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Abstract

A number of important applications related to complex network analysis require finding
small vertex covers in massive graphs. This paper proposes an effective stochastic local
search algorithm called DTS MVC to fulfill this task. Relying on a fast vertex-based search
strategy, DTS MVC effectively explores the search space by alternating between a thresh-
olding search phase during which the algorithm accepts both improving and non-improving
solutions that satisfy a dynamically changing quality threshold, and a conditional improv-
ing phase where only improving solutions are accepted. A novel non-parametric operation-
prohibiting mechanism is introduced to avoid search cycling. Computational experiments
on 86 massive real-world benchmark graphs indicate that DTS MVC performs remark-
ably well by discovering 7 improved best known results (new upper bounds). Additional
experiments are conducted to shed light on the key ingredients of DTS MVC.

Keywords: Vertex cover; low-complexity heuristics; massive sparse graphs.

1 Introduction

Given a connected, undirected graph G = (V,E) with vertex set V and edge set
E, a vertex cover S of G is a subset of V (S ⊂ V ) such that each edge of the
graph is incident to at least one vertex of S. The Minimum Vertex Cover (MVC)
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problem is to determine a vertex cover of minimum cardinality. MVC is equivalent
to the Maximum Independent Set (MIS) problem and the Maximum Clique (MC)
problem since given a minimum vertex cover S ofG, V \S is a maximum indepen-
dent set in G and a maximum clique of G (the complement of G) [42]. In addition
to many conventional applications, MVC as well as its equivalent models become
more and more popular in important areas like social network analysis [14], bioin-
formatics [21] and economics [3, 43].

Solving MVC in the general case is computationally challenging given that its de-
cision version is NP-complete [16]. Due to its NP-hardness, most previous MVC
algorithms adopted stochastic local search (SLS) heuristics (e.g., [5–7, 29, 31, 36])
to seek high-quality sub-optimal solutions in reasonable time. Several exact algo-
rithms based on the general Branch and Bound method were also proposed for
the equivalent MC problem (e.g., [20, 23, 34, 38]). These previous algorithms were
demonstrated to be effective in solving traditional graphs from the DIMACS and
BHOSLIB benchmark sets which are of small or medium size.

Meanwhile, the fast growth of the Internet and the recent advances in informa-
tion technology have generated a large amount of data whose underlying graphs
are much larger than the traditional benchmarks. These real-world graphs (like so-
cial networks) are typically massive, with tens of millions of vertices, and sparse
with low edge densities where the degrees of vertices often follow a power-law dis-
tribution [22]. These massive graphs pose serious challenges to existing solution
approaches [24]. First, many existing algorithm implementations cannot be applied
due to their matrix representation of the graph [39]. With the matrix representa-
tion, graphs with millions of vertices simply cannot be loaded into a computer’s
working memory. Second, many best performing SLS algorithms adopt the best-
improvement (or operator-based) search strategy for solution transformations on a
scale-correlated candidate set (e.g., [7, 19, 30, 41]) (see Sect. 3.3). Such a strategy
incurs a high time complexity of the algorithm per iteration and becomes inefficient
and impracticable on massive graphs. Indeed, each application of this strategy in the
setting of massive graphs requires millions of evaluation operations, which, even if
quite simple, will necessarily lead to a very low computational efficiency and slow
down the algorithm.

Developing suitable algorithms for MVC and its equivalent problems on massive
graphs is receiving increasing research attention in recent years. In [26, 27, 33, 39],
exact algorithms were presented to solve the equivalent MC optimally. On the other
hand, due to the size of the massive sparse graphs and the intractability of the con-
sidered problems, SLS represents a natural solution approach to find high-quality
approximate solutions, which nevertheless, needs to incorporate dedicated designs
to be effective. In [1], a GRASP heuristic was introduced for MC which integrates
graph decomposition schemes and an external-memory procedure. One notices that
applying a MC algorithm to MVC requires operating on a highly dense and massive
complement graph, which makes the algorithm inappropriate for solving MVC.
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Very recently, a dedicated SLS algorithm called FastVC was introduced to find
small vertex colors in massive graphs [4], which was built upon the NuMVC algo-
rithm [7] and includes specific heuristics for initial solution generations and solu-
tion transformations. Another new SLS algorithm called LinCom [13] adopts the
same algorithm scheme as FastVC. LinCom distinguishes itself from FastVC by in-
tegrating reduction rules for solution initialization and employing an efficient data
structure to implement the best improvement heuristic. LinCom was shown to be
able to compete favorably with FastVC on a number of massive real-world graphs.
To our knowledge, FastVC and LinCom are the current best performing heuristic
algorithms for the MVC problem considered in this work and will serve as the main
references for the assessment of our proposed algorithm.

In addition to the above studies on MVC, we notice some very recent efforts de-
voted to extensions of the basic MVC and clique models such as the robust clique
problem with uncertain edge failures [44], the clique relaxation problems (k-blocks
and k-robust 2-clubs, [2]), the degree-based-quasi-clique problem [25], the maxi-
mum quasi-clique problem [28], the maximum s-plex problem [15, 45], the maxi-
mum balanced biclique problem [40,46], and the maximum induced biclique prob-
lem [35]. These extended models together with the classic MVC and clique models
provide a useful and relevant means for modeling and analyzing massive graphs
and complex networks. Designing new methods able to effectively handle these
problems for massive graphs represents a real interest and a formidable challenge
as well.

