each instanc
of 13000 seconds. The reported results include the bEE )

lower bound, the average value of the 3 best objecti\h%acrz(::rebn):: al thsaﬁjgog;tgﬂs&mi ggiﬂ'?ﬁ; r\ﬁ?cehg:g?tes
values of 3 runs and the average value of the 3 bes Soest

o . improves on the bold value. In the last two rows, we indicate
solution time (in CPU seconds) of 3 runs when the be%]r each algorithm, the number of values highlighted (eithe

solution is first encountered. : )
« A hybrid algorithm combining F-MSG algorithm and caln bold or underlined, row# Bests) and the average value of
omputing time (rondwvg.). Finally, in reference to the results

[30]. The reported results of the hybrid algorithm wergf the GA algorithm which was run 3 times, the last three

?irt:;[slﬂ;?t t()))f/ i;gg%tlggcgzz;lgr(g;:ﬁ iilsq[grr:t:erﬁ within columns of Tables A3 and A4 provide the results of 3 runs
. . of our MAGQMK algorithm. These results are displayed for
The evaluation of the above 3 reference algorithms wejig, understanding of MAGQMK'’s behavior when less runs are
performed on a PC with an Intel Core i7 processor (2.8 GHg)jiaq. From these data, we observe that the averagegresult
and 8 GB RAM). This machine is faster than our computejt \AGQMK vary slightly when the number of runs changes.

with a factor of 1.16 according to the Standard Performange, finging justifies our practice of using average resuts f
Evaluation Corporation (www.spec.org). comparative study.

One notices that the reported results of the three reference ] ) ) )
algorithms were obtained by executing one run or three runs! "€ comparative results are also illustrated using plots in
of the algorithm while our reported results were attained Hy9ure 4, which gives the gaps of our average results to the
running MAGQMK 30 times. Notice also that MAGQMK best known results, in comparison with GA's average results

belongs to the family of stochastic algorithms for whictgnd the results of the GAM and Hybrid algorithms [30].
executing multiple runs is a common practice in the literatu ~ From Table A3 and Figure 4(a), we observe that MAGQMK
Given the above remarks, to compare our best results oettains 37 best results (values in bold in Table A3) on the 48
30 runs to the reference best results of no larger than 3 rwsmall-sized instances of Set |, which is the largest amogrg th
may be considered unfair. To make the comparison as fa#sults of the 4 algorithms in comparison. Among these 37
as possible, we focus on the average results (instead of Hest results, 7 correspond to the unique best results which
best results) obtained by our MAGQMK algorithm for thismeans they were never discovered by the 3 previous reference
comparative study. algorithms. As for the CPU time, MAGQMK requires on
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TABLE II: Computational results of the MAGQMK on the pseudeal-life instance

GA MAGQMK
ny/mni foest favg tavg No.Gens  frest favg tavg
10/10 15518.60 15315.40 820.6 20 Gens 16012.30 15879.10 0201.
50/30 15660.70 15578.80 3136.44 60 Gens 16013.30 15897.0088.216
1200/150 15884.3 15669.1 9133.48 100 Gens 16018.80 15908.3611.21

average 0.35 seconds across Set | which is much shorter thtance as well as its detailed characteristics are availabl
the time required by the Hybrid algorithm (2.48 secondshttp://www.info.univ-angers.fr/pub/hao/ggmkp.html.

and is very competitive to the other two reference algorthm 1,4 pseudo real-life problem is very large-sized with 500

Moreoyer, our MAGQMK algorithm dis.plays a very Stablﬁobs (objects) and 40 machines (knapsacks). Its resulting
behavior that is not observed for GA which was also executidhinematical model has 12840 constraints and 44000 binary
multiple runs. Indeed, MAGQMK achieves a success rate Qi ision variables. The pairwise profit paramegr alone

1OC_% (-8, favg = foest) fOr 39 out of 48 cases (81.29 iy qlves 124750 values. Such a large-sized and non-linear
while GA has only 8 such cases (16%) When we apply ;<iance poses a real challenge for any existing GQMKP

the statistical Wilcoxon test with a significance factor dd® algorithm. As stated in [30], the Gams/Dicopt solver even
for pairwise comparisons, the resulting p-values of 1.87Eyj0 1 find a feasible solution for a problem with such
for MAGQMK v.s. Hybrid, and 1.072E-7 for MAGQMK V.S. gitfic ity when a time limit of 13000 seconds was given.

