A Hybrid Metaheuristic Approach for the
Capacitated Arc Routing Problem

Yuning Chen?, Jin-Kao Hao *"*, Fred Glover ©

aLERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers, Cedex 01, France
b Institut Universitaire de France, Paris, France
¢OptTek Systems, Inc., 2241 17th Street Boulder, Colorado 80302, USA
European Journal of Operational Research, doi: 10.1016/j.ejor.2016.02.015

Abstract

The capacitated arc routing problem (CARP) is a difficult combinatorial opti-
mization problem that has been intensively studied in the last decades. We present
a hybrid metaheuristic approach (HMA) to solve this problem which incorporates
an effective local refinement procedure, coupling a randomized tabu thresholding
procedure with an infeasible descent procedure, into the memetic framework. Other
distinguishing features of HMA include a specially designed route-based crossover
operator for solution recombination and a distance-and-quality based replacement
criterion for pool updating. Extensive experimental studies show that HMA is highly
scalable and is able to quickly identify either the best known results or improved
best known results for almost all currently available CARP benchmark instances. In
particular, it discovers an improved best known result for 15 benchmark instances
(6 classical instances and 9 large-sized instances all with unknown optima) while
dominating all other state-of-the-art algorithms by yielding better average gap val-
ues. Furthermore, we analyze some key elements and properties of the HMA-CARP
algorithm to better understand its behavior.

Keywords: Capacitated arc routing problem; Memetic search; Tabu thresholding.

1 Introduction

The capacitated arc routing problem (CARP) has been subject of a large num-
ber of studies during the last decades due to its wide applicability in logistics,

* Corresponding author.
Email addresses: yuning@info.univ-angers.fr (Yuning Chen),
hao@info.univ-angers.fr (Jin-Kao Hao), glover@opttek.com (Fred Glover).

Preprint submitted to Elsevier 13 February 2016

such as household waste collection, product distribution, winter gritting and
postal deliveries, among others [10]. The CARP model can be informally de-
scribed as follows. We are given a graph with a set of vertices and edges, where
each edge has a predefined traversal cost and where a subset of edges, which
are required to be serviced by some vehicles, are additionally associated with a
service cost and a demand. A fleet of identical vehicles with a limited capacity
is based at the depot vertex. The objective of CARP is to find a set of vehicle
routes with a minimum cost such that: 1) each required edge is serviced on
one of the routes; 2) each route must start and end at the depot vertex; and
3) the total demand serviced on the route of a vehicle must not exceed the
vehicle capacity.

From a theoretical point of view, CARP is known to be NP-hard [12], and
hence is not expected to be solved by any exact algorithm in a polynomial
time in the general case. The computational difficulty of solving CARP is also
confirmed in practice. Indeed, the best existing exact algorithms are limited to
moderate instances with only 140 vertices and 190 edges [3,6,7]. For these rea-
sons, intensive research has been devoted to developing effective heuristic and
metaheuristic methods. Representative heuristic methods include Augment-
Merge [12], Path-Scanning [17], the route first-cluster second heuristic [33]
and Ulusoy’s Heuristic [35]. Among the metaheuristic methods, neighborhood
search approaches are popular, e.g., tabu search [4,19,24], variable neighbor-
hood search [20, 30], guided local search [2], GRASP with evolutionary path
relinking [36]. As another class of popular metaheuristics for tackling CARP,
population-based algorithms generally achieve better performances, such as
the memetic algorithm [22,34], the ant colony algorithm [32] and the coopera-
tive co-evolution algorithm [26]. Among these methods, two population-based
algorithms (MEANS [34] and Ant-CARP [32]) and one local search algorithm
(GLS [2]) represent the state-of-the-art solution methods for the classical test
instance set, while RDG-MEANS [26] is the current best performing algorithm
for the large-scale CARP (LSCARP) instances. Finally, for a thorough and
up-to-date discussion of arc routing problems, the reader is referred to the re-
cent book [8] edited by A. Corberan and G. Laporte and in particular, chapter
7 by C. Prins dedicated to heuristic approaches.

In this work, we investigate a new population-based algorithm under the
memetic search framework [27]. Memetic algorithms (MAs) have been proved
to be very effective for solving a large number of difficult combinatorial op-
timization problems [28,29], including CARP [22,34]. The success of a MA
highly depends on a careful design of two key search components: the crossover
operator and the local refinement procedure [18]. Based on our previous ex-
periences on MAs applied to various combinatorial problems, we go one step
further by providing innovations for these two key components (crossover and
local refinement) with the goal of creating a more effective powerful memetic
algorithm able to surpass the current state-of-the-art CARP methods.

The main contributions of our work can be summarized as follows.

e From the algorithmic perspective, the proposed population-based hybrid
metaheuristic approach (HMA) combines a powerful local refinement pro-
cedure to ensure an effective search intensification with a dedicated crossover
operator specially designed for CARP to guarantee a valid search diversifi-
cation. The local refinement procedure couples a randomized tabu thresh-
olding procedure to locate high-quality feasible solutions, with an infeasible
descent procedure to enable tunneling between feasible and infeasible re-
gions. The dedicated crossover operator relies on route information that
can be embodied in exchanges of parent solutions to create new promising
solutions. Additionally, to maintain a healthy population diversity and to
avoid premature convergence, HMA employs a quality-and-distance strat-
egy to manage the pool of solutions using a dedicated distance measure.

e In terms of computational results, extensive experiments carried out on
8 sets of widely used benchmarks show the competitiveness of the pro-
posed method compared to the state-of-the-art CARP algorithms in solu-
tion quality and computational efficiency. For the 7 sets of 181 small-sized
and medium-sized instances, HMA consistently matches or improves on all
the best known results. In particular, HMA discovers a new best known
result (new upper bound) for 6 well-studied instances. For the last set of 10
large-sized CARP benchmarks, HMA exhibits an even better performance.
It easily dominates the state-of-the-art algorithms, including those specially
designed for these CARP instances, by finding 9 new best known solutions,
while yielding significantly smaller average gap values, thus demonstrating
the outstanding scalability of the proposed method.

The rest of the paper is organized as follows. Section 2 introduces preliminary
notation and the solution representation. Sections 3 and 4 are dedicated to the
description of the main HMA algorithm. Section 5 presents the computational
results. Section 6 investigates some key elements of HMA, followed by the
conclusions in Section 7.

2 Notation and solution representation

We are given a graph G(V, E) with a set of vertices ('), a set of edges (EF), a
set of required edges (Fr C E) and a fleet of identical vehicles with a capacity
of) that is based at the depot vertex vy (vg € V). Each edge e = (i,7) € E is
represented by a pair of arcs < ¢,7 > and < j,7 >. A required edge is said to
be served if and only if one of its two arcs is included in one vehicle route of
the routing plan. For the sake of simplicity, we use the term task to represent a
required edge hereafter. Let n be the number of tasks, i.e., n = |Eg|. Each arc
of a task, say u, is characterized by four elements: the head vertex (head(u)),

the tail vertex (tail(u)), the traversal cost (tc(u)) and the demand (g(u)).

To represent a CARP solution, we assign to each task (i.e., a required edge)
two IDs (i,7+mn) where ¢ is an integer number in [1,n], i.e., one ID for each arc
of the task. We also define a dummy task with 0 as its task ID and both its head
and tail vertices being the depot vertex vy. This dummy task is to be inserted
somewhere in the solution as a trip delimiter. Suppose a solution .S involves
m vehicle routes, S can then be encoded as an order list of (n+m+1) task IDs
among which (m+1) are dummy tasks: S = {S(1),5(2),...,5(n +m + 1)},
where S(i) denotes a task ID (an arc of the task or a dummy task) in the "
position of S. S can be also written as a set of m routes (one route per vehicle):
S =10, R;,0, Ry,0,...,0, R,,,0}, where R; denotes the i'" route composed of
|R;| task IDs (arcs), i.e., R; = {Ri(1), Ri(2),..., R;(|R;])}, with R;(j) being
the task ID at the j position of R;. Let dist(u,v) denote the shortest path
distance between the head vertex of arc u (head(u)) and the tail vertex of arc
v (tail(v)), the total cost of a solution S can be calculated as:

n+m

F(8) = >_ (te(S(i)) + dist(S(i), S(i + 1)) (1)

i=1
The total load load(R;) of a route R; can be calculated as:

| Rl

load(R;) = 3" q(Ri(j)) (2)

Jj=1

3 A hybrid metaheuristic algorithm for CARP

In this section, we describe the proposed hybrid metaheuristic algorithm (HMA)
for CARP including the main procedure, the procedure for generating initial

solutions, the specific route-based crossover as well as the quality-and-distance

based pool maintenance procedure. The local refinement procedure of HMA

is presented in Section 4.

3.1 Main scheme

Our HMA algorithm can be considered as a hybrid steady-state evolutionary
algorithm which updates only one population solution at each generation of
the evolution process [14]. Algorithm 1 shows the main scheme of the HMA
algorithm. HMA starts with an initial population of solutions (Line 1 of Algo.
1) which are first generated by a random path scanning heuristic (Sect. 3.2)

W N =

® N o w

10
11
12

13
14
15

16

and further improved with the local refinement procedure (Sect. 4). Before
entering the main loop, HMA initializes a counter array C'nt (Lines 3-4) which
is used to record the accumulated number of successful pool updates with the
related threshold ratio value in a given set Sr (an external input).

Algorithm 1: Main Scheme of HMA for CARP

Data: P - a CARP instance; Psize - population size; St - a set of tabu timing
values; W - the number of non-improving attractors visited; Sr - a set of
threshold ratios; LB - the best known lower bound of P

Result: the best solution S* found

// Population initialization, Section 3.2

POP « Pool_Initialization(Psize) ;

S* < Best(POP) ; /* S* records the best solution found so far */
for i =1 to |Sr| do

L Cnt(i) =1; /* Initialize the counter array Cnt */

// Main search procedure

while stopping condition not reached do
Randomly select two solutions S' and S? from POP ;
S0 « Crossover(S*, S?) ; /* Route-based crossover, Sect. 3.3 */
Od < random_determine(RTTP — IDP,IDP — RTTP); /* Determine
the order of conducting RTTP and IDP, Sect. 4.4 */
k < probabilistic_select(Cnt) ; /* Select a ratio, Sect. 4.2 x/
SO « Local_refine(P,S°, St, Sr(k),W,0d) ; /* Improve SY, Sect. 4 x*/
if £(S°) = LB then
L return S°
(S*, POP) «+ Pool Updating(S°, POP) ; /* Pool updating, Sect. 3.4 */
if pool updating is successful then
| Cnt(k) « Cnt(k) +1;
return S*

At each generation, HMA randomly selects two parent solutions S' and S?
from the population (Line 6), and performs a route-based crossover (RBX)
operation (Line 7, see Sect. 3.3) to generate an offspring solution S°. RBX ba-
sically replaces one route of one parent solution with one route from the other
parent solution, and repairs, if needed, the resulting solution to ensure the
feasibility of S°. HMA then applies the local refinement procedure (Line 10,
Sect. 4) to further improve S°. The local refinement procedure involves two
sub-procedures, namely a randomized tabu thresholding procedure (RTTP)
and an infeasible descent procedure (IDP), which can be carried out in two
possible orders: RTTP followed by IDP (RTTP—IDP) and IDP followed by
RTTP (IDP—RTTP). The applied order is determined randomly before run-
ning the local refinement procedure (Line 8, see Sect 4.4). RTTP requires a
threshold ratio which is probabilistically chosen among the values of a given
set Sr according to the probability formula: Pr(i) = C’nt(z)/zfliq' Cnit(1),

where Pr(i) denotes the probability of selecting the i value of Sr (Line 9).