In this work, we focus on solving MVC on massive sparse graphs and introduce
a fast and effective SLS heuristic algorithm called DTS MVC (Dynamic Thresh-
olding Search for MVC). DTS MVC basically alternates between a thresholding
search phase where the algorithm accepts new (either improving or non-improving)
solutions subject to a dynamically evolving quality threshold and a conditional im-
proving phase where only improving solutions are sought. The original features of
DTS MVC and the contributions of this work are identified as follows.

• First, DTS MVC uses a randomized greedy procedure based on vertex degree
information to build its initial solution (vertex cover). With the same complexity
(O(|E|)) as the conventional random construction procedure, the greedy proce-
dure is able to generate initial solutions of better quality and helps to speed up
the search process of DTS MVC.
• Second, the thresholding search phase employs a vertex-based strategy and a

parameter-free operation-prohibiting mechanism for solution transformations.
The vertex-based strategy applies the best operator taken from a small opera-
tor candidate set to a given vertex (randomly chosen) to transform the incumbent
solution. From the computational point of view, this approach is significantly
more efficient than the traditional operator-based strategy which needs, for so-
lution transformations, to identify among a large vertex candidate set the best
vertex to which the given transformation operator is applied.
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• Third, DTS MVC uses a random ‘switch’ to control the input of each threshold-
ing search phase which is either the local optimum from the hill-climbing im-
proving phase or the solution returned by the last round of thresholding search.
This design naturally reinforces the balance between intensification and diversi-
fication of the search process.
• Fourth, computational assessments on 86 massive real-world graphs indicate that

DTS MVC competes favorably with two state-of-the-art MVC solvers dedicated
to massive graphs (FastVC and LinCom) by improving 7 and matching 64 best
known results.
• Finally, the proposed vertex-based strategy and the operation-prohibiting mech-

anism are essentially problem-independent and can be advantageously used to
design search algorithms for other graph problems. Given that these techniques
help to accelerate the search process and to simplify the algorithmic procedure,
they will be particularly useful and promising when the problem scale is large
and the computing time allowed is limited.

The rest of the paper is organized as follows. After introducing preliminary def-
initions and notations (Sect. 2), we describe in Section 3 the proposed algorithm
and its ingredients. In Section 4, we present computational results and comparisons
with state-of-the-art methods and analyze the key algorithmic components. In the
last section, we draw concluding remarks and indicate some ideas for future studies.

2 Basic Definitions and Notations

Given a graph G = (V,E) with |V | = n and |E| = m, let N(v) = {u ∈ V :
(u, v) ∈ E} denote the neighborhood of vertex v ∈ V . Let deg(v) = |N(v)| and
avgDeg =

∑
v∈V deg(v)/n denote respectively the degree of a vertex v and the

average degree of G. Let S be a solution (i.e., a vertex cover of G), then we defined
the following vertex sets which are useful to describe the proposed algorithm.

• The expanding neighborhood of a vertex v ∈ S relative to V \S, denoted as
NE(v), is the set of neighbors of v that belong to V \S, i.e., NE(v) = {u ∈
V \S : (u, v) ∈ E}.
• The mapping neighborhood of a vertex v ∈ V \S, denoted as NM(v), is the set

of neighbors of v in S whose expanding neighborhood has a single vertex, i.e.,
NM(v) = {u ∈ S : (u, v) ∈ E, |NE(u)| = 1}.
• The improving neighbor set of S (NI(S)) is a set of vertices in S that are not

connected to any vertex in V \S, i.e., NI(S) = {v ∈ S : |NE(v)| = 0}. By
definition, any vertex in NI(S) can be directly removed from S to obtain a better
solution (i.e., a smaller vertex cover).

Figure 1 shows an illustrative example of the last three notations, where the con-
sidered graph has 6 vertices with a given vertex cover S = {v1, v2, v3, v4}.
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Fig. 1. Illustrative example of the basic notations

3 The DTS MVC Algorithm

3.1 General Outline

The DTS MVC algorithm (Alg. 1) proposed in this work starts by constructing an
initial vertex cover using the GreedyConstruct procedure (Sect. 3.2), and then alter-
nates between a thresholding search phase (Sect. 3.3) and a conditional improving
phase (Sect. 3.4) to find increasingly better solutions (smaller vertex covers).

In the thresholding search phase (lines 8-27 of Alg. 1), the algorithm uses a so-
called vertex-based strategy to prospect for good solutions by scanning the vertices
one by one in random order and for each considered vertex, applying accordingly
one of three basic transformation or move operators: DROP, ADD and SWAP (see
Sect. 3.3 for their definitions). Precisely, after picking a vertex, the algorithm ex-
amines two associated operators ({DROP, SWAP} or {SWAP, ADD} depending
on whether the vertex is in or out of the current vertex cover) in a specific order
(ensuring that the most suitable operator is always applied first), and any result-
ing neighboring solution that satisfies a quality threshold is accepted immediately.
With a responsive mechanism [9], the quality threshold dynamically evolves with
the best solution found along the search process. This fast vertex-based strategy
helps the algorithm to efficiently visit a large number of solutions for a given search
effort. In this phase, the algorithm also uses an operation-prohibiting mechanism (a
parameter-free tabu list [17]) to avoid reversing recently performed moves. A round
of the thresholding search phase terminates when all vertices in V have been ex-
amined once and only once. Thanks to the vertex-based strategy and the operation-
prohibiting mechanism, the search process is expected to explore various zones of
the search space without being easily trapped in local optima.