GA show a clear dominance of MAGQMK over Hybrid andry oqt the ability of our MAGQMK algorithm, we ran it
GA. Though _the associated p-_value of 0'461,3_ for MA,GQM@O times on the pseudo-RLGQMKP instance under the time
v.s. Gams/Dicopt does not disclose a significant differengg,iss of 100 generations, 60 generations and 20 genestion
between these two metho'ds, the superiority of the positive s respectively. The first stopping condition (100 generatjos a
rank (205) over the negative sum rank (146) demonstratés g, jard one that was used in previous experiments, while th
MAGQMK competes very well W'th,Gam,S/D'COpt' ) last two stopping conditions (60 and 20 generations) ard use
An even more favorable comparison is observed in Tableo ciicaly in this experiment to meet the potential efficie
Ad and.I.:|gure 4(b) for the 48 Iargg—suzgd Instance of.S qguirement in real situation. The computational results o
I. Specmcally, our MAGQMK algorithm is able to attain MAGQMK on the pseudo-RLGQMKP instance are displayed
a unique be_St result for 46 out of 48_cases (Q%Bavhne in Table Il. For the purpose of comparison, we also report the
the Ggms/Dmopt solver and the Hybrid algorithm share tkr‘@sults obtained by the GA algorithm described in F3r
remaining two cases, M_oreover, MAGQMK, CONSUMES 0BG times under three different stopping conditions thatewer
average 693.02 seconds in terms of computing time wh|§:hd§ed in [30]. The stopping condition of the GA [30] relies
much less than that consumed by the 3 reference algorithgds o criteria: ns (a fixed number of generations) ang

) _ s rk‘tine number of generations without improvement). From &abl
2598.33 of GA). Our MAGQMK algorithm easily dominates;, -\ e opserve that the best performance of our MAGQMK

the _GA' Indee(.j,. GA obtains 0 best re-sult. while IV"A‘GQMKalgorithm in terms of both best result and average result is
attains 46. Additionally, the overatiestobjective value fyes:) achieved under the longest time condition (100 genergtions

of GA is worse than r?uavel'ra}ger efsult (. avg)lfor_ 46 out of 48 10\ uever, the decrease of the solution quality is marginawh
cases. To estimate the validity of our conclusion, we apipdy ty,o ime fimit is reduced. Indeed, when using the shortest

Wilcoxon test with a significance factor of 0.05 to comparg o |imit (20 generations), the best and average solution
MAGQMKW'th the Gams/Dmopt, Hybrid and GA algorlthmsquality decrease by only 0.04 and 0.18% respectively, but

respectively. The associated p-values of 7.816E-13, E2B iy, 5 saving of 28 minutes, compared to the results of
and 1.421E-14 confirm a clear dominance of MAGQMK oveliqing 100 generations. Now if we compare the results of

the three reference algorithms on the instances of Set IlI. our MAGQMK algorithm with those of the GA algorithm,
it is clear that MAGQMK easily dominates the reference