If the improved solution reaches the lower bound LB, HMA terminates im-
mediately and returns this solution (Line 11-12). Otherwise, HMA ends a
generation by updating the recorded best solution and the population with
the offspring solution S. (Line 13, see Sect. 3.4). If SY is successfully inserted
into the population, the counter in relation to the threshold ratio used in the
current generation is incremented by one (Lines 14-15). HMA terminates when
a stopping condition is reached, which is typically a lower bound cutoff or a
maximum number of generations.

3.2 Population initialization

To generate one initial solution of the population, HMA uses a randomized
path-scanning heuristic (RPSH) to construct a solution which is then further
improved by the local refinement procedure described in Section 4. RPSH is
adapted from the well-known path-scanning heuristic [17] by randomizing its
five arc selecting rules. Specifically, RPSH builds one route at a time in a
step-by-step way, each route starting at the depot vertex. At each step, RPSH
identifies a set A of arcs (belonging to a set of unserved tasks) that are closest
to the end of the current route and satisfy the vehicle capacity constraint. If
A is empty, RPSH completes the current route by following a shortest dead-
heading path to the depot vertex and starts a new route. Otherwise RPSH
randomly selects one arc from A and extends the current route with the se-
lected arc. The selected arc as well as its inverse arc are marked served. This
process continues until all tasks are served.

The solution constructed by RPSH is further improved by the local refinement
procedure of Section 4. The improved solution is inserted to the population
if it is unique in terms of solution cost relative to the existing solutions, or
discarded otherwise. The population initialization procedure stops when the
population is filled with Psize (population size) different individuals or when
a maximum of 3 x Psize trials is reached. The latter case helps to fill the
population with Psize distinct individuals. If ever only & < Psize distinct
solutions are obtained after 3 x Psize trials, we set the population size to k.

3.8 Route-based crossover operator for CARP

At each of its generations, HMA applies a crossover operator to create an off-
spring solution by recombining two parent solutions randomly selected from
the population. It has been commonly recognized that the success of memetic
algorithms relies greatly on the recombination operator which should be adapted

to the problem at hand and be able to transfer meaningful properties (build-
ing blocks) from parents to offspring as discussed in [18]. This idea is closely
related to the idea of using structured combinations and vocabulary build-

ing [16].

By considering that the solution of CARP is composed of a set of routes, it
is a natural idea to manipulate routes of tasks rather than individual tasks.
In this regard, the route-based crossover (RBX) operator used for the vehicle
routing problem (VRP) [31] seems attractive for CARP. However, given that
CARP is quite different from the VRP, RBX must be properly adapted in
our context within HMA. Given two parent solutions S* = {R}, R;, ..., R}, }
with my routes and S* = {R}, R3, ..., RZ, } with my routes, our RBX crossover
basically copies S! to an offspring solution S° and replaces a route of S° with
a route from S2%, and then repairs S° to establish feasibility if needed. The
RBX crossover procedure consists of three main steps:

e Step 1: Copy S' to an offspring solution S® = {R{, RS, ..., R, } and replace
a route of S® with a route from S?. Generate two random integer values a
(a € [1,m4]) and b (b € [1,ms]); Replace the route R of solution S° with
the route R? of solution S?, and collect the tasks that are not served in S°
to a set UT;

e Step 2: Remove duplicated tasks by the following rule. Let S°(p;) be the
task in position p;, and let p; — 1 be the position before p; and p; + 1 be
the position after p;. Also let dist(u,v) denote the shortest path distance
between vertex head(u) and vertex tail(v). Given a task ¢y which appears
twice respectively in position p; and ps, RBX removes the appearance with
the largest value of s(p;) (i € {1,2}), where s(p;) = dist(S°(p;—1),S%(p;))+
dist(S°(p;), S°(p; + 1)) — dist(S°(p; — 1), S%(p; + 1)).

e Step 3: Insert the unserved tasks of UT in S°. Before task insertion, RBX
sorts the tasks in set UT in random order. Then for each task t in UT,
RBX scans all possible positions of S° to insert t. If a position is able to
accommodate ¢t while respecting the vehicle capacity, RBX further calculates
the saving (change of the total cost) with ¢ inserted. The two arcs of ¢
are both considered for insertion, and the minimum saving is recorded.
RBX finally inserts the task to a position which causes the overall least
augmentation of the total cost while maintaining the solution feasibility.
Ties are broken randomly. This process is repeated until UT' becomes empty.

Our proposed RBX operator not only introduces a new route (taken from S?)
into S° , but also modifies other existing routes due to deletion of duplicated
tasks and insertion of unserved tasks. Clearly, RBX could lead to an offspring
solution which is structurally different from its parent solutions. This is a
desirable feature which promotes the overall diversity of HMA. Moreover, the
quality of the offspring is not much deteriorated due to the use of greedy
heuristics in Steps 2 and 3. As such, when the offspring is used as a seeding

solution of local refinement, it helps the search to move into a new promising
region. RBX can be realized in O(n?), where n is the number of tasks.

3.4 Population management

In population-based algorithms, one important goal aims to avoid premature
convergence of the population. This can be achieved by adopting a carefully
designed strategy for population management. In HMA | we use a quality-and-
distance strategy (QNDS) for this purpose. QNDS takes into account not only
the solution quality, but also the diversity that the solution contributes to the
whole population by resorting to a solution distance measure.

We propose in this work to adapt for the first time the Hamming distance
in the context of CARP and use it as our distance measure. Any pair of
consecutive tasks (S(i), S(i+1)) of a solution S is linked by a shortest path (a
path with minimum deadheading cost) between head(S(7)) and tail(S(i+1)),
called deadheading-link hereafter. Thus, solution S has n + m deadheading-
links where n is the number of tasks and m is the number of routes. Let
Vr C V be a set of vertices that belong to the required edges, let V, =
Vr U{vq} be a set containing both the vertices of Vi and the depot vertex
va, let TT = {(u,v)|u,v € Vz} be the set of all possible deadheading-links.
Given two solutions S* with m; routes and S? with m; routes, their Hamming

distance D, ; is defined as the number of different deadheading-links between
S* and S7:

D@j = (TL + m) - Z Ly (3)

(u,v)€ll
where m = min{m;, m;},

(4)

1, if (u,v)is a deadheading — link of both S* and S’
Loyp =
0, otherwise

Given a population POP = {S*, S2, ..., SPs2¢} of size Psize and the distance
D; ; between any two individuals S* and S? (i # j € [1, Psize]), the average
distance between S* and any other individual in POP is given by:

ADi,POP = (Z Di,j)/(PSZ.ZG —].) (5)
Sie POP,j#i

QNDS evaluates each solution in the population using the following quality-
and-distance fitness (QDF for short) function:

QDF(S") = axOR(f(S") + (1 —a) * DR(AD; pop) (6)

where OR(f(S")) and DR(AD; pop) represent respectively the rank of solu-
tion S with respect to its objective value and the average distance to the
population (objective value is ranked in ascending order while average dis-
tance is ranked in descending order), and « is a parameter. We require the
value of a to be higher than 0.5 to ensure that the best individual in terms of
objective value will never be removed from the population, which formalizes
the elitism property of QNDS.

Given an offspring S° (which has undergone both crossover and local refine-
ment), QNDS first inserts S° into POP, evaluates the QDF value of each
individual and finally removes from POP the solution S* with the largest
QDF value.

4 Local refinement procedure of HMA

The local refinement procedure is another key component of our HMA algo-
rithm and plays en essential role in enforcing intensification which ensures
the high performance of HMA. Our local refinement procedure involves two
sub-procedures, i.e., a randomized tabu thresholding procedure which explores
only the feasible region, and an infeasible descent procedure which visits both
feasible and infeasible regions. Both sub-procedures are based on a set of
move operators which are explained below. The implementation of the two
sub-procedures are also described.

4.1 Move operators

Our local refinement procedure employs six move operators, including five tra-
ditional small-step-size operators: inversion, single insertion, double insertion,
swap, two-opt; as well as a large-step-size operator called merge-split recently
proposed in [34]. These operators are briefly described as follows.

Let u and v be a pair of tasks in the current solution S, tasks x and y be
respectively the successor of u and v, rt(u) be the route including task w.

e Inversion (IV): replace the current arc of task u with its reverse arc in S

e Single insertion (SI): displace task u after task v (also before task v if v is
the first task of 7t(v)); both arcs of u are considered when inserting u in the
target position, and the one yielding the best solution is selected;

e Double insertion (DI): displace a sequence (u,x) after task v (also before
task v if v is the first task of rt(v)); similar to SI, both directions are
considered for each task and the resulting best move is chosen;

e Swap (SW): exchange task u and task v; similar to SI, both directions
are considered for each task to be swapped and the resulting best move is
chosen;

e Two-opt (TO): two cases exist for this move operator: 1) if rt(u) = rt(v),
reverse the direction of the sequence (z,v); 2) if rt(u) # rt(v), cut the link
between (u,x) and (v,y) , and establish a link between (u,y) and (v, x);

e Merge-split (MS): this operator obtains an unordered list of tasks by merg-
ing multiple routes of the current solution, and sorts the unordered list
with the path scanning heuristic [17]. It then optimally splits the ordered
list into new routes using the Ulusoy’s splitting procedure [35]. Each ap-
plication of this operator results in five new solutions and the best one is
chosen. Interested readers are referred to [34] for more details.

In the following two subsections, we explain how these operators are used in
our two local refinement sub-procedures.

4.2 Randomized tabu thresholding procedure

The proposed randomized tabu thresholding procedure (RTTP) follows the
general principle of the Tabu Thresholding (TT) method whose basis was
first proposed by Glover in [13]. A main ingredient of TT is the candidate
list strategy (CLS) which is dedicated to reduce the number of moves to be
considered in order to accelerate the neighborhood examination. CLS sub-
divides the possible moves of the current solution into subsets and executes
one move for each subset rather than for the whole neighborhood. CLS, along
with the elements of probabilistic tabu search, simulates the tabu mechanism
with memory structure. RT'TP is a randomized procedure in the sense that it
explores multiple neighborhoods in a random order.

4.2.1 Outline of the randomized tabu thresholding procedure

The randomized tabu thresholding procedure basically alternates between a
Mixed phase and an Improving phase where for both phases, five traditional
move operators are employed: inversion, single insertion, double insertion,
swap and two-opt. Algorithm 2 sketches the outline of the RT'TP procedure
for CARP. RTTP starts by initializing a set of global variables with an initial
solution Sy taken from an external input. RTTP then enters the main loop
where Mized phase and Improving phase alternate.

In the Mixed phase, for any move operator o and for a given task ¢, RT'TP

10

N0 Gk W

10
11
12
13

14
15
16
17
18
19

20
21
22
23

examines the candidate list MOVE_CL(4, .S, 0) in random order and accepts
the first improving feasible move if any, or the best admissible feasible move
otherwise. The admissible feasible move satisfies a quality threshold 7'V, i.e.,
f (S/) < TV where S is the neighboring solution generated by the accepted
move. TV is calculated as: TV = (1 + r) * f,, where f, is the current best
local optimum objective value, and r is a threshold ratio. With this quality
threshold, deteriorating solutions are allowed in order to diversify the search.
Solution cycling is prevented through the complete reshuffling of the order
in which candidate lists are examined before each neighborhood examination.
An iteration of the Mixed phase is based on the examination of the complete
neighborhoods of all move operators. The Mized phase is repeated for T' iter-
ations. 71" is called a tabu timing parameter, which is analogous to the tabu
tenure when an explicit tabu list is used. 7" is randomly selected among the
values of a given set St.