As a complement to the thresholding search phase, DTS MVC performs a strict
hill-climbing in the conditional improving phase to intensify the search (lines 28-
39 of Alg. 1). The hill-climbing procedure shrinks the current vertex cover S by
dropping all vertices that are not connected to any vertex in V \S. This phase is
named ‘conditional’ since the local optimum of the hill-climbing procedure is ac-
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cepted to become the starting solution of the next round of thresholding search only
when the random switch (‘on’ or ‘off’) is ‘on’.

DTS MVC iterates the above two phases to seek increasingly better solutions until
a prefixed cutoff time is reached. In what follows, we present the three main com-
ponents of the DTS MVC algorithm: GreedyConstruct procedure, the thresholding
search phase and the conditional improving phase.

Algorithm 1: DTS MVC Algorithm
Data: graph G=(V,E); integer δ; the cutoff time;
Result: the smallest vertex cover S∗ found

1 initialize age as an all-0 array ;
2 round := 0; S := GreedyConstruct(); S∗ := S; Record := |S∗| ;
3 while elapsed time < cutoff do
4 round := round+ 1 ;

// Thresholding Search Phase
5 Randomly shuffle all vertices in V ;
6 for each v ∈ V do
7 if v ∈ S then
8 if |NE(v)| = 0 then
9 S := S\{v} ;

10 if |S| < |S∗| then
11 S∗ := S

12 else if |NE(v)| = 1 ∧ age[v] < round then
13 u := the only vertex in NE(v); S := S\{v}; S := S ∪ {u};

age[u] := round

14 else
15 if |NM (v)| > 0 ∧ age[v] < round then
16 u := a random vertex in NM (v); S := S\{u}; S := S ∪ {v};

age[v] := round

17 else if |S|+ 1 ≤ Record+ δ then
18 S := S ∪ {v} ;

// Conditional Improving Phase
19 Record := |S∗|; S′ := S ;
20 while NI(S) 6= ∅ do
21 u := a random vertex in NI(S); S := S\{u} ;
22 if |S| < |S∗| then
23 S∗ := S

24 switch := a random value in {0, 1} ;
25 if switch = 1 then
26 Record := |S∗| ;
27 else
28 S := S

′
;

29 return S∗

6



3.2 The GreedyConstruct Procedure

DTS MVC requires an initial vertex cover as its starting solution. Since random
solutions are generally of mediocre quality, using such a solution to start the search
will significantly slow down the algorithm for massive graphs. For this reason, we
devise a fast greedy procedure (GreedyConstruct) which offers a suitable balance
between the time complexity and the solution quality.

Algorithm 2: GreedyConstruct Procedure
Data: graph G=(V,E);
Result: a vertex cover S

1 S := ∅ ;
2 while NI(S) 6= ∅ do
3 if avgDeg < |NI(S)| then
4 u := the vertex with the smallest degree among the avgDeg vertices which are

randomly selected from NI(S) ;
5 else
6 u := the vertex with the smallest degree in NI(S) ;
7 S := S\{u} ;
8 return S

GreedyConstruct constructs an initial vertex cover using the vertex degree as heuris-
tic information which favors exclusion of vertices with a small degree from the
current solution. The intuition behind this heuristic is that the vertices with a small
degree are less likely to connect to each other and thus potentially allow more such
vertices to be excluded from the solution. Starting from a cover S with all vertices
of V , GreedyConstruct (Alg. 2) iteratively shrinks S by dropping one vertex of the
improving neighbor set NI(S) (Sect. 2) out of S at one time until NI(S) becomes
empty. To decide a vertex u to be excluded from S, the procedure distinguishes two
situations depending on the relationship between avgDeg and the size of NI(S). If
avgDeg is smaller than the cardinality of NI(S), u is the vertex with the smallest
degree among the avgDeg vertices randomly selected from NI(S); otherwise u is
the vertex with the smallest degree in NI(S).

Proposition 1 Given G = (V,E) with |V | = n and |E| = m, the time complexity
of the GreedyConstruct procedure to construct a minimal vertex cover is O(m).

Proof Let S = {vi1 , vi2 , ..., vit} denote the vertex cover produced by the Greedy-
Construct procedure. Since G is a connected graph and S is a vertex cover, it is
clear that t ≤ dn/2e. To decide vij , the algorithm needs to perform at most avgDeg
comparisons among vertices selected from NI(S). After the exclusion of vij from
S, the algorithm needs to update the improving neighbor set NI(S) by traversing
deg(vij) neighbors of vij . Therefore, the complexity of the GreedyConstruct proce-
dure is O((t− avgDeg) ∗ avgDeg + avgDeg(1 + avgDeg)/2 +

∑t
j=1 deg(vij)) <

O(t ∗ avgDeg +
∑t
j=1 deg(vij)) ≈ O(m+m) ≈ O(m).
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Since an efficient implementation of the random construction procedure also re-
quires to maintain an improving neighbor set NI(S) from which a vertex is ran-
domly selected to shrink the vertex cover at each iteration, the complexity of the
random construction is O(

∑t
j=1 deg(vij)) ≈ O(m), i.e., the same order of magni-

tude as that of our greedy construction. However, with initial solutions of better
quality, our greedy construction generally helps DTS MVC to achieve better re-
sults with negligible additional costs (see computational results and discussions in
Sect.4.3).