D. Application of MAGQMK to a pseudo real-life problem algorithm. MAGQMK, even with its shortest time limit (20

As indicated in Section |, one real-life application of thgenerations, 901.02 seconds), outperforms the GA algorith
GQMKP is the plastic parts production with injection mawith its longest time budgetn(/n; = 1200/150, 9133.48
chines in a plastic production company [30]. In this seseconds) in terms of average performance. Finally, onesnote
tion, we study the performance of our MAGQMK algothat MAGQMK's results remain more stable than GA’s results
rithm on a pseudo real-life GQMKP instance (denoted kgcross the three time conditions. This experiment dematestr
pseudo-RLGQMKP). This pseudo-RLGQMKP instance sinthat the proposed MAGQMK algorithm is able to handle
ulates closely the real-life problem involving plastic tsar effectively large real-life cases even under a reduced time
production used in [30] in terms of both problem size aneondition.
characteristics The data file of the pseudo-RLGQMKP in-

4The data file of the real-life problem in [30] is no longer aahle, as
confirmed by the authors. We generated the pseudo real-tifarine with the 5Since the source code of the GA algorithm [30] is not avadlablus, we
instance generator and the problem features provided bwutiers of [30] have implemented the algorithm strictly following the destion presented
(Dr. T. Sara¢ and Dr. A. Sipahioglu). We are grateful to thiemthis help.  in the original paper.
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IV. ANALYSIS best objective value can no longer be improved. The same

In this section, we perform additional empirical analysd§ &/S0 observed on the average running profile of MNSA.
to gain a deeper understanding of the running behavior oYen MAGQMK with the least interesting parametér= 50
the proposed algorithm and the effectiveness of its unifeyly &N _always pbtam a solution that is better thz_;m the _best
mechanisms. Specifically, we explore the running profile §Plution obtained by MNSA. Comparing the running profiles
the algorithm, the effectiveness of the three proposedhaeid®’ MAGQMK and MNSA shows a clear interest of the
borhoods and the efficacy of the pool updating strategy. memetic framework and our proposed crossover operator.

A. Running profile B. Effectiveness of the three neighborhoods

The best (resp. average) running profile is given by the The neighborhood is a critical element that affects the
function: i« — f(i), where ¢ is the number of iterations efficacy of a local search procedure. Our proposed MAGQMK
and f(i) is the best (resp. average) objective value knowalgorithm relies on three dedicated neighborhoalg: (the
at iterationz. The running profile is a natural way to observeeighborhood induced by th&EAL operator), Ngy (the
the evolution of the (best or average) objective value duan neighborhood induced by th@WAPoperator) andV¢ g (the
search process. We mention that the number of loegs (neighborhood induced by th@ ENEXCoperator), which are
of MNSA which represents the search depth of the locakplored in a sequential way in the MNSA procedure. In this
optimization procedure is a critical parameter which @ff¢bhe section, we investigate the influence of each neighborhood
performance of the proposed MAGQMK algorithm. To undemever the performance of the proposed algorithm. For this
stand how this parameter influences the algorithm behawr, purpose, we propose six weakened versions of MAGQMK,
use the running profile to investigate our MAGQMK algorithnmincluding three versions with a single neighborhood and
with four different values of the parameteil: n/ =50, 100, three others with double neighborhoods. Except the didable
200, 400. We consider four representative instances seleateighborhood(s), these MAGQMK variants share the same
from Set Il: 31, 91, 11 2 and 192. These instances arecomponents as the standard MAGQMK algorithm. For the
of reasonable size and difficulty which are characterized Isgke of simplicity, we denote these variants as \BAMA_S,
different levels ofk (number of knapsacks); (number of MA_G, MA_RnS, MA RnG and MA SnG, where for ex-
classes) andi (density). We mention that the observatiommple, MA R indicates an algorithm variant with only¥
below on these 4 instances are also valid for other testeeighborhood, and MARNS indicates a variant with/y and
instances. For each of the 4 representative instances andNgy, neighborhoods. We tested these six variants as well
each value ofil, we performed 30 runs of MAGQMK, eachas the standard MAGQMK algorithm on the 48 large-sized
run being given 22000 loops (number of temperature coaling)stances of Set Il. Each algorithm was run 30 times with 100
Figure 5 shows the best and average running profiles génerations per run. We calculate for each instance the Best
MAGQMK with the 4 different values ofil. The figure shows Gap and the AvgGap, which are computed As {*)x 100/ f*
also the running profiles of MNSA alone for comparativevhere f is the best or average solution value afidis the
purpose. MNSA is also executed 30 times with the parametsgst result found by the standard MAGQMK algorithm. The
values in Table | and initial solutions generated by the RGCBkperimental results are shown in Figure 6 where the left
procedure (Section II-B). part (a)-(b) and the right part (c)-(d) are dedicated to the