Algorithm 2: Outline of the RTTP for CARP

Data: P - a CARP instance, St - a set of tabu timing values, r - threshold ratio,
W - the number of non-improving attractors visited, Sp - an initial solution;
Result: the best solution S* found so far;

O« {IV,SI,DI,SW,TO} ; /* O contains five move operators */
S* + Sp ; /* S* records the global best solution */
S+ S ; /* S records the current solution */
fp < f(S*);; /* fp records the best local optimum objective value */
w<+0; /* set counter for consecutive non-improving local optima */
while w < W do

T < random_select(St) ;

// Mixed Phase
for k< 1toT do
Randomly shuffle all operators in O ;
for each o € O do
Randomly shuffle tasks of S in M ;
for each i € M do
(S, S*) < Apply operator o to task i by searching
MOVE_CL(i, S, 0) and accepting a move according to the quality
threshold;

~

/ Improving Phase
while Improving moves can be found do
Randomly shuffle all operators in O ;
for each o € O do
Randomly shuffle tasks of S in M ;
for each i € M do
(S, S*) < Apply operator o to task i by searching
MOVE_CL(3, S, 0) and accepting the first met improving move;

if f(S) < f, then

k fo < f(S); w0
else
| wew+1;

In the Improving phase, RTTP always seeks an improving move among the

11

feasible moves within each candidate list MOVE_CL(¢, S, 0). If no improving
move is found in a given candidate list, RT'TP skips to the next candidate list.
This phase is iterated until no improving move can be found in any candidate
list.

If the local optimum reached in the Improving phase has a better objective
value than the recorded best objective value f,, the algorithm updates f, and
resumes a new round of Mixed — Improving phases. RT'TP terminates when
f» has not been updated for a consecutive W Mixzed — I'mproving phases.

4.2.2 Construct candidate list

When using the five traditional move operators, neighborhoods of the current
solution can always be obtained by operating on two distinct tasks. For in-
stance, insertion is to insert one task after or before another task; swap is
to swap one task with another task; two-opt is to exchange the subsequent
part of a task with that of another one. As such, given a move operator o, a
natural choice for the subsets to be used in the candidate list strategy is to
define one subset MOVE_SUBSET(i, S, 0) for each task i. In order to speed up
neighborhood examination, we further use an estimation criterion to discard
moves from MOVE_SUBSET(i, S, 0) that are unlikely to lead to a promising
solution. This estimation criterion is based on a distance measure between two
tasks t1, to which is defined as:

Dtask(t17t2> == (Z;ZD(Ua(tl)uvb(tQ)))/Zl (7>

b=1

where D(v,(t1),vs(t2)) is the traversing distance between ¢;’s ath end node
va(t1) and to’s bth end node wvy(ts). (This distance measure was first used
in [26] to define the distance between two routes.) The candidate move list
associated to task i (MOVE_CL(i, S, 0)) is restricted to contain Csize most
promising moves such that for each move which is associated with two tasks
(4, t), t is a member of i’s Csize closest neighboring tasks according to the
distance measure of formula 7.

4.3 Infeasible descent procedure

For a constrained optimization problem like CARP, it is known that allowing
a controlled exploration of infeasible solutions may facilitate transitions be-
tween structurally different solutions and help discover high-quality solutions
that are difficult to locate if the search is limited to the feasible region. This
observation is highlighted by discoveries made with the strategic oscillation

12

approach (see, e.g., Glover and Hao [15]) which alternates between phases of
infeasible descent and phases of improving feasible search. To further intensify
the search, we employ in our local refinement procedure, as a complement to
RTTP, an infeasible descent procedure (IDP) which allows visiting infeasible
solutions. IDP is a best-improvement descent procedure based on three tradi-
tional move operators, i.e., single insertion, double insertion, swap, as well as
a large-step-size merge-split operator that was recently proposed and proved
to be effective for CARP [34]. We use the merge-split operator in the way
as suggested in [34]. IDP basically involves two different stages. In the first
stage, IDP examines the complete neighborhoods induced by the SI, DI and
SW operators and chooses the best move to perform if it improves the current
solution. When no improvement can be found in the first stage, IDP switches
to the second stage where it examines the neighboring solutions generated
by the MS operator. Since MS is computationally expensive, IDP restricts
the examination to a maximum of 100 neighboring solutions which are ran-
domly sampled from the C? possibilities where m is the number of routes.
If C2, < 100, all neighboring solutions will be examined. Still, the best im-
proving move is performed until no improvement is reported in this stage. If
any improvement is found in the second stage, IDP switches back to the first
stage to explore the new local region and terminates the algorithm when this
stage is finished; otherwise, IDP terminates at the end of the second stage.
As in many previous CARP algorithms which allow intermediate infeasible
solutions [2,4,19,34], we evaluate the solution quality generated in the search
process of IDP by adding a penalty item to the original cost:

¢(S) = f(5) + 5 EX(S) (8)
where E X (S) is the total excess demand of S and f is a self-adjusting penalty
parameter. (is halved (doubled) if feasible (infeasible) solutions have been
achieved for five consecutive iterations, and its initiating value is set to:

p=1(9)/2xQ) (9)

where () is the vehicle capacity. One notices that we don’t consider the viola-
tion of S in Eq. 9. This is because we always ensure that IDP starts the search
from a feasible solution.

4.4 Combination of RTTP and IDP

After presenting the implementation of RT'TP and IDP, the order of combin-
ing them in the local refinement procedure remains an issue to be addressed.
RTTP is the most important component of our HMA algorithm which com-
pared to IDP, makes more contribution to the high performance of HMA,

13

but also consumes more computing time (see the analysis in Sect. 6.1). IDP
is a very simple descent procedure which, when used alone, is not expected
to identify very high quality solutions (see the analysis in Sect. 6.1). How-
ever, the search ability of RT'TP and IDP can be mutually strengthened when
they are combined. Indeed, it is beneficial to put IDP either before or after
RTTP. When IDP is placed before RTTP, the best feasible solution found
by IDP can be considered as a good starting point for RTTP. This is be-
cause the performance of neighborhood search algorithms may highly depend
on the initial solution and a high-quality initial solution could help discover
still better solutions. When IDP is put after RT'TP, the property of tunneling
through infeasible regions and the large-step-size MS operator of IDP may
help to further improve the high quality solution provided by RTTP. For the
above reasons, both orders (i.e., RI'TP—IDP and IDP—RTTP) are allowed
in our HMA algorithm. The order is randomly determined before the local
refinement procedure is carried out.

5 Computational experiments

To evaluate the efficacy of the proposed HMA algorithm, we carry out exten-
sive experiments on a large number of well-known CARP benchmark instances,
and compare the results! with those of the state-of-the-art algorithms as well
as the best known solutions ever reported in the literature.

HMA was coded in C++ and compiled by GNU g++ 4.1.2 with the ~-O3’
option. The experiments were conducted on a computer with an AMD Opteron
4184 processor (2.8GHz and 2GB RAM) running Ubuntu 12.04. When solving
the DIMACS machine benchmarks? without compilation optimization flag,

the run time on our machine is 0.40, 2.50 and 9.55 seconds respectively for
instances r300.5, r400.5 and r500.5.

5.1 FExperimental setup

Our HMA algorithm was evaluated on a total of 191 benchmark graphs with
7 to 255 vertices and 11 to 375 edges. These instances are very popular and
widely used in the CARP literature. They cover both random instances and
real-life applications, and are typically classified into eight sets:

1 Our best solution certificates are available at: http://www.info.univ-
angers.fr/pub/hao/CARPResults.zip
2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/

14

gdb: 23 instances randomly generated by DeArmon [9], with 7-27 nodes and
11-55 required edges.

val: 34 instances derived from 10 randomly generated graphs proposed by
Benavent et al. [1], with 25-50 nodes and 34-97 required edges.

egl: 24 instances proposed by Eglese [11], which originate from the data
of a winter gritting application in Lancashire (UK), with 77-140 nodes and
98-190 edges that include 51-190 required edges.

C': 25 instances generated by Beullens et al. [2] based on the intercity road
network in Flanders, with 32-97 nodes and 42-140 edges that include 32-107
required edges.

D: 25 instances modified from the instances of set C' by doubling the vehicle
capacity for each instance.

E: 25 instances, also generated by Beullens et al. [2] based on the intercity
road network in Flanders, with 26-97 nodes and 35-142 edges that include
28-107 required edges.

F': 25 instances modified from the instances of set £ by doubling the vehicle
capacity for each instance.

EGL-G: 10 large-sized CARP instances, which like the set egl, were also
generated based on the road network of Lancashire (UK) [4], each having
255 nodes and 375 edges with 374 to 375 required edges.

Following the common practice in the literature, we compare the results pro-
duced by our HMA algorithm on these benchmarks to those of the following
eight state-of-the-art algorithms:

1

2

A guided local search (GLS) algorithm proposed by Beullens et al. [2], who
reported results on the instance set gdb, val and C-F.

A deterministic tabu search algorithm (TSA) proposed by Brando & Eglese
[4], who reported results on all eight instance sets. Two sets of results
("TSA1” and "TSA2”) were reported, and the one ("TSA2”) yielding bet-
ter performance will be considered for comparative study for all instance
sets except for EGL-G where only results of "TSA1” were reported.

A variable neighbourhood search (VNS) algorithm proposed by Polacek et
al. [30], who reported results on set val and egl. Two sets of results (7993
MHz” and ”3.6 GHz”) were reported, and the one (3.6 GHz”) yielding
better performance will be considered for comparative study.

A memetic algorithm with extended neighbourhood search (MAENS) pro-
posed by Tang et al. [34], who reported results on set gdb, val, egl and
C-F.

An improved ant colony optimization based algorithm (Ant-CARP) pro-
posed by Santos et al. [32], who reported results on set gdb, val, egl and
C-F. Two sets of results ("Ant-CARP_6” and ”Ant-CARP_12”) were re-
ported, and the one (” Ant-CARP_12”) yielding overall better performance
will be considered for comparative study. Hereafter, we use ”Ant_12” to
represent ” Ant-CARP_12” and use its median results for comparison when

15

Table 1
Scaling factors for computers used in the reference algorithms. Our computer (AMD

Opteron 4184) is used as the basis.

Algorithm Reference Processor type Frequency (GHz) Factor
HMA - AMD Opteron 4184 2.8 1.0
GLS 2] Pentium II 0.5 0.18
VNS [30] Pentium IV 3.6 1.29
TSA2 [4] Pentium Mobile 1.4 0.50
MAENS (34] Intel Xeon E5335 2.0 0.71
Ant_12 [32] Pentium III 1.0 0.36
GRASP (36] Intel Core 2 3.0 1.07
ILS-RVNS [25] Intel Core i5 3.2 1.14
RDG-MAENS [26] Intel Core i7-2600 3.4 1.21

we study the average performance of the reference algorithms since their
average results are not available.

6 A GRASP with evolutionary path relinking (GRASP) proposed by Usberti
et al. [36], who reported results on the set gdb, val and egl.

7 An iterated variable neighbourhood descent algorithm (ILS-RVND) pro-
posed by Martinelli et al. [25]. We reference their reported results of set
EGL-G.

8 A cooperative co-evolution algorithm with route distance grouping (RDG-
MAENS) proposed by Mei et al. [26]. RDG-MAENS was specifically de-
signed for large-sized CARP instances, and thus we reference their results
on set FGL-G.