3.3 The Thresholding Search Phase

In the Thresholding Search Phase (lines 8-27 of Alg. 1), both improving and non-
improving solutions can be accepted by a combined use of three different basic
operators (DROP, ADD and SWAP). DROP kicks a vertex out of the current vertex
cover; ADD expands the current vertex cover by including a new vertex; SWAP
exchanges a vertex v of the vertex cover with a vertex u out of the vertex cover.
We note that the idea of systematically allowing non-improving solutions to be
accepted by reference to a solution quality threshold is featured by the threshold
accepting heuristic [12] which has been successfully applied to solve a number of
other combinatorial optimization problems (e.g., [8–11,37]). The main innovations
in this phase include the vertex-based exploration strategy and the non-parametric
operation-prohibiting mechanism whose working principles and their contribution
to the solution of the problem are detailed below.

Previous SLS algorithms for MVC and its equivalent problems usually employ
an operator-based strategy coupled with a best-improvement heuristic [7, 19, 30]
which operates as follows. Given the current solution, such an algorithm applies a
transformation operator to a best element (vertex) selected from a vertex candidate
set whose size is correlated to the number of vertices ofG and grows as the problem
scale increases. To identify the best vertex from such a vertex candidate set requires
numerous comparison operations which is time-consuming. Though the operator-
based strategy works well for small and medium graphs (up to several thousands of
vertices), it becomes unacceptable for massive data sets.

Unlike these previous approaches, we introduce a low-complexity search mech-
anism in the thresholding search phase. Instead of seeking a best vertex for an
operator, DTS MVC employs a vertex-based strategy to determine, for a given ver-
tex, the best operator to be applied from a set of applicable candidate operators.
This strategy is efficient since the candidate operator set is small (only two possi-
ble operators for a vertex in our case) and is not related to the problem size. The
idea of the vertex-based strategy is in line with the common intuition that, in the
context of SLS algorithms for massive problems, it is preferable to perform many
relatively simple, but efficiently computable search steps rather than few complex
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search steps [18]. Thanks to the vertex-based strategy, DTS MVC is able to visit
many different solutions and explore various areas of the search space to locate
high quality solutions.

An important issue for SLS algorithms is to prevent the search from revisiting pre-
viously visited solutions. To address this issue, we devise a novel non-parameter
operation-prohibiting (OP) mechanism in the thresholding search phase. The key
idea of this mechanism is to ensure that an operation applicable to a vertex is ap-
plied at most once in a round of thresholding search. It is clear that for DROP and
ADD, this condition is always satisfied. Therefore, the OP mechanism is used to en-
sure that the SWAP operation for a pair of vertices (v, u) is applied at most once as
well. For this, we introduce an ‘AGE’ counter for each vertex u such that each time
a vertex u is swapped into the solution, its AGE counter is set to be the current round
number. Then only vertices with an AGE value smaller than the current round num-
ber are considered for SWAP operations during this round of thresholding search.
The OP mechanism, combined with the random permutation of all vertices before
each round of thresholding search (line 7 of Alg. 1), can be viewed as a parameter-
free tabu mechanism with a random tabu tenure for each performed operation [17].
Our empirical experience indicates that the random permutation of all vertices is an
important operation that greatly boosts the performance of DTS MVC.

Based on the three basic move operators, the thresholding search phase of DTS MVC
combines the vertex-based strategy and the operation-prohibiting mechanism to
make a balanced examination of the search space. For each round of this phase, the
algorithm first randomly shuffles all vertices in V and then visits the vertices one
by one. For each vertex v under consideration, we define its operator candidate set
according to whether the vertex is inside or outside the vertex cover S.

Case 1: If v belongs to S, the operator candidate set is composed of DROP and
SWAP. DROP is tested before SWAP since DROP increases the solution quality
while SWAP keeps it unchanged. If both tests fail, the algorithm simply skips v.
DROP is applicable if the expanding neighborhood of v is empty (i.e., v belongs to
the improving neighbor set NI(S), Sect. 2). The SWAP operation is applicable if v
simultaneously satisfies two conditions: 1) v is not involved in any applied SWAP
operation at the current round; 2) v is connected to exactly one vertex in V \S (i.e.,
|NE(v)| = 1 defined in Sect. 2, this vertex is the unique vertex that can be swapped
with v).

Case 2: If v is out of the vertex cover (v ∈ V \S), the operator candidate set is
composed of SWAP and ADD. The applicability of SWAP is tested before ADD
since SWAP does not deteriorate the solution quality while DROP does. If both tests
fail, the algorithm simply skips v. SWAP is applicable if v simultaneously satisfies
two conditions: 1) v was not involved in any applied SWAP operation at the current
round; 2) the mapping neighborhood of v (NM(v), Sect. 2) is not empty. The vertex
u ∈ S to be swapped with v is a random vertex in NM(v). ADD is applicable if the

9



number of vertices of S after the operation is still below a threshold determined by
Record + δ where Record is the cardinality of the recorded smallest vertex cover
and δ (a small positive integer) is a parameter.