From Figure 5, we observe that MAGQMK with = 200 one-neighborhood variants and the two-neighborhood nsria
always attains the best performance in terms of both baespectively. The instances are displayed in the same asler
and average objective value. Such a performance cannottlbey are presented in Table A4. Statistical data are suragdhri
reached by using other valuesaf for the four representative in Table Il where for each algorithm variant and for both
instances. Withnl = 50, MAGQMK typically displays the BestGap and AvgGap, we list the minimum and the average
worst performance. Witll = 100 andnl = 400, the quality value over 48 gaps (row MIN and AVG). Notice that gaps are
of the best solution found by MAGQMK changes on differen negative values and thus a smaller value means a larger gap
instances meaning that none of these two values is definitelyrigure 6 discloses that for each algorithm variant, the
better than the other. We observe also that with= 200 gap values (no matter BestGap or AvgGap) are typically
andnl = 400, the best objective value increases more quicklyelow zero, which means all six algorithm variants perform
at the beginning than with the other two values. Moreoverorse than the standard MAGQMK algorithm. Moreover, the
nl = 200 andnl = 400 preserve a better population diversityperformance of the one-neighborhood variants always falls
than nl = 50 and nl = 100, which effectively avoids a behind the two-neighborhood variants in terms of both the
premature convergence of the algorithm and makes the seaaebrage and the minimum gap values (see Table Ill). These
progress steadily. The above observations on the bestmyinmbbservations confirm that each of the three neighborhoods
profiles are also valid for the average profiles. This analyshakes a significant contribution to the overall performaote
confirms that the value of 200 is a reasonable choice fMAGQMK. Among the three one-neighborhood algorithms,
parameteml. MA_G which employs the singl&/sg neighborhood attains

Concerning the best running profile of MNSA, we observihe best performance in terms of the average gap value,
that even if the best objective value increases sharply et tiollowed by MA_S and finally MAR. In the three two-
beginning, the search soon reaches a point from which theighborhood variants, again the two algorithms wih g
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Fig. 6: BestGap and AvgGap of six algorithm variants to tregdard MAGQMK.

TABLE llI: Statistical data of BestGap and AvgGap.

MA_R MA_S MA_G MA_RnS MA_SnG MA_RnG
BestGap AVG. -12.42 -7.67 -6.05 -5.92 -3.89 -2.36
MIN. -41.28 -46.49 -20.57 -35.76 -28.05 -8.29
AvgGap AVG. -14.57 -9.40 -8.70 -7.15 -5.05 -3.06
MIN. -45.19 -49.22 -28.28 -38.15 -31.38 -8.98

it (i.,e., MA_RnS). These observations demonstrate that thdnere MAGQMK performs better than MAGQMJK,  (col-
neighborhoodN¢ g, which is specifically designed for theumn # > 0) and where MAGQMK performs equally well as
GQMKP, is the most critical one among the three neighbdMAGQMK py (column# = 0).

hoods employed. From Table 1V, we observe that compared to
MAGQMK pyr, MAGQMK achieves a better average
C. Impact of the pool updating strategy value for both the best result (21882.41 vs. 21849.57) and