These reference algorithms were tested on different computers with a CPU
frequency ranging from 500 MHz to 3.6 GHz. To make a relatively fair com-
parison of the runtime, all CPU times reported in the reference papers are
scaled here into the equivalent AMD Opteron 4184 2.8 GHz run times. Like
in previous CARP literature [25, 26,32, 34|, our time conversion is based on
the assumption that the CPU speed is approximately linearly proportional to
the CPU frequency. We provide in Table 1 the CPU type and its frequency
of each reference algorithm, as well as its resulting scaling factors. This time
conversion is only made for indicative purposes, since the computing time of
each algorithm is not only influenced by the processor, but also by some inac-
cessible factors such as the operating systems, compilers and coding skills of
the programmer. Nevertheless, we show in the following experiments, the out-
comes provide interesting information about the performance of the proposed
algorithm relative to the best performing algorithms.

5.2 Parameter tuning

The HMA algorithm relies on a set of correlated parameters. To achieve a
reasonable tuning of the parameters, we adopt the Iterated F-race (IFR)
method [5], which allows an automatic parameter configuration, using the IFR,

16

Table 2
Parameter tuning results

Parameter Description Range Final value
Psize population size [6,16] 10
a parameter of QDF in pool updating [0.51,0.90] 0.60
St tabu timing parameter values in RTTP [28,33] -
W maximum number of attractors in RT'TP [5,20] 10
Sr threshold ratios in RT'TP for classical sets ~ {0.003,0.004,0.005,0.006}
for EGL-G set {0.0001,0.0005,0.0010,0.0015}
Csize candidate list size [6,20] 12

algorithm that is implemented and integrated in the irace package [23]. Table
2 summarizes the parameters of our HMA algorithm, along with the range of
values that were determined by preliminary experiments. Among these param-
eters, four of them (Psize, a, W, Csize) need to be tuned and the other two
parameters (threshold ratio r and tabu timing parameter T') are adaptively
or randomly chosen among the values in the given sets (Sr and St) during the
search process. We set the tuning budget to 1000 runs of HMA and each run
is given 100 generations. We restrict the training set to contain 8 challenging
instances taken from wval, egl, C, F and EGL-G sets: val-10D, egl-e3-B, egl-s3-
C, C11, E12, E15, EGL-G1-B, EGL-G2-B. The final choices of the parameter
values are presented in Table 2 and they are used in all experiments in the
following sections unless otherwise mentioned.

5.3 Comparative results on 7 classical instance sets

We first assess HMA on the 7 most commonly used instance sets (181 in-
stances): gdb, val, egl, C, D, E, F. It is compared to 5 current state-of-the-art
algorithms: GLS [2], TSA2 [4], VNS [30], Ant-CARP [32], GRASP [36], and
MAENS [34]. To give a general picture of the performance of each compared
algorithm, we summarize in Table 3, for each instance set and for each algo-
rithm, the number of best results that match or improve on the best known
results (#Best), the number of average results that match or improve on the
best known results (#BestAvg), the average gap between the average results
and the best known results in percentage (AvgGap, the gap is calculated as
(favg~for) X100/ fp, where f,,, is the average solution value obtained by the
algorithm and f, is the best known solution value reported in the literature),
and the average of the instance computing time in seconds (AvgTime). When
we count #Best, we refer to the current best known results (BKRs) which
are compiled from the "best results” reported in all previous CARP litera-
ture. These "best results” could be those obtained by a single algorithm with
various parameter settings (e.g., [22, 30, 32]) or even with a specific setting
tuned for each instance (e.g., TSApes in [4]). Finally, to complement these
summarized results, Appendix A (Tables A.1-A.7) reports, for each of the
181 CARP instance, the detailed results of our HMA algorithm as well as the
average results of the reference algorithms. These tables permit a thorough

17

assessment of all compared algorithms.

Note that some results were obtained from a single run of the algorithms
(GLS and TSA) whereas other results came from multiple runs (VNS, GRASP,
Ant-CARP, MAENS, HMA1 and HMAZ2). Clearly, #Best favors multiple-run
results. To make a fair comparison, we refer to average statistics (#BestAvg,
AvgGap, AvgTime) when we compare single-run results with multiple-run
results.

For each instance, our HMA algorithm was run 30 times under two different
stop criteria: 500 generations and 2000 generations. To ease presentation, we
denote HMA with 500 generations as HMA;, and HMA with 2000 generations
as HMA,. Studying the outcomes of these two termination criteria affords
insights into how HMA behaves when more computing time is available.

From Table 3, we can see that HMA; shows a remarkable performance on all 7
tested instance sets compared to the multiple-run reference algorithms. Indeed,
it attains the largest number of best known results for all 7 data sets and the
lowest average gap to the best known results for 6 out of 7 sets. Compared to
Ant_12 and MAENS which, like HMA 1, are both population-based algorithms,
HMA, clearly shows its dominance in terms of both best results and average
results. For set D, HMA; is the only algorithm which is able to find all BKRs.
Additionally, HMA; obtains improved best known results on three well-studied
instances from set egl. By increasing the HMA; termination criterion of 500
generations to 2000 generations, HMA, achieves a still better performance,
always obtaining equal or better results in terms of both #Best and AvgGap.
In particular, for set egl, HMA, discovers 6 new BKRs and matches 6 more
BKRs, leading to '#Best = 23’ which is significantly larger than those obtained
by the reference algorithms. HMA, is able to achieve overall 180 current or
new BKRs out of 181 instances with one standard parameter setting, while the
current BKRs are compiled from many previous articles, among which some
were obtained with parameters specifically tuned for individual instance.

Now we turn to compare our HMA algorithm to the single-run reference al-
gorithms. As mentioned before, we should look at average statistics when
comparing multiple-run algorithms to single-run algorithms. According to two
average indicators, namely #BestAvg and AvgGap, GLS is clearly the best
performing single-run algorithm among all 6 reference algorithms (including
single-run algorithms and multiple-run ones). Still, compared to GLS, our
HMA algorithm remains competitive on 6 instance sets (i.e., gdb, val and
C-F). Indeed, when the short time limit (500 generations) is applied, HMA;
performs better in items of AvgGap (by achieving an equal or lower AvgGap
for more instance sets: 5 vs. 3), but worse in terms of #BestAvg (by attaining
an equal or higher #BestAvg for less instance sets: 2 vs. 6). On set D, both
HMA; and HMA, are dominated by GLS in terms of both indicators. Finally,

18

Table 3

Comparative statistical results on the 7 classical instance sets: gdb, val, egl, C-F.
The best result of each row is indicated in bold. The results of HM Ao are starred if
they improve on the results of HMA;.

GLS TSA2 VNS GRASP Ant.12 MAENS HMA; HMA,

lrun 1 run 10 runs 15 runs 10 runs 30 runs 30 runs 30 runs
gdb #Best 23 21 - 23 22 23 23 23
#BestAvg 23 21 - 19 21 22 23 23
AvgGap 0.00 0.07 - 0.11 0.10 0.01 0.00 0.00
AvgTime 0.32 1.23 - 5.47 1.21 4.47 1.19 1.19
val #Best 30 29 32 30 29 31 32 34*
#BestAvg 30 29 26 0 26 0 29 30
AvgGap 0.05 0.14 0.09 0.12 0.17 0.18 0.03 0.02*
AvgTime 14.64 10.09 56.70 65.85 9.11 48.35 11.23 26.71
egl #Best - 4 11 12 11 12 15 23*
#BestAvg - 4 4 3 9 2 9 14*
AvgGap - 0.75 0.56 0.50 0.58 0.59 0.13 0.07*
AvgTime - 145.68 649.17 854.48 181.09 498.49 198.83 646.03
C #Best 20 18 - - 22 23 24 25*
#BestAvg 20 18 - - 16 3 18 23
AvgGap 0.12 0.14 - - 0.52 0.98 0.06 0.02*
AvgTime 42.49 42.92 - - 40.76 165.50 36.88 54.22
D #Best 24 17 - - 23 23 25 25
#BestAvg 24 17 - - 20 10 20 23
AvgGap 0.04 0.66 - - 0.34 0.79 0.17 0.10
AvgTime 17.36 19.20 - - 51.88 219.53 14.65 35.13
E #Best 19 17 - - 20 20 23 25*
#BestAvg 19 17 - - 16 5 16 20
AvgGap 0.20 0.39 - - 0.83 1.44 0.19 0.08*
AvgTime 40.65 46.00 - - 40.54 160.89 42.62 116.54
F #Best 25 15 - - 22 25 25 25
#BestAvg 25 15 - - 20 12 25 25
AvgGap 0.00 0.90 - - 0.77 1.01 0.00 0.00
AvgTime 10.67 21.09 - - 52.17 166.85 8.44 8.44

one observes that when given more computing time, HMA, is able to further
improve its results.

To validate the above observations, we apply a Wilcoxon test with a signif-
icance factor of 0.05 for a pairwise comparison of the average performance
between HMA; and TSA2, Ant_12 as well as MAENS, which are three ap-
proaches that have been tested on all 181 instances. The resulting p-values
of 2.15E-10, 9.31E-10 and 2.20E-16 confirm that the results of HMA; are
significantly better than those of these current best performing algorithms.

This conclusion remains valid for HMA, since it always performs better than
HMA;.

When it comes to computational time (AvgTime’ in Table 3), our HMA
algorithm also remains competitive. Recall that the indicated time for the
reference algorithms are scaled according to our computer and the average
time of a multiple-run algorithm can be compared to the time of a single-
run algorithm. Table 3 shows that HMA; is in overall not slower than any of

19

the reference algorithms. Compared to the fast GLS, TSA2 and Ant_12 algo-
rithms, HMA; generally requires comparable computing time. Compared to
the remaining reference algorithms (i.e., VNS, GRASP and MAENS), HMA,
is clearly more efficient. By extending the stop condition to 2000 generations,
HMA,, which finds improved solutions, consumes more computing time than
HMA; as expected.

Finally, the "best results” reported by previous CARP studies were often
achieved by executing tests involving multiple parameter settings to show the
extreme performance of the associated algorithms. Following this practice, we
report in Appendix A some new best known results discovered by our HMA
algorithm with parameter settings other than the standard one given in Table
2. The form of HMA using these additional parameter settings, which we call
HMA*, further attains two new BKRs (for S4-A, S4-B) and matches the BKR
for S3-C, which finally makes HMA* consistently match or improve on all 181
BKRs.

5.4 Comparative results on the EGL-G set

To test the scalability of HMA, we carried out experiments on the EGL-
G set containing 10 large scale CARP (LSCARP) instances. As stated in
[26], solving LSCARP is much more challenging than solving small-sized or
medium-sized instances since the solution space increases exponentially as the
problem size increases. Compared to the classical instance sets which involve
instances having at most 190 required edges, all instances in EGL-G have
more than 347 required edges. Such a size, as was shown in previous studies
[4,25], is large enough to pose a scalability challenge to the existing CARP
algorithms. For this reason, a dedicated algorithm called RDG-MAENS [26]
has been proposed specifically for solving LSCARP instances. In this section,
we evaluate the capacity of our HMA algorithm to solve these 10 LSCARP
instances by comparing its performance to those of the current best performing
CARP algorithms including RDG-MAENS.

As before, HMA was executed 30 runs to solve each instance under two ter-
mination criteria: 500 generations (HMA;) and 2000 generations (HMA,).
We also report the results obtained by HMA with various other parameter
settings (HMA*). Table 4 summarizes our results on the EGL-G set, along
with those of the current best performing algorithms: TSA1, ILS, MAENS,
RDG-MAENS. In [26], the authors report the results of RDG-MAENS for 6
parameter combinations of (g,«) where ¢ = 2 and 3, a = 1, 5 and 10. We
include the results of the best version (¢ = 2, o = 10) for our comparative
study. Table 4 lists the average results of each algorithm, the solution time of
HMA, the best lower bounds (LB), the best known results (BK R), and the

20

Table 4
Comparative results of our HMA algorithm with 4 state-of-the-art algorithms on
the 10 instances of EGL-G set. The best average results and best results are in bold.