3.4 The Conditional Improving Phase

The balance between intensification and diversification is another important issue
for SLS algorithms. The thresholding search procedure provides a form of diversi-
fication since it accepts both non-improving and deteriorating solutions. To com-
plement this, an intensification procedure is needed to ensure a more focused and
directed search. For this purpose, a hill-climbing procedure is employed in the con-
ditional improving phase (lines 28-39 of Alg. 1). The aim of the hill-climbing pro-
cedure is to attain a local optimum using the DROP operator starting from the
solution S returned by the thresholding search phase. This is achieved by itera-
tively selecting a random vertex from NI(S) and kicking it out of the solution until
NI(S) becomes empty. The local optimum of the hill-climbing procedure is inter-
esting since it can update the recorded best solution S∗ (lines 33-34, Alg. 1).

However, from a long-term perspective of the search process, a local optimum iden-
tified such a technique is not necessarily a good starting point for the next round
of the thresholding search phase. For this reason, the conditional improving phase
uses a random switch (‘on’ or ‘off’) to decide its output solution which will serve
as the starting solution of the next round of thresholding search. This mechanism
proposed in this work aims to balance the search intensification and diversification.
When the switch is ‘on’, the output solution is the local optimum; otherwise it is the
solution returned by the last round of thresholding search. This design is based on
the following considerations. Though the thresholding search procedure provides
a form of controlled diversification which allows the search to escape some local
optima, it may be insufficient to escape deep local optima traps due to the qual-
ity limit fixed by the δ value. Instead of trying to escape such traps, the algorithm
simply skips them occasionally. On the other hand, since some local optima are
easy to escape and other optima are hard to get out of, it could be beneficial to start
the next round of thresholding search from the local optimum of the hill-climbing
procedure as well.

In our implementation, the conditional improving phase first sets the Record value
to the size of the current smallest vertex cover and memorizes in S ′ the solution
returned by the thresholding search phase. It then performs the hill-climbing proce-
dure to attain the local optimum S and uses it to update the recorded best solution
S∗ if needed. The algorithm accepts the local optimum S and sets Record to the
cardinality of the new best vertex cover S∗ if the random switch is ‘on’, or continues
with S ′ otherwise.
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4 Computational Experiments

We evaluate the performance of DTS MVC based on a wide range of 86 massive
real-world graphs with respect to two most recent MVC solvers dedicated to mas-
sive graphs: FastVC [4] and LinCom [13].

4.1 Benchmark Instances

The 86 tested benchmark instances from the Network Data Repository online [32]
are massive real-world graphs (with up to millions of vertices and tens of millions
of edges) from 10 general collections, including biological networks, collabora-
tion networks, facebook networks, interaction networks, infrastructure networks,
amazon recommend networks, scientific computation networks, social networks,
technological networks, and web link networks.

4.2 Experimental Settings and Computational Results

The proposed DTS MVC algorithm was coded in C++ and compiled by GNU g++
4.1.2 with the ‘-O3’ flag. The experiments were conducted on a computer with an
AMD Opteron 4184 processor (2.8GHz and 2GB RAM) running Ubuntu 12.04.
Solving the DIMACS machine benchmark graphs r300.5, r400.5 and r500.5 1 on
our computer (without any compilation optimization flag) requires 0.40, 2.50 and
9.55 seconds respectively.

The proposed algorithm DTS MVC as well as the two reference algorithms were
run 100 times for each instance with the time limit of 1000 seconds per run (a
commonly used stopping condition in the literature [4,13]). We ran the C++ source
codes of FastVC 2 on our machine for the sake of fair comparison. The results
of LinCom were extracted directly from the original paper since its source code
is not available to us. Notice in this comparison, the stopping condition of 1000
seconds is advantageous for LinCom since according to the Standard Performance
Evaluation Corporation (www.spec.org), the machine used to run LinCom [13] is
1.17 times faster than our computer.

To assess the peak performance of DTS MVC, we conducted the above experiment
for multiple values of δ (the unique parameter of DTS MVC) and reported the best
δ value and its corresponding results. Specifically, δ is tuned in an iterated manner.
Initialized with a value of 0, δ is incremented by 1 each time and iterated until the

1 ftp://dimacs.rutgers.edu/pub/dsj/clique/
2 http://lcs.ios.ac.cn/ caisw/MVC.html

11



performance of DTS MVC is not improved for consecutive 2 iterations. As we will
see later from the reported results, for most instances (76 out of 86 cases), the best
δ takes the value of 1 which means in practice only a limited tuning effort is needed
for these instances.

For each algorithm and for each instance, we report the smallest size (fbest) and the
averaged size (favg) over the 100 best vertex covers (one for each run) discovered
by the algorithm, as well as the averaged running time in seconds (CPU(s)) over 100
runs when the best solution is first encountered by the algorithm in each run (the
averaged running times of LinCom are not included in this comparison since they
were not reported in the original paper). Due to the difference of the computational
environments, the results obtained by running the source codes of FastVC on our
machine are not exactly the same as those reported in [4]. For the purpose of a more
comprehensive comparison, we also included the best results reported in [4] as the
current best known results (BKRs).

The detailed comparative results of DTS MVC together with the two reference
algorithms on the 86 benchmarks are listed in the Appendix (Table A.1 and A.2),
while Table 1 shows a summary of these detailed results and provides a general
picture of the performance of the compared algorithms. Note that only the results
of 59 instances (out of 86) were reported for LinCom in the original paper. From
these results, we can make the following observations.