As described in Section II-E, we employ a quality-andhe average result (21791.55 vs. 21781.08) obtained over

distance (QD) rule to update the solution pool so as to miaintdN€ 48 instances. Moreover, MAGQMK attains a best result
a healthy diversity of the population. To evaluate the menhich is better than or equal to that of MAGQMi§, for

of this strategy, we compare it to a traditional "Pool Worst43 out of 48 cases (36 better, 7 equal), and an average result
strategy (denoted a®W) which simply replaces the worst Which is better than or equal to that of MAGQMi#f for 32 '
solution in terms of objective value in the pool with a ne/put of 48 cases (30 better, 2 equal). The above observation
offspring solution. We ran two algorithm variants (starwar'”d'cates that MAGQMK reaches a better performance than
MAGQMK and MAGQMKpyy) 30 times on the 48 large- MAGQMK py which confirms the usefulness of our proposed
sized instances of Set Il. MAGQMK and MAGQM#K;- are duality-and-distance pool updating strategy.

the same except for the pool updating strategy. Table IV To gain some insights on the inner working of the quality-
summarizes the statistical data of the computational t®sulnd-distance (QD) pool updating strategy, we provide in
For each algorithm variant, Table IV lists the average valudggure 7 the evolution of the population diversity in furctiof

of the best results over 48 instances (columng.f,.s;), the generations on the four representative instances thia w
the average value of the average results over 48 instanaoeed in Section IV-A. The population diversity is defined as
(column Awg. f..4). Table IV also lists, for the best resultthe average distance between all individuals in the pojpmat
and the average result respectively, the number of inssaneehere the distance measure is the set-theoretic partiisn d
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TABLE 1V: Statistical data of two pool updating strategies the 48 large-sized instances of Set Il.

PW PW
MAGQMK MAGQMK pyy frestfroet Javg=favg
Avg. frest  Avg.favg Avg. frest  Avg.fauvg #>0 #=0 #>0 #=0
21882.41 21791.55 21849.57 21781.08 36 7 30 2
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Fig. 7: Diversity in function of generations on four repnetsgive instances.

tance introduced in Section II-E. We also provide the diers compared to the state-of-the-art methods. For the set of 48
evolution of the "Pool Worst” (PW) strategy for comparativesmall-sized instances, MAGQMK is able to attain 45 best
purpose. From Figure 7, we can make two observations: 1) tkeown results where 7 of them correspond to improved best
diversity decreases regularly for both pool updating sgrigts; known results. For the set of 48 large-sized benchmarks, our
2) the diversity is better preserved with the QD updatinglgorithm performs even better by improving all previoustbe
strategy compared to the PW strategy; indeed, the magelut@er bounds except for one case. We have also compared
line (QD updating strategy) is generally above the blue liINFdAGQMK with 3 best performing algorithms published very
(PW strategy) for all tested instances. recently [30] and showed that MAGQMK dominates these ref-
erence algorithms both in solution quality and computation
efficiency. An application of the MAGQMK approach to a
pseudo real-life problem additionally demonstrates tffieasfy

In this paper, we have presented an effective memet¢the proposed algorithm for practical cases.
algorithm (MAGQMK) for the generalized quadratic multiple Furthermore, we have compared MAGQMK and its under-
knapsack problem (GQMKP). GQMKP is a useful model ifying simulated annealing procedure to show the interest of
practice while representing a real computational chalenghe population-based memetic framework and our backbone-
The proposed MAGQMK algorithm combines a dedicatebased crossover operator. We have illustrated the eféectiss
backbone-based crossover operator for solution recoribina of the proposed dedicated neighborhoods (in particula, th
and a multi-neighborhood simulated annealing procedure fsovel general-exchange neighborhood) and the interesteof t
local optimization. A quality-and-distance based poolatpey proposed quality-and-distance pool updating strategy.
strategy ensures a healthy diversity of the population. Finally, it is expected that the ideas behind the crossover

Computational assessments on two sets of 96 benchmaperator and the neighborhoods developed in the work would
instances reveal that the proposed approach is highlytiefec be useful to other constrained knapsack problems and more

V. CONCLUSION
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generally constrained grouping problems.

(1]

(2]

(3]