The best result of HMA* is starred if it improves on the BKR.

Best results

INST (|N|,|ERgL) Average results

TSA1 1LS MAENS RDG HMA Time HMA, Time LB BKR HMA; HMA, HMA*

1 run 10 runs 30 30 30 runs 30 runs

runs runs

G1-A (255,347) 1049708 1010937.40 1009302 1007619 992823.00 1221.45 992300.33 3209.16 976907 998777 992337 992045 992045*
G1-B (255,347) 1140692 1137141.50 1128114 1122863 1117198.77 1354.57 1114992.53 3961.81 1093884 1111971 1114125 1113003 1112245
G1-C (255,347) 1282270 1266576.80 1255709 1250174 1240200.13 1453.32 1237543.93 4288.60 1212151 1241762 1235062 1233536 1231335*
G1-D (255,347) 1420126 1406929.00 1390034 1386120 1374555.27 1411.71 1371488.53 3768.35 1341918 1371443 1370331 1365259 1365259*
G1-E (255,347) 1583133 1554220.20 1535511 1525629 1516790.63 1338.02 1513731.10 3496.35 1482176 1512584 1511684 1506179 1503871*
G2-A (255,375) 1129229 1118363.00 1109376 1104944 1095027.80 1816.93 1091999.37 4566.27 1069536 1094912 1090595 1088040 1088040*
G2-B (255,375) 1255907 1233720.50 1225361 1221429 1206313.77 1749.72 1201944.50 4972.88 1185221 1208326 1200817 1199877 1199272*
G2-C (255,375) 1418145 1374479.70 1358398 1355548 1338918.87 1646.83 1337615.83 3913.69 1311339 1341519 1334130 1332791 1331646*
G2-D (255,375) 1516103 1515119.30 1500415 1492063 1480175.70 1580.93 1477007.10 4464.64 1446680 1481181 1473099 1471107 1470059*
G2-E (255,375) 1701681 1658378.10 1641260 1629002 1618924.97 1655.15 1615848.83 4407.06 1581459 1618899 1611364 1606807 1606079*
AvgGap 3.94 2.22 1.32 0.89 -0.02 -0.22 - - - - -
AvgTime 510.55 1163.71 2437.30 1633.86 1522.86 4104.88 - - - - -

best results of HMA. The last two rows show, for each algorithm, the average
of the average gaps to the BKR (AvgGap), and the ”scaled” average of the
average solution time (AvgTime).

Table 4 discloses that although HMA, is the best new algorithm, outperform-
ing the early terminating algorithm HMA,, it is also true that HMA; in fact
dominates all reference algorithms. In terms of average results, HMA; is much
better than any of the reference algorithms for all 10 instances. The very small
AvgGap value of -0.02% of HMA; indicates that HMA; is on average better
than the previous BKRs, and compares favorably to the AvgGap value of more
than 0.89% for the other approaches. In terms of best results, HMA; discovers
an improved solution relative to the BKRs for 9 out of 10 instances (90%).
As the current best and highly specialized algorithm, the best version of the
reference algorithm RDG-MAENS is outperformed by HMA;. Moreover, the
average computational time of HMA; is comparable to that of the reference
algorithms. HMA; requires much less time to find substantially better results
than MAENS. Compared to the best version of RDG-MAENS, HMA; is also
on average faster (1522.86 vs. 1633.86 seconds). The fact that HMA, further
significantly improves on HMA; demonstrates that HMA can reach better per-
formance when more computational time is allowed. By testing several other
parameter settings, HMA* further discovers 6 improved best known results.

A Wilcoxon test is finally applied to a pairwise comparison of the average
performance between HMA; and each of the four reference methods, which
always results in a p-value of 0.001953 (<0.05) for all tested pairs, indicating
the superiority of our method relative to the compared approaches.

21

Table 5
Analysis of the components of the local refinement procedure using a single solution
approach.

IDP TTP RTTP I4+R RST HMA;
BestGap 4.63 0.69 0.65 0.55 0.14 0.01
AvgGap 9.30 1.80 1.79 1.80 0.29 0.13
AvgTime 0.07 0.98 0.98 0.99 213.02 198.83

6 Analysis

In this section, we present additional experimental results to analyze the per-
formance of each algorithmic component of the proposed HMA algorithm, in
order to understand their contribution to the overall performance of HMA
and how they should be combined in the proposed algorithm. These experi-
ments were performed on the egl set which contains a number of challenging
instances of medium size, and helps to better distinguish the performance of
the algorithm variants to be considered.

6.1 Analysis of algorithmic components

To provide insight of the performance of the local refinement procedure and
the crossover operator, we test in this experiment several algorithm variants
based on a single solution rather than a population of solutions. The "IDP”
version is a very simple algorithm having only solution initialization (random
path scanning) and IDP as its two components. Similar to "IDP”, the ”"RTTP”
version includes only the solution initialization and the RT'TP procedure. The
"TTP” version is exactly the same as "RTTP” except that the move operators
are used in a fixed order as they are presented in Section 4.1. The "I+R”
version combines IDP and RTTP in random order. The "RST” version is a
random restart algorithm that simply starts ”"I4+R” for 500 times. We also
include the results of HMA; (500 generations) for comparative purposes. For
each algorithm variant, we report in Table 5 the average of the best gap to
the BKR in percentage (BestGap), and the average of the average gap to
the BKR in percentage (AvgGap), as well as the average computing time in
seconds (AvgTime).

Table 5 shows that TTP performs much better than IDP. RTTP further im-
proves on TTP which shows the effectiveness of the random use of move op-
erators. The results of "I4+R” indicates that though RTTP is a very crucial
component, its performance can be still ameliorated by a random collabora-
tion with IDP. The comparative results of RST and HMA; clearly shows the
relevance of the crossover operator and the population-based framework.

22

Table 6
Analysis of different combinations of the crossover operator and the local refinement
procedure using a population of solutions.

XO+I XO+R XO4I-R XO4+R—I HMA;

BestGap 0.72 0.02 0.02 0.04 0.01
AvgGap 1.59 0.16 0.16 0.15 0.13
AvgTime 6.77 254.11 158.37 244.20 198.83

6.2 Analysis under the population-based framework

Given that both the local refinement procedures and the crossover operator
are effective, this part of analysis investigates how they should be combined
to achieve the best performance. For this purpose, we propose another set of
algorithm variants based on a population of solutions. The ” XO+I" version is
obtained by removing the RTTP procedure from HMA, ”XO+R” version by
removing IDP from HMA. ”XO+I—R” version works all the same as HMA,
except that the order of using IDP and RTTP is fixed to I—R. Similarly,
"XO+R—1" uses the order R—I. Table 6 summarizes the results of these
algorithm variants, along with those of HMA;. Without surprise, using only
IDP in the local refinement procedure shows a rather poor performance, while
employing RTTP in the local refinement procedure leads to a much better
performance. Compared to ”XO+R”, including an additional IDP in the local
refinement procedure never leads to a definitely better performance if the order
of using IDP and RTTP is fixed. However, if IDP and RTTP are used in a
random order as in HMA, a better performance can be observed in terms of
both BestGap and AvgGap.

6.3 Analysis on the pool updating strateqy

The third part of the analysis investigates the effectiveness of our pool updat-
ing strategy, which uses the hamming distance to control the diversity of the
population. We therefore compare the adopted strategy to a traditional ”pool
worst” strategy which simply replaces the worst solution in terms of fitness in
the population, leading to an algorithm variant denoted as HMA py,. HMA py
was tested under two termination criteria: 500 generations (HMApy1) and
2000 generations (HMApw2), and the outcomes are compared to those of
HMA; and HMA,. The computational results are summarized in Table 7,
from which we can clearly see that HMA; performs better than HMA py1,
and the superiority of HMA, relative to HMA pyy9 enlarges when more com-
puting time is allowed. This experiment confirms the usefulness of the diversity
control mechanism used in our HMA.

23

Table 7
Analysis of the quality-and-distance pool updating strategy.
HMApy,; HMA; HMApy, HMA,

BestGap 0.02 0.01 0.00 -0.04
AvgGap 0.15 0.13 0.10 0.07
AvgTime 188.15 198.83 437.34 646.03

7 Conclusions

The capacitated arc routing problem (CARP) is of great practical interest and
represents a significant computational challenge due to its NP-hardness. We
developed a new hybrid metaheuristic approach (HMA) for effectively solving
CARP, which employs a randomized tabu thresholding procedure (RTTP)
coupled with an infeasible descent procedure to explore both feasible and
infeasible regions. HMA relies on a specialized route-based crossover operator
to generate diversified and promising new solutions. Thanks to its quality-
and-distance based pool updating strategy, HMA prevents the search process
from premature convergence.

The proposed approach demonstrates an excellent performance over the eight
sets of 191 popular CARP benchmarks. Specifically, on the 7 sets of 181 classi-
cal instances, HMA with a standard parameter setting outperforms the current
best performing algorithms, in terms of both solution quality and computa-
tional efficiency. HMA further improves its own performance when more com-
puting time is available (to run 2000 generations), attaining the best known
results for all 181 cases including 6 improved new best results. HMA also proves
to be scalable to handle the last set of 10 large-sized instances, by obtaining
9 new best results, dominating the current state-of-the-art algorithms includ-
ing the approaches which were specially designed for the large-sized CARP
instances. We additionally conducted experiments to analyze the contribution
of the two sub-procedures for local refinement, the relevance of the route-based
crossover operator (and thus the population-based framework), the strategy
for combining crossover with the local optimization procedure, as well as the
quality-and-distance pool updating strategy.

Finally, we observe that the proposed method can be adapted to handle other
CARP variants with slight modifications of the route-based crossover operator
and of the local refinement procedure to accommodate additional constraints.

Acknowledgment

We are grateful to the anonymous referees for their valuable suggestions and
comments which helped us to improve the paper. The work is partially sup-

24

ported by the PGMO (2014-0024H) project from the Jacques Hadamard Math-
ematical Foundation and the National Natural Science Foundation of China
(Grants 61473301, 71201171, 71501179). Support for Yuning Chen from the
China Scholarship Council is also acknowledged.

References

[1] Benavent E., Campos V., Corberan E., Mota E. The capacitated arc routing
problem: lower bounds. Networks 1992; 22(4) 669-690.

[2] Beullens P., Muyldermans L., Cattrysse D., Van Oudheusden D. A guided local
search heuristic for the capacitated arc routing problem. Furopean Journal of
Operational Research 2003; 147(3): 629-643.

[3] Baldacci R., Maniezzo V. Exact methods based on noderouting formulations for
undirected arcrouting problems. Networks 2006; 47(1): 52-60.

[4] Brandao J., Eglese R. A deterministic tabu search algorithm for the capacitated
arc routing problem. Computers & Operations Research 2008; 35(4): 1112-1126.

[5] Birattari M., Yuan Z., Balaprakash P., Stiitzle T. F-Race and iterated F-Race:
An overview. Experimental methods for the analysis of optimization algorithms
2010; Berlin, Germany: Springer, pp. 311-336.

[6] Bartolini E., Cordeau J.F., Laporte G. Improved lower bounds and exact
algorithm for the capacitated arc routing problem. Mathematical Programming
2013; 137(1-2): 409-452.