• First, DTS MVC performs remarkably well on these real-world graphs. Indeed,
it matches or improves on the best known results (BKRs) for most instances (71
out of 86 cases). In particular, it is able to find 7 new BKRs (indicated with the
‘*’ symbol in Table A.1 and Table A.2) that were never identified before.
• Second, DTS MVC competes very favorably with FastVC. Indeed, DTS MVC

finds substantially more BKRs than FastVC (71 vs. 57). In terms of the best so-
lution found, DTS MVC attains a better outcome for 27 graphs, an equal result
for 57 graphs and a worse result for only two cases. As to the average perfor-
mance (favg), DTS MVC performs more stably than FastVC. Indeed, DTS MVC
achieves a better value for 41 graphs, an equal value for 33 instances, and a worse
value in 12 cases. These results also show that within the same time limit (1000
seconds), DTS MVC is able to find improving solutions while FastVC gets stuck
early before the time limit.
• Third, compared to LinCom which is one of the most recent and the best per-

forming MVC algorithms dedicated to massive graphs, DTS MVC remains very
competitive even if the improvement of our algorithm over LinCom is relatively
small. Table 1 indicates that in terms of the best result (fbest), the number of in-
stances where DTS MVC is better than LinCom is more than where DTS MVC
is worse (i.e., #Better vs. #Worse = 15:14). DTS MVC is more robust than
LinCom since DTS MVC shows a better average performance in 37 instances.
This number is larger than the 22 cases where DTS MVC attains a worse result.
Notice that, the results of LinCom were obtained on a computer which is 1.17
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time fascter than our computer.
• Fourth, there are two collections of graphs (prefix ‘ca-’ and ‘ia-’) where all three

compared algorithms perform similarly. Among the other networks, DTS MVC
dominates the other two algorithms on the collection prefixed by ‘socfb-’ while
LinCom outperforms the other algorithms on the collections prefixed by ‘inf-’
and ‘soc-’. This observation shows that DTS MVC is a good complement to the
state-of-the-art MVC solution approaches.

Table 1
Statistical data on comparative results of DTS MVC with two state-of-the-art algorithms
(FastVC [4] and LinCom [13]). For a given algorithm pair, #Instance represents the
number of instances in comparison. For each algorithm pair and each indicator, #Better,
#Equal and #Worse count the number of instances on which the first algorithm achieves
a value that is better, equal to or worse than the second algorithm respectively.

Algorithm pair #Instance Indicator #Better #Equal #Worse
DTS MVC vs. FastVC 86 fbest 27 57 2

favg 41 33 12
DTS MVC vs. LinCom 59 fbest 15 30 14

favg 37 0 22

4.3 Discussion

A second experiment was carried out to investigate the effectiveness of four key
ingredients of DTS MVC: the initialization procedure, the switch condition of the
improving phase, the random shuffling strategy of vertices before each thresholding
search phase, and the operation-prohibiting mechanism. To this end, we studied
four algorithm variants, each with one or two ingredients removed from the original
DTS MVC algorithm:

• DTS MVC1: with the greedy initialization procedure replaced by a pure random
initialization procedure;
• DTS MVC2: with the switch condition removed;
• DTS MVC3: with the random shuffling strategy disabled;
• DTS MVC4: with both random shuffling strategy and the operation-prohibiting

mechanism disabled.

We tested these algorithm variants on the 86 benchmark networks under the same
experimental protocol as DTS MVC. The pairwise comparative results of DTS MVC
with each of its variants (or between two algorithm variants) were summarized in
Table 2. To give a general picture of the performances of the four algorithm variants
with respect to DTS MVC, we also provided two plots of their best and average re-
sults in Figure 2 and 3. The horizontal axis of these plots shows the instance serial
number that indicates the order in which the instance appears in Table A.1 and A.2.
The vertical axis shows the performance gap (either best or average) in percentage,
calculated as (f−fdts)×100/fdts where f is the (best or average) solution value of
the algorithm variant and fdts is the (best or average) solution value of DTS MVC.
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Table 2
Statistical comparative results of DTS MVC with its four algorithm variants over 86 bench-
mark instances. For each algorithm pair and each indicator, #Better, #Equal and #Worse
count the number of instances on which the first algorithm achieves a value that is better,
equal or worse than the second algorithm respectively.

Algorithm Pair Indicator #Better #Equal #Worse
DTS MVC vs. DTS MVC1 fbest 25 58 3

favg 42 39 5
DTS MVC vs. DTS MVC2 fbest 28 55 3

favg 36 41 9
DTS MVC vs. DTS MVC3 fbest 64 22 0

favg 75 11 0
DTS MVC3 vs. DTS MVC4 fbest 69 17 0

favg 77 9 0

From Table 2 and Figures A.1-A.2, we can make the following observations:

• DTS MVC performs better than DTS MVC1 in terms of both best results (more
#Better than #Worse: 25 vs. 3) and average results (more #Better than #Worse:
42 vs. 5). For 39 instances where both DTS MVC and DTS MVC1 consistently
attain the BKR, DTS MVC is faster than DTS MVC1 on average (42.60s vs.
56.39s). This observation shows that compared to the random construction pro-
cedure, our greedy construction procedure provides better initial solutions to pro-
mote the overall performance of DTS MVC, and thanks to these high quality
starting points, DTS MVC arrives at a still better solution with generally less
computing time than DTS MVC1.
• DTS MVC also outperforms DTS MVC2 in terms of both best results (more