(4]

(5]
(6]
(7]
(8]

9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
(18]
[29]

[20]

[21]

[22]

[23]
[24]

[25]

[26]

[27]

REFERENCES

N. K. Bambha, S. S. Bhattacharyya, J. Teich, E. Zitzler.st8atic
integration of parameterized local search into evolutiprelgorithms.
IEEE Transactions on Evolutionary Computatj@{(2):137-155, 2004.
U. Benlic, J.K. Hao. A multilevel memetic approach for impioy

(28]

[29]

(30]

M. Resende, C. Ribeiro. Greedy randomized adaptiveehgaocedures.
Handbook of Metaheuristics 20087: 219-249.

T. Sarag A. Sipahioglu. A genetic algorithm for the dretic multiple
knapsack problem. Advances in Brain, Vision, and Artificigklligence.
Lecture Notes in Computer Science, Volume 4729, pp 490-4987.20
T. Sarac A. Sipahioglu. Generalized quadratic mudtibhapsack prob-
lem and two solution approache€omputers& Operations Research
43: 78-89, 2014.

graph k-partitions. IEEE Transactions on Evolutionary Computation [31] A. Singh, A.S. Baghel. A new grouping genetic algorithior the

15(5):624-472, 2011.

Y. Chen, J.K. Hao. Iterated responsive threshold sefcthe quadratic
multiple knapsack problem.Annals of Operations ResearcB26(1):
101-131, 2015.

X. Chen, Y.S. Ong, M.H. Lim, and K.C. Tan. A multi-facet sesvon
memetic computationEEE Transaction on Evolutionary Computatjon
15(5):591-607, 2011.

P.C. Chu, J.E. Beasley. A genetic algorithm for the mirtiehsional
knapsack problemlournal of heuristics4(1):63—86, 1998.

E. Falkenauer. New representations and operators fos &gplied to
grouping problemsEvolutionary Computation2: 123-144, 1992.

E. Falkenauer. Genetic algorithms and grouping probleNew York:
Wiley, 1998.

L. Feng, Y.-S. Ong, M.-H. Lim, LW.H. Tsang. Memetic searafth
inter-domain learning: A realization between CVRP and CAREEE
Transactions on Evolutionary Computatiob9(5): 644-658, 2015.

P. Galinier, J.K. Hao. Hybrid evolutionary algorithmg fgraph coloring.
Journal of Combinatorial Optimizatiqr3(4): 379-397, 1999.

D. Gusfield. Partition-Distance: A Problem and Clas$effect Graphs
Arising in Clustering.Information Processing Letter82(3): 159-164,
2002.

P. Galinier, Z. Boujbel, M.C. Fernandes. An efficient méimalgorithm
for the graph partitioning problem.Annals of Operations Research
191(1): 1-22, 2011.

C. Gar¢a-Marinez, F. Glover, F.J. Rodriguez, M. Lozano, R. Mart
Strategic oscillation for the quadratic multiple knapsaobipem. Com-
putational Optimization and Application§8(1): 161-185, 2014.

(32]

C. Gar¢a-Marfnez, F.J. Rodriguez, M. Lozano. A tabu-enhanced iter-

ated greedy algorithm: A case study in the quadratic multipi@pkack
problem. European Journal of Operational Resear@B2(3): 454-463,
2014.

A. Hiley, B. Julstrom. The quadratic multiple knapsaclolgem and
three heuristic approaches to itn Proceedings of the Genetic and
Evolutionary Computation Conference (GECCOG37-552, 2006.

J.K. Hao. Memetic algorithms in discrete optimizatidn. F. Neri, C.
Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithmadi®s in
Computational Intelligence 37%€hapter 6, 73-94, 2012.

A. Jaszkiewicz. On the performance of multiple-objeetgenetic local
search on the 0/1 knapsack problem: A comparative experintegE
Transaction on Evolutionary Computatio6i(4):402-412, 2002.