[7] Bode C., Irnich S. Cut-first branch-and-price-second for the capacitated arc-
routing problem. Operations research 2012; 60(5): 1167-1182.

[8] Corberan A., Laporte G. Arc routing: problems, methods, and applications.
MOS-STAM Series on Optimization, Vol. 20. STAM, 2015.

eArmon J. 5. A comparison of heuristics for the capacitate inese postman
9] DeA J.S. A i f heuristics for th i d Chi
problems. Master thesis, University of Maryland, College Park, MD, 1981.

[10] Dror, M. Arc Routing: Theory, Solutions and Applications. Kluwer Academic
Publishers 2000.

[11] Eglese R.W. Routing Winter Gritting Vehicles. Discrete Applied Mathematics
1994; 48(3): 231-244.

[12] Golden B. L. and Wong R. T. Capacitated arc routing problems. Networks
1981; 11(3): 305-315.

[13] Glover F. Tabu thresholding: Improved search by nonmonotonic trajectories.
ORSA Journal on Computing 1995; 7(4): 426-442.

[14] Glover F., Kochenberger G. (Eds.). Handbook of Metaheuristics, Kluwer,
Norwell, Massachusetts, USA. 2003.

[15] Glover F., Hao J.K. The case for strategic oscillation. Annals of Operations
Research 2011; 183(1): 163-173.

[16] Glover F, Laguna M. Tabu search. Kluwer Academic Publishers 1997.

25

[17] Golden B. L., DeArmon J. S., Baker E. K. Computational experiments with
algorithms for a class of routing problems. Computers & Operations Research
1983; 10(1): 47-59.

[18] Hao J.K. Memetic algorithms in discrete optimization. In Neri F., Cotta C.,
Moscato P.(Eds.) Handbook of Memetic Algorithms. Studies in Computational
Intelligence 379, Chapter 6, pages 7394, 2012.

[19] Hertz A., Laporte G., Mittaz M. A tabu search heuristic for the capacitated
arc routing problem. Operations research 2000; 48(1): 129-135.

[20] Hertz A., Mittaz M. A variable neighborhood descent algorithm for the

undirected capacitated arc routing problem. Transportation science 2001; 35(4):
425-434.

[21] Kirkpatrick S., Vecchi M. P. Optimization by simmulated annealing. Science
1983; 220(4598), 671-680.

[22] Lacomme P., Prins C., Ramdane-Cherif W. Competitive memetic algorithms
for arc routing problems. Annals of Operations Research 2004; 131(1-4): 159-185.

[23] Lépez-Ibdnez M., Dubois-Lacoste J., Stitzle T., Birattari M. The irace
package, iterated race for automatic algorithm configuration. Technical Report
TR/IRIDIA /2011-004, IRIDIA, Universit Libre de Bruxelles, Belgium.

[24] Mei Y., Tang K., Yao X. A global repair operator for capacitated arc routing
problem. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics 2009; 39(3): 723-734.

[25] Martinelli R., Poggi M., Subramanian A. Improved Bounds for Large Scale
Capacitated Arc Routing Problem. Computers & Operations Research 2013;
40(8): 2145-2160.

[26] Mei Y., Li X., Yao X. Cooperative coevolution with route distance grouping for
large-scale capacitated arc routing problems. IEEE Transactions on Evolutionary
Computation 2014; 18(3): 435-449.

[27] Moscato P. On evolution, search, optimization, genetic algorithms and martial

arts: Towards memetic algorithms. Caltech concurrent computation program,
C3P Report, 826, 1989.

[28] Moscato P., Cotta C. A Gentle Introduction to Memetic Algorithms. In Glover
F. and Kochenberger G. A. (Eds.), Handbook of Metaheuristics. Kluwer, Norwell,
Massachusetts, USA, 2003.

[29] Neri F., Cotta C., Moscato P. (Eds.) Handbook of Memetic Algorithms. Studies
in Computational Intelligence 379, Springer, 2011.

[30] Polacek M., Doerner K.F., Hartl R.F., Maniezzo V. A variable neighborhood
search for the capacitated arc routing problem with intermediate facilities.
Journal of Heuristics 2008, 14(5), 405-423.

[31] Potvin J. Y., Bengio S. The vehicle routing problem with time windows part
IT: genetic search. INFORMS journal on Computing 1996; 8(2): 165-172.

[32] Santos L., Coutinho-Rodrigues J., Current J. R. An improved ant colony
optimization based algorithm for the capacitated arc routing problem.
Transportation Research Part B: Methodological 2010; 44(2): 246-266.

[33] Stern H. I., Dror M. Routing electric meter readers. Computers & Operations
Research 1979; 6(4): 209-223.

26

Table A.1
Detailed comparative results of HMA algorithm with five state-of-the-art algorithms

on the 23 instances of Set gdb. The average results of all algorithms and the best
results of HMA; (500 generations) are highlighted in bold if they match the BKRs.

INST (IN[,1ED Average (median) results Best results
TSA2 nt_12 RASP E H 1 Time BKR HMA;
1 run 1 run 10 runs 15 runs 30 runs 30 runs
1 (12,22) 316 316 316 316.00 316.00 316.00 0.09 316 316
2 (12,26) 339 339 339 339.00 339.00 339.00 0.16 339 339
3 (12,22) 275 275 275 275.00 275.00 275.00 0.09 275 275
4 (11,19) 287 287 287 287.00 287.00 287.00 0.08 287 287
5 (13,26) 377 377 377 377.00 377.00 377.00 0.13 377 377
6 (12,22) 298 298 298 298.00 298.00 298.00 0.13 298 298
7 (12,22) 325 325 325 325.00 325.00 325.00 0.09 325 325
8 (27,46) 348 348 348 349.50 348.70 348.00 14.01 348 348
9 (27,51) 303 303 303 303.60 303.00 303.00 3.20 303 303
10 (12,25) 275 275 275 275.00 275.00 275.00 0.12 275 275
11 (22,45) 395 395 395 395.00 395.00 395.00 0.34 395 395
12 (13,23) 458 458 458 458.00 458.00 458.00 0.24 458 458
13 (10,28) 536 540 544 542.60 536.00 536.00 6.59 536 536
14 (7,21) 100 100 100 100.00 100.00 100.00 0.11 100 100
15 (7,21) 58 58 58 58.00 58.00 58.00 0.10 58 58
16 (8,28) 127 127 127 127.00 127.00 127.00 0.14 127 127
17 (8,28) 91 91 91 91.00 91.00 91.00 0.13 91 91
18 (9,36) 164 164 164 164.00 164.00 164.00 0.16 164 164
19 (8,11) 55 55 55 55.00 55.00 55.00 0.05 55 55
20 (11,22) 121 121 121 121.00 121.00 121.00 0.12 121 121
21 (11,33) 156 156 156 156.00 156.00 156.00 0.19 156 156
22 (11,44) 200 200 200 200.00 200.00 200.00 0.33 200 200
23 (11,55) 233 235 235 234.70 233.00 233.00 0.71 233 233
AvgGap 0.00 0.07 0.10 0.11 0.01 0.00 - -
AvgTime (scaled) 0.32 1.23 1.21 5.47 4.47 1.19 - -

[34] Tang K., Mei Y., Yao X. Memetic algorithm with extended neighborhood
search for capacitated arc routing problems. IEEE Transactions on Evolutionary
Computation 2009; 13(5): 1151-1166.

[35] Ulusoy, G. The fleet size and mix problem for capacitated arc routing. European
Journal of Operational Research 1985; 22(3): 329-337.

[36] Usberti F.L., Paulo M.F., André L.M.F. GRASP with evolutionary path-
relinking for the capacitated arc routing problem. Computers & Operations
Research 2013; 40(12): 3206-3217.

A Appendix

This appendix shows the detailed results of our HMA algorithm on the 181
conventional CARP instances (Table A.1-A.7). We also include in Table A.3
the new best known results (BKRs) discovered by HMA on egl instances
with various parameter settings (indicated by HMA*) other than the standard
setting given in Table 2.

27

- - - 1L°9C €TIT GE'8Y G8°¢9 116 0L°9¢ 60°0T FOFT (Poreos) swL[Ay
- - - 200 €00 8T°0 L1°0 zro 60°0 ¥1°0 S0°0 den3ay
gzs 92S 4 9Z¥6T 00928 LETIT L€£'92% 09°€ES 09°0£S 8TS 06928 0€S 92S (£6°09) aot
1474 9Ty 9¥¥ 8L'T 00°9%%F 8L 00°9%% 00°9%% 0T'9F¥)44 00L¥7 9¥¥ Lldd (L6°09) D01
9eY 9ev 9¢v are 00°9€¥ SV'C 00°9€¥ 00°'9€% 00°9€¥ 9ev 099y 98% 9gv (£6°09) €0t
8TV 8TV 8Ty 44 00°82% ST 00'8ZF 00°8Z% 00°8T¥ 8TV 0v'8¢y 8TF 8TV (L6°09) VOt
68¢ 68¢ 68€ 0£'16€ 0S'68¢ ¥C'CIT €0°06€ 00°16€ 01°26€ 16€ 08°06€ 16€ 16€ (¢6'09) ae
zee zge Tee 88°0 00°2€€ 880 00°Z€E 00°TEE 00°CEE zge 00°Z€€ TE€E zee (z6‘08) 06
9z¢ 9z¢ 9z¢ €8°0 00°92¢ €80 00'92¢ 00°92¢€ 00°9T¢ 9z¢ 00°92¢ 92¢ 9Z¢ (¢6'09) d6
€Te €2¢ €ce 60°T 00°€Z€ 60'T 00°€Z€ 00°€T€ 00°€TE €28 00°€ze €T¢ €28 (z6'09) V6
129 129 j14 008G 00°IZS 008G 00°IZS 06°9¢S 09'92¢ 128 00¢eS 62 1% (e9‘08) 08
g6¢ g6¢ 86¢ €70 00°86€ €70 00°S6€ 00°96€ 00°S6E g6¢ 00°96¢ 96€ S6€ (e9‘08) das
98¢ 98¢ 98¢ 6€°0 00°98¢ 6€°0 00°98¢ 00°98¢ 00°98¢ 98¢ 00°98¢ 98¢ 98¢ (e9‘08) V8
vee vee 7€€ 870 00'v€E 870 00'v€E 00'7€E€ 00'vEE vee 00'veE vES vee (99‘'0%) DL
€8T €82 €8¢ L€°0 00°€8T 1€0 00°€8C 00°€8Z 00°€8T €82 00°€8T €8T €8T (99‘0%) daz
6.T 6.2 6.C 17°0 00°6.Z 1¥'0 00'6.Z 006 00°6.Z 6.2 00°6.C 6.T 6LC (99‘0%) VL
L18 18 1€ ¥G'0 00°L1€ 750 00°LTE€ 00°L1€ 00°LI€ 1€ 00°21€ LIS L18 (oc'te) D9
€8T €8T (334 280 00°€€T T80 00'€€Z 00°€ET 00°'E€ET €8T 00'€€T €€T €€¢ (0g‘18) a9
€2T €22 (344 gz°0 00°€2T S0 00°€ZZ 00°€TZ 00°€TT €22 00°€2T €TT €2T (0g‘18) V9
GLS gLS glg 12°01¢ 09°GLS S9'6G €€°9.% 06'C8¢S 09789 €8¢ 08°6LS €8¢ 6.5 (co'7e) as
VLY ViV 7Ly 870 00'%LY 870 00'vLF 00%LF 00'%LV VLY 00'PLY VLV YLy (c9'%e) Dg
1474 9Ty 9¥¥ 170 00°9%% 170 00°9%% 00°9%% 00°9%¥%)44 00°'9%% 9V¥ Lldd (co've) da¢
€Ty 47 (344 67°0 00°€Z¥ 670 00°€Z¥ 00°€ZF 00°€TH 447 00°€T¥ €T¥ 1544 (¢o've) V¢
829 0€s 8¢S LGLT L8°6TS 6€°9 00°0£S 06°TES 00°1€S 0€S 0T’ 1€S 0g¢ 0€g (69°TP) av
8TV 8TV 8T¥ el 00'82% TC'1 00'8TF OT'IEY 0£°0EV 8TV 00'8C% 8TV 8TV (69°1%) oF
487 487 T 0 00°ZI¥ 770 00°2T¥ 00°CI¥ 00°CI¥ 487 00°2I¥ TI¥ 444 (69°1%) ar
00¥ 0ov 00v €70 00°00¥ €70 00°00¥ 00°00% 00°00¥% 0oV 00°00¥ 00¥% 00% (69°T%) Vv
8€T 8€T 8T 1€°0 00°8€T 1€°0 00'8€T 00°'8€T 00°SET 8€T 00°8€T 8€T 8€T (se've) o]
L8 18 18 gz’0 00°.8 920 00°.8 00°L8 00°L8 18 00°.8 18 L8 (ce've) dae
18 18 18 L1°0 00°18 LT°0 00°'I8 00°TI8 00°18 18 00°18 18 18 (ce've) Ve
L9V L8V 157 06CT 00°.8% 8T'0T LT'LSV 0T'LSY 08" LSV L8V 00°LSY LSV LSV (ve've) 0T
69T 69T 65¢ L€°9 00°6ST 1£9 0069 00692 00°6ST 69T 00°6SC 69T 69T (ve've) dae
P44 222 Préd 9T°0 00°22% 910 00°LZZ 00°4ZZ 00°.%% 222 00°.2% 12T T2 (ve've) Ve
ej A ej 24 74 €70 00°S¥T €70 00°S¥Z 00°S¥Z 00°S¥T e 24 00°S¥C S¥T Sve (6£72) o)
€LT €LT €LT €€°0 00°€LT €€°0 00°€4T 00°€LT 00°€LT €LT 00°€LT €A1 €LT (6£'72) qat
€L1 €L1 €L1 82°0 00°€LT 820 00'€LT 00°€LT 00°€LT €L1 00°€LT €T €A1 (6£'7¢) VI
sunt 0g sunt g sunt 0¢ sunt G1 sunt 01 sung 01 una T una T