#Better than #Worse: 28 vs. 3) and average results (more #Better than #Worse:
36 vs. 9). This confirms the effectiveness of the random ‘switch’ condition which
contributes to the balance of intensification and diversification of DTS MVC.
• When comparing DTS MVC with DTS MVC3, we observe a more significant

dominance of DTS MVC (see Figure A.1 and A.2, the black line of DTS MVC
is mostly below the the red line of DTS MVC3). Indeed, DTS MVC is always
better than or equal to DTS MVC3 in terms of both best result and average re-
sults. In particular, DTS MVC achieves a better fbest result for 64 out of 86
instances (74.4%) and a better favg result for 75 out of 86 instances (87.2%).
This observation demonstrates the critical role of the random shuffling strategy
in boosting the performance of DTS MVC.
• Although much worse than DTS MVC, DTS MVC3 clearly dominates DTS MVC4

thanks to the inclusion of the operation-prohibiting mechanism (see Figure A.1
and A.2, the red line of DTS MVC3 is generally below the the green line of
DTS MVC4). Indeed, DTS MVC3 is consistently better than (for more than 80%
of all tested instances) or equal to DTS MVC4 in terms of both best and average
results. This observation confirms the effectiveness of our operation-prohibiting
mechanism in avoiding the search cycling issue.
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Fig. 2. Gap between DTS MVC and its algorithm variants in terms of best results.

Fig. 3. Gap between DTS MVC and its algorithm variants in terms of average results.

5 Conclusions and Future Work

We presented a fast and effective stochastic local search algorithm called DTS MVC
for finding small vertex covers in massive sparse graphs. Starting from an initial so-
lution generated by a low-complexity greedy construction procedure, DTS MVC
alternates between a thresholding search phase and a conditional improving phase.
Two innovative ingredients of DTS MVC are the vertex-based strategy and the
operation-prohibiting mechanism used in the thresholding search phase. The vertex-
based strategy ensures fast solution transformations and enables DTS MVC to ex-
plore various areas of the search space while the operation-prohibiting mechanism
combined with a random-vertex-shuffling strategy provides an effective way for
DTS MVC to avoid search cycling. Experimental evaluations on 86 massive real-
world graphs showed that DTS MVC performs very well by competing favorably
with two most recent MVC algorithms specially designed for massive graphs. In
particular, it is able to discover 7 new best known results (improved upper bounds)
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never reported in the literature and match the best known results for 64 other cases.
The computational results also indicate that DTS MVC and the existing MVC
algorithms complement each other and could be used jointly to handle a large
spectrum of graphs. We also conducted additional experiments to understand how
each of the main algorithmic components (namely the low-complexity greedy con-
struction procedure, the random-vertex-shuffling strategy, the operation-prohibiting
mechanism and the random ‘switch’ condition) contributes to the performance of
DTS MVC.

DTS MVC involves a tunable parameter δ which controls the search behavior and
the performance of the algorithm. Since fine-tuning this parameter for a given prob-
lem instance could lead to improved solutions, it would be interesting to investigate
self-adaptive mechanisms to tune this parameter automatically during the search
process.

Finally, we note that the proposed vertex-based strategy and the operation-prohibiting
mechanism are general enough to be applicable to other graph problems such as
those mentioned in the introduction. Since these techniques aim to accelerate the
search process and simply the algorithmic procedure, they would particularly be
useful to handle large scale problems. It’s thus interesting to practically investi-
gate these ideas in the context of solving other search problems in massive sparse
graphs.
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This appendix shows the detailed results of our DTS MVC algorithm in compari-
son with the state-of-the-art FastVC and LinCom algorithms on the 86 well-known
massive graphs.
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Table A.1
Comparative results of DTS MVC with FastVC [4] and LinCom [13] on biological net-
works, collaboration networks, facebook networks, interaction networks, infrastructure net-
works, recommend networks and scientific networks (totally 49 instances). The best of the
fbest values are in boldface and the best of the favg values are in italic. The best result of
DTS MVC is starred if it improves on the current best known result BKR. n/a denotes ”not
available”.