H.W. Kuhn. The Hungarian method for the assignment probldaval
Research Logistics Quarterl: 83-97, 1955.

S. Kirkpatrick, Jr. CD. Gelatt, M.P. Vecchi. Optimizati by simulated
annealing.Science 220: 671-80, 1983.

Z. Lu, J.K. Hao. A memetic algorithm for graph coloringcuropean
Journal of Operational Researcl203(1): 241-250, 2010.

P. Merz, B. Freisleben. Fitness landscapes, memeticritiiges, and
greedy operators for graph bipartitionintpurnal of Evolutionary Com-
putation 8(1): 61-91, 2000.

P. Moscato, C. Cotta. A gentle introduction to memeticoalfyms.
In F. Glover and G. Kochenberger (Eds.), Handbook of Metaiséas,
Kluwer, Norwell, Massachusetts, USA, 2003.

Y. Mei, X. Li, X. Yao. Cooperative coevolution with roaitdistance
grouping for large-scale capacitated arc routing problel8EE Trans-
actions on Evolutionary Computatipd8(3): 435-449, 2014.

F. Neri, C. Cotta, P. Moscato (Eds.) Handbook of Memetigohithms.
Studies in Computational Intelligence 378pringer, 2012.

Y.S. Ong, A.J. Keane. Meta-lamarckian learning in memalgorithms.
IEEE Transactions on Evolutionary Computatjd@(2): 99-110, 2004.
Y.S. Ong, M.H. Lim, X. Chen. Research frontier: memetic coagion-
past, present & futurdEEE Computational Intelligence Magazirg2):
24-36, 2010.

D. Pisinger. The quadratic knapsack problem-a surldéscrete Applied
Mathematics 155: 623-48, 2007.

D.C. Porumbel, J.K. Hao, P. Kuntz. An evolutionary agmo with
diversity guarantee and well-informed grouping recombarafor graph
coloring. Computers and Operations Resear@v(10): 1822-1832,
2010.

quadratic multiple knapsack problem. Evolutionary Compatatin

Combinatorial Optimization. Lecture Notes in Computer Sogericl46,
pp. 210-218, 2007.

K. Tang, Y. Mei, X. Yao. Memetic algorithm with extende&ighbor-
hood search for capacitated arc routing problefiSEE Transactions
on Evolutionary Computatigri3(5): 1151-1166, 2009.

Yuning Chen received the B.Eng. and M.Eng.
degrees from the National University of Defense
Technology (NUDT), Changsha, China, in 2010 and
2012 respectively. He is currently pursuing the Ph.D.
degree in Computer Science at the LERIA labo-
ratory, University of Angers, France. His research
interests include evolutionary computation, memetic
algorithms, meta-heuristics and multiobjective opti-
mization for quadratic knapsack problems and other
combinatorial optimization problems.

Jin-Kao Hao is a Distinguished Professor (Pro-
fesseur des Univer§is de classe exceptionnelle)
with the Computer Science Department, University
of Angers (France) and is Senior Fellow with the
Institut Universitaire de France. From 2003-2015, he
was the head of the Computer Science Laboratory
LERIA. He has authored or co-authored over 200
peer-reviewed publications and co-edited 9 books
in Springers LNCS series. His research interests
include design of effective algorithms and intelligent
computational methods for solving large-scale com-

binatorial search problems. He has served as an Invited Meailmrer 180
program committees of international conferences and is orditerial board

of seven International Journals. J.-K. Hao graduated ir2 I@8n the National
University of Defense Technology (School of Computer Sa&@r{€hina). He
received the Master degree (Oct. 1987) from the Nationaitine of Applied
Sciences (INSA Lyon, France), the Ph.D. in Constraint Rrogning (Feb.
1991) from the University of Franche-Coeptand the Professorship Diploma
HDR (Habilitationa Diriger des Recherches) (Jan. 1998) from the University
of Science and Technology of Montpellier (France).