CYINH 'VINH UMd oury, T

S9INsax 1s9g] synsed (uerpour) 9gRIoAy (‘N 1SNI

‘paulfiopun are sy g rewndo oy, ‘SYMI
a1} yoIewW AdY) JT P[Oq Ul PoIYSIYSIY a1k (suoeIauas ()007) *VINH Pue (suorjersuss ()0¢) TVINH JO SHNSI 1s9q o) pue SWILIOF[R [[
JO s}Nsol 98eIoAr oY], TeA 19G JO SOOURISUI F¢ oY) U0 SWILIOZ[R 1Ie-0(}-JO-9)8)S 9 YIM WIIoS[e YINH JO SInsad aaljyereduod pajrejo(]

¢V Sl9EL

28

- - - - - £0°9%9 €8'S61 67°86¥ ST'1S8 60'18T LT'6%9 89°GPT (poreds) ow3AY
- - - - - 200 €10 630 050 8G°0 950 GL0 depsay
«9L702 9.¥0T 6.L%0T 18F0C 0LF0T 98°G69T LE'STS0T 19707 €S°GPS0C 0Z°L9.0C 0909902 1€40C 0§°T€L0T €£20z (0610FT) DS
«1029T 9TZ9T TTTIT 09291 €IT91 8G'€99T 0L'EVTIT 9T°'T19 0L¥%929T 0T TPP9T 00°CEP9T 20S9T 0€0TP9T 06¥9T (06T°0VI) d-¥S
L91CCT ¥PCTT PSTCT 89281 €STeT 96°9€0C 0£'853TT 86°¢09 €L°692¢T 0T'6IFCT 0S°90FCT 68T OV OFPel ©9¥eT (061°0F1) V-FS
SSTZT 68TLT 96ILT SSTLT SSILI 8€'8€ET €9°LTTLT CI'ehe 09°8PCLT 08°G0SLT 0L°LLTLT FOSLT 06°22€LT 9veLT (061°0FT) D-€S
TS9ET TS9ET 8S9ST TR9ET 8FIET GO'L6ET L9°SOLET 6£°99% OT'6ELET 09°0L8ET 0L'098€T 068€T 0T'62SET 186€T (061°0¥I) d-€S
«T0Z0T TOZOT 0%ZOT 00T S9T0T €O'6TLT €8°ATTOT 18°€9% 01°8¢0T 0L°CI€0T 0T°9420T 90¢0T 0T'1620T TSHOT (06I0FT) V-€S
GTIOT gZP9T 0£P9T GTHOT STH9T 90°200T L9°6£¥9T 06’762 0£°G9¥9T 08°60S9T 06'68G9T 8GS9T 09°1¢9T G0%9T (061°0¥VI) DTS
«8L0ET 8L0€T TIIST 660E€T ATOET ¥LL6G 0L°€STET 99°'T9¢ L6'6FIET 09°TECET 09°0V2ET €8CET 00°9LT€T 8.1€T (061°0¥I) d-2S
V186 TL86 8886 7886 GT86 69 L88T ££'T686 78068 €2°L066 036566 050866 7266 064666 8£00T (06T‘OFT) V-GS
8168 8198 8198 8IG8 SIS8 6S°1C 00'8TG8 6S'I¢ 00°STS8 0£'8TS8 0G'1zS8 8TG8 0T'STSS §e88 (o61°07T) D-1S
88€9 88€9 88€9 8889 8829 62°9¢ 00'88€9 6C°9¢ 00°8S8€9 0F'ECEr9 0V'88¢9 8889 00'88€9 88€9 (0610VT) d-IS
ST0S 8109 810G ST0G 810¢ 8611 00°'8TO0S S6'TT 00°STOS 08'680S 06'SE0S 8T0S 00°STOS TLOS (061'0¥1) V-18
6¢STT 6TSIT SPSTT 6CSTT GISTI VCTIS L6°€9GTT €7'€0c OF'Z8STT 08°GPOTT 00°0L9TT GPOTT OT'0GLIT LZITT (86'LL) DA
1968 1968 TL68 1968 S€68 LTHSY 007868 €9°¢FT 091668 00°€206 OT'LE06 L¥06 0£°9106 €906 (86°LL) d-vH
jaag] PPP9 9rh9 PPP9 S0%9 0€°6L9 LS'0SP9 1928 LT'T9%¥9 0T'GLF9 OT'T19%9 7919 07’6579 €L79 (86°LL) V-vd
T620T T6Z0T T6TOT T620T 20T 17°LLT 00°26C0T 00°€ET €FP620T 06°12€0T 0S°9620T 26ZOT 0£'2TE0T 60£0T (86°LL) D-edH
GLLL GLLL LLLL SLLL TPLL 61°86 €6°9LLL 61°9L 00°LLLL 06°T08L 0ELSLL L8LL 07'908L 9182 (86°LL) d-€d
S68¢ 868G 868G 868G 868¢ Ge'g 00°868¢ Ge'g 00°'868C 08'S68G 00°868S 8682 00°S68S T06S (86'LL) v-ed
gees gees gge8 GEEs gees TI'se 00°Ge€8 TI'SZ 00°GEE8 0L°GSE8 08°GEEs Gees8 06'99€8 LPES (86°LL) D-H
279 LT€9 L1€9 LIE9 L1€9 €670 00°LT€9 6TFF LL6IE9 OF'IFE9 0L°0£€9 7re9 079829 €989 (86°LL) d-cd
S10S 8109 8T0S 8I0S ST0S 80°%T 00°'8T0S SO'FZ 00°STOS 00°STOS 00°8T0S ST0S 08620 STOS (86°LL) V-¢H
G655 S6GS 9698 G69G 969¢ 148 00°G6SS 1.8 00°66SS 09°'T09S 0£°GT19S g6S9S 00'809¢ 969G (86'LL) D1
S6T¥ 86%F 86%TF S6VT S6¥F T9°6 00°'86%% T9'6 00°'86%F 0S°9TSF 09°80SH 65GY 0c'Tesy egsv (86°LL) d-1d
STSe 875e 8 ge SVGE 8Fse 8G°0 00'8PSE 8S50 00°'8PSE 00°SPSE 00°SPSE 8PSE 00°8PSE 8PSE (86°L2) V-1d
sunix Om sunx Om sun Om suna MH suna OH sun OH uni T
LNINH O °VINH . TWINH UNdg g1 oLy, SYINH ouny], TyNH SNAVIN __ dSVHMD ZI™Y _ SNA ZYSL

s}[nsaI 9sog

synsed (uerpour) 9gvIoAy

(al‘lnl) LSNI

‘paulIepun are Y [ewido oy T, ‘S MU a1e A9Y) JI palIr)s oI YINH JO SHNSAI 189 YT, SYMH 2U)
yoyewr A1) JT P[oq Ul pojySIysIy oIk (suorjerauss ()00g) CYINH Pue (suornjersuss (0G) N'WINH JO SHNSAI 480 o7} pue SWYILIOS[R [JO
SI[NSOI 9FRISAR O], '[30 19§ JO SOOURISUI g O} UO SWILIOS[R JIR-9([1-JO-91R]S AT [[IIM WIILIOS[R YINH JO SINsal oArjereduiod pafre1d(

€V 9198L

29

Table A.4 . . . i
Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms

on the 25 instances of Set C. The average results of all algorithms and the best
results of HMA; (500 generations) and HMAj (2000 generations) are highlighted in
bold if they match the BKRs. The optimal BKRs are underlined.

INST (INT,1E] Average (median) results Best results
2 nt_12 1 ime 9 ime B BKR HMA; HMAS
1 run 1run 10 runs 30 runs 30 runs 30 runs
CT (69,98) 1660 1660 1705 T707.00 1661.00 117.04 1660.00 160.51 1660 1660 1660 1660
C2 (48,66) 1095 1095 1095 1095.70 1095.00 9.10 1095.00 9.10 1095 1095 1095 1095
C3 (46,64) 925 925 925 927.80 930.33 30.94 926.33 163.67 925 925 925 925
C4 (60,84) 1340 1340 1340 1342.70 1340.00 5.20 1340.00 5.20 1340 1340 1340 1340
C5 (56,79) 2475 2470 2540 2522.30 2470.33 67.19 2470.00 84.00 2470 2470 2470 2470
C6 (38,55) 895 895 895 907.50 895.00 13.78 895.00 13.78 895 895 895 895
C7 (54,70) 1795 1795 1795 1795.00 1795.00 0.61 1795.00 0.61 1795 1795 1795 1795
C8 (66,88) 1730 1730 1730 1732.30 1730.00 14.20 1730.00 14.20 1730 1730 1730 1730
C9 (76,117) 1825 1830 1860 1852.80 1820.00 74.70 1820.00 74.70 1805 1820 1820 1820
C10 (60,82) 2290 2270 2305 2317.80 2270.00 24.17 2270.00 24.17 2270 2270 2270 2270
C11 (83,118) 1815 1815 1820 1853.70 1815.00 37.19 1813.67 121.19 1790 1805 1815 1805
C12 (62,88) 1610 1610 1610 1610.00 1610.00 1.30 1610.00 1.30 1605 1610 1610 1610
C13 (40,60) 1110 1110 1110 1122.00 1110.00 820 1110.00 8.20 1110 1110 1110 1110
Cl4 (58,79) 1680 1680 1680 1687.30 1680.00 15.88 1680.00 15.88 1680 1680 1680 1680
C15 (97,140) 1860 1865 1880 1896.50 1860.00 82.70 1860.00 82.70 1840 1860 1860 1860
C16 (32,42 585 585 585 585.20 585.00 9.56 585.00 9.56 585 585 585 585
C17 (43,56) 1610 1610 1610 1618.30 1610.00 5.00 1610.00 5.00 1610 1610 1610 1610
C18 (93,133) 2410 2415 2390 2411.70 2385.00 160.09 2385.00 160.09 2345 2385 2385 2385
C19 (62,84) 1395 1400 1400 1425.70 1396.33 53.91 1395.00 115.09 1395 1395 1395 1395
C20 (45,64) 665 665 665 668.50 665.00 0.64 665.00 0.64 665 665 665 665
C21 (60,84) 1725 1725 1725 1725.20 1725.00 1.52 1725.00 1.52 1725 1725 1725 1725
Cc22 (56,76) 1070 1070 1070 1070.00 1070.00 0.30 1070.00 0.30 1070 1070 1070 1070
C23 (78,109) 1690 1700 1710 1724.30 1690.33 66.86 1690.00 76.30 1680 1690 1690 1690
C24 (77,115) 1360 1360 1360 1368.50 1361.00 104.42 1360.00 190.24 1360 1360 1360 1360
C25 (37,50) 905 905 905 907.00 905.00 17.47 905.00 17.47 905 905 905 905
AvgGap 0.12 0.14 0.52 0.98 0.06 0.02 - - - -
AvgTime (scaled) 42.49 4292 40.76 165.50 36.88 54.22 - - - -
Table A.5 . .) .
Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms
on the 25 instances of Set D. The average results of all algorithms and the best
results of HMA; (500 generations) and HMA, (2000 generations) are highlighted in
bold if they match the BKRs. The optimal BKRs are underlined.
INST (IN[,1ED Average (median) results Best results
GLS TSA2 Ant12 MAENS HAMA; Time HMA; Time LB BKR HMA; HMA;
1 run 1run 10 runs 30 runs 30 runs 30 runs
D1 (69,98) 725 740 745 745.00 743.83 14.09 73883 145.70 725 725 725 725
D2 (48,66) 480 480 480 480.00 480.00 0.34 480.00 0.34 480 480 480 480
D3 (46,64) 415 415 415 41520 415.00 0.24 415.00 0.24 415 415 415 415
D4 (60,84) 615 615 615 616.00 615.00 1.25 615.00 1.25 615 615 615 615
D5 (56,79) 1040 1040 1040 1040.00 1040.00 0.76 1040.00 0.76 1040 1040 1040 1040
D6 (38,55) 485 485 485 493.00 485.00 0.43 485.00 0.43 485 485 485 485
D7 (54,70) 835 835 855 847.30 838.67 53.72 835.00 145.24 835 835 835 835
D8 (66,88) 685 685 685 704.20 685.00 6.98 685.00 6.98 685 685 685 685
D9 (76,117) 680 680 680 680.00 680.00 0.84 680.00 0.84 680 680 680 680
D10 (60,82) 910 910 910 910.00 910.00 0.26 910.00 0.26 910 910 910 910
D11 (83,118) 930 960 935 935.20 930.00 38.38 925.33 286.78 920 920 920 920
D12 (62,88) 680 680 680 680.00 680.00 494 680.00 4.94 680 680 680 680
D13 (40,60) 690 695 690 691.00 690.00 6.70 690.00 6.70 690 690 690 690
D14 (58,79) 930 940 930 931.00 930.00 0.40 930.00 0.40 930 930 930 930
D15 (97,140) 910 950 920 919.00 910.50 11549 910.00 141.87 910 910 910 910
D16 (32,42) 170 170 170 170.00 170.00 0.13 170.00 0.13 170 170 170 170
D17 (43,56) 675 675 675 675.00 675.00 0.17 675.00 0.17 675 675 675 675
D18 (93,133) 930 930 930 93420 930.00 3.69 930.00 3.69 930 930 930 930
D19 (62,84) 680 690 680 680.00 680.00 0.64 680.00 0.64 680 680 680 680
D20 (45,64) 415 415 415 41520 415.00 0.32 415.00 0.32 415 415 415 415
D21 (60,84) 805 825 810 834.20 805.17 79.37 805.00 93.50 760 805 805 805
D22 (56,76) 690 690 690 690.00 690.00 0.24 690.00 0.24 690 690 690 690
D23 (78,109) 735 735 735 748.20 735.00 33.69 735.00 33.69 735 735 735 735
D24 (77,115) 670 670 670 683.50 670.00 2.88 670.00 2.88 665 670 670 670
D25 (37,50) 410 410 410 410.00 410.00 0.19 410.00 0.19 410 410 410 410
AvgGap 0.04 0.66 0.34 0.79 0.17 0.10 - - - -
AvgTime (scaled) 17.36 19.20 51.88 219.53 14.65 35.13 - - - -

30

Table

A6

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms
on the 25 instances of Set E. The average results of all algorithms and the best
results of HMA; (500 generations) and HMAj (2000 generations) are highlighted in
bold if they match the BKRs. The optimal BKRs are underlined.

INST (INT,1E] Average (median) results Best results

2 nt_12 1 ime 9 ime 1 2

1 run 1run 10 runs 30 runs 30 runs 30 runs
El (73,105) 1940 1935 1945 1967.80 1936.83 102.65 1935.00 160.72 1925 1935 1935 1935
E2 (58,81) 1610 1610 1610 1615.50 1610.00 11.38 1610.00 11.38 1610 1610 1610 1610
E3 (46,61) 750 750 750 752.00 750.00 1.33 750.00 1.33 750 750 750 750
E4 (70,99) 1610 1615 1675 1684.30 1610.00 23.60 1610.00 23.60 1610 1610 1610 1610
E5 (68,94) 2170 2160 2220 2228.70 2162.33 85.64 2160.00 132.12 2160 2160 2160 2160
E6 (49,66) 670 670 670 670.00 670.00 0.24 670.00 0.24 670 670 670 670
E7 (73,94) 1900 1900 1900 1900.00 1900.00 0.63 1900.00 0.63 1900 1900 1900 1900
E8 (74,98) 2150 2155 2150 2150.50 2150.00 2.11 2150.00 2.11 2150 2150 2150 2150
E9 (93,141) 2250 2300 2295 2327.70 2247.50 170.23 2228.67 498.99 2220 2225 2225 2225
E10 (56,76) 1690 1690 1690 1691.50 1690.00 1.44 1690.00 1.44 1690 1690 1690 1690
El11 (80,113) 1850 1855 1860 1932.00 1846.67 96.44 1840.00 460.01 1830 1830 1830 1830
E12 (74,103) 1710 1730 1760 1764.30 1723.83 124.02 1707.00 341.32 1695 1695 1700 1695
E13 (49,73) 1325 1325 1325 1335.30 1325.00 7.97 1325.00 7.97 1325 1325 1325 1325
E14 (53,72) 1810 1810 1810 1817.00 1810.67 46.57 1810.00 51.25 1810 1810 1810 1810
E15 (85,126) 1610 1610 1610 1617.80 1601.00 149.37 1599.00 723.39 1590 1590 1600 1590
E16 (60,80) 1825 1825 1825 1825.00 1825.00 39.74 1825.00 39.74 1825 1825 1825 1825
E17 (38,50) 1290 1290 1290 1294.30 1291.00 18.71 1290.00 26.35 1290 1290 1290 1290
E18 (78,110) 1610 1610 1610 1612.30 1610.00 1.41 1610.00 1.41 1610 1610 1610 1610
E19 (77,103) 1435 1435 1435 1437.00 1435.00 3.54 1435.00 3.54 1435 1435 1435 1435
E20 (56,80) 990 990 990 990.00 990.00 0.64 990.00 0.64 990 990 990 990
E21 (57,82) 1705 1705 1760 1755.50 1705.00 51.59 1705.00 51.59 1705 1705 1705 1705
E22 (54,73) 1185 1185 1185 1187.50 1185.00 1.42 1185.00 1.42 1185 1185 1185 1185
E23 (93,130) 1430 1445 1435 1469.00 1432.33 88.98 1430.33 336.54 1430 1430 1430 1430
E24 (97,142) 1785 1785 1785 1822.20 1785.00 35.38 1785.00 35.38 1785 1785 1785 1785
E25 (26,35) 655 655 655 655.00 655.00 0.45 655.00 0.45 655 655 655 655
AvgGap 0.20 0.39 0.83 1.44 0.19 0.08 - - - -
AvgTime (scaled) 40.65 46.00 40.54 160.89 42.62 116.54 - - -
Table A.7

Detailed comparative results of HMA algorithm with 4 state-of-the-art algorithms
on the 25 instances of Set F. The average results of all algorithms and the best
results of HMA; (500 generations) are highlighted in bold if they match the BKRs.
The optimal BKRs are underlined.

INST (IN[,1ED Average (median) results Best results

GLS A2 Ant_12 MAENS HMA; Time LB BKR HMA;

lrun 1run 10 runs 30 runs 30 runs
F1 (73,105) 1065 1085 1065 1071.00 1065.00 43.29 1065 1065 1065
F2 (58,81) 920 920 920 920.00 920.00 0.67 920 920 920
F3 (46,61) 400 400 400 400.00 400.00 0.25 400 400 400
F4 (70,99) 940 960 955 963.50 940.00 22.54 940 940 940
F5 (68,94) 1180 1180 1180 1180.30 1180.00 3.86 1180 1180 1180
F6 (49,66) 490 490 490 490.00 490.00 0.22 490 490 490
F7 (73,94) 1080 1080 1080 1090.70 1080.00 3.00 1080 1080 1080
F8 (74,98) 1145 1145 1145 1145.00 1145.00 0.41 1145 1145 1145
F9 (93,141) 1145 1170 1225 1197.80 1145.00 11.24 1145 1145 1145
F10 (56,76) 1010 1010 1010 1010.00 1010.00 0.23 1010 1010 1010
F11 (80,113) 1015 1015 1045 1037.50 1015.00 6.56 1015 1015 1015
F12 (74,103) 910 910 975 939.50 910.00 10.40 910 910 910
F13 (49,73) 835 835 835 835.00 835.00 0.63 835 835 835
F14 (53,72) 1025 1035 1025 1065.50 1025.00 9.62 1025 1025 1025
F15 (85,126) 945 990 945 951.70 945.00 2.41 945 945 945
F16 (60,80) 775 775 775 775.00 775.00 0.45 775 775 775
F17 (38,50) 605 630 605 605.00 605.00 0.15 605 605 605
F18 (78,110) 850 850 850 861.20 850.00 0.85 840 850 850
F19 (77,103) 725 740 725 725.00 725.00 3.21 715 725 725
F20 (56,80) 610 610 610 614.80 610.00 6.38 610 610 610
F21 (57,82) 905 905 905 905.00 905.00 2.43 905 905 905
F22 (54,73) 790 790 790 790.00 790.00 0.85 790 790 790
F23 (93,130) 725 730 730 736.30 725.00 27.86 725 725 725
F24 (97,142) 975 1010 975 1001.30 975.00 53.28 975 975 975
F25 (26,35) 430 430 430 430.00 430.00 0.12 430 430 430
AvgGap 0.00 0.90 0.77 1.01 0.00 - -
AvgTime (scaled) 10.67 21.09 52.17 166.85 8.44 - -

31