Instance DTS MVC FastVC LinCom
Graph |V | |E|

BKR
δ fbest favg CPU(s) fbest favg CPU(s) fbest favg

bio-dmela 7393 25569 2630 1 2630 2630.02 1.47 2632 2632.00 0.03 n/a n/a
bio-yeast 1458 1948 456 1 456 456.00 0.00 456 456.00 0.00 n/a n/a
ca-AstroPh 17903 196972 11483 1 11483 11483.00 0.00 11483 11483.00 0.06 11483 11483.01
ca-citeseer 227320 814134 129193 1 129193 129193.00 5.15 129193 129193.00 2.59 129193 129193.36
ca-coauthors-dblp 540486 15245729 472179 1 472179 472179.00 369.50 472179 472179.13 54.42 472179 472179.02
ca-CondMat 21363 91286 12480 1 12480 12480.00 0.00 12480 12480.00 0.10 12480 12480.06
ca-CSphd 1882 1740 550 1 550 550.00 0.00 550 550.00 0.00 n/a n/a
ca-dblp-2010 226413 716460 121969 1 121969 121969.00 7.09 121969 121969.00 13.18 121969 121969.64
ca-dblp-2012 317080 1049866 164949 1 164949 164949.00 7.24 164949 164949.00 6.63 164949 164950.35
ca-Erdos992 6100 7515 461 1 461 461.00 0.00 461 461.00 0.00 n/a n/a
ca-GrQc 4158 13422 2208 1 2208 2208.00 0.00 2208 2208.00 0.01 n/a n/a
ca-HepPh 11204 117619 6555 1 6555 6555.00 0.00 6555 6555.00 0.03 n/a n/a
ca-hollywood-2009 1069126 56306653 864052 1 864052 864052.00 328.40 864052 864052.00 75.76 864052 864052.01
ca-MathSciNet 332689 820644 139951 1 139951 139951.00 12.96 139951 139951.00 9.09 139951 139952.23
socfb-A-anon 3097165 23667394 375230 1 375230 375233.00 63.46 375231 375233.46 259.74 375230 375230.82
socfb-B-anon 2937612 20959854 303048 1 303048 303049.38 34.36 303048 303049.00 220.20 303048 303048.00
socfb-Berkeley13 22900 852419 17210 1 17210 17213.20 366.53 17210 17214.13 315.58 17210 17215.93
socfb-CMU 6621 249959 4986 1 4986 4986.76 12.82 4986 4986.86 10.57 4986 4987.24
socfb-Duke14 9885 506437 7683 1 7683 7683.39 164.56 7683 7683.89 243.35 7683 7684.98
socfb-Indiana 29732 1305757 23315 1 23315 23317.60 430.06 23315 23319.69 462.64 23319 23323.79
socfb-MIT 6402 251230 4657 1 4657 4657.00 162.38 4657 4657.01 153.90 4657 4657.56
socfb-OR 63392 816886 36548 1 36548 36550.00 464.07 36548 36550.25 276.70 36548 36549.50
socfb-Penn94 41536 1362220 31162 1 31160∗ 31166.00 545.29 31162 31167.56 592.00 31165 31170.78
socfb-Stanford3 11586 568309 8517 1 8517 8517.97 23.08 8518 8518.00 27.78 8518 8518.35
socfb-Texas84 36364 1590651 28167 1 28167 28172.30 497.12 28167 28174.53 587.62 28169 28178.98
socfb-UCLA 20453 747604 15223 1 15222∗ 15224.90 340.07 15223 15225.61 366.27 15224 15228.85
socfb-UConn 17206 604867 13230 2 13230 13232.10 333.28 13230 13232.41 317.04 13232 13235.99
socfb-UCSB37 14917 482215 11261 1 11261 11263.20 258.23 11261 11264.14 305.43 11262 11265.54
socfb-UF 35111 1465654 27306 1 27305∗ 27309.80 477.22 27306 27311.76 543.21 27310 27316.25
socfb-UIllinois 30795 1264421 24091 3 24091 24095.80 507.17 24091 24096.31 533.38 24095 24101.18
socfb-Wisconsin87 23831 835946 18383 1 18383 18386.30 370.48 18383 18387.59 471.40 18384 18390.13
ia-email-EU 32430 54397 820 1 820 820.00 0.00 820 820.00 0.00 n/a n/a
ia-email-univ 1133 5451 594 1 594 594.00 0.00 594 594.00 0.00 n/a n/a
ia-enron-large 33696 180811 12781 1 12781 12781.00 0.00 12781 12781.00 0.11 12781 12781.20
ia-fb-messages 1266 6451 578 1 578 578.00 0.00 578 578.00 0.01 n/a n/a
ia-reality 6809 7680 81 1 81 81.00 0.00 81 81.00 0.00 n/a n/a
ia-wiki-Talk 92117 360767 17288 1 17288 17288.00 0.04 17288 17288.00 0.22 n/a n/a
inf-power 4941 6594 2203 1 2203 2203.00 0.00 2203 2203.00 0.03 2203 2203.01
inf-roadNet-CA 1957027 2760388 1001058 1 1001158 1001253.63 969.00 1001273 1001320.00 974.57 1001058 1001139.61
inf-roadNet-PA 1087562 1541514 555035 1 555160 555231.23 921.42 555220 555242.00 850.93 555035 555107.22
rec-amazon 91813 125704 47605 1 47605 47605.55 225.65 47607 47607.40 1.79 47605 47605.62
sc-ldoor 952203 20770807 856755 8 856759 856762.87 788.41 856755 856757.00 313.25 856755 856757.18
sc-msdoor 415863 9378650 381558 1 381558 381559.72 594.24 381558 381559.00 54.00 381559 381559.86
sc-nasasrb 54870 1311227 51243 0 51242∗ 51246.96 691.44 51244 51247.20 506.26 51243 51249.23
sc-pkustk11 87804 2565054 83911 0 83911 83913.93 125.97 83911 83913.70 37.73 83911 83913.52
sc-pkustk13 94893 3260967 89217 0 89220 89224.61 773.88 89218 89221.20 577.88 89219 89222.95
sc-pwtk 217891 5653221 207698 1 207695∗ 207707.18 896.61 207716 207709.00 443.51 207698 207711.11
sc-shipsec1 140385 1707759 117278 1 117231∗ 117295.35 936.47 117348 117381.00 842.21 117278 117319.88
sc-shipsec5 179104 2200076 146991 1 147081 147128.31 898.25 147137 147170.00 574.72 146991 147022.95
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Table A.2
Comparative results of DTS MVC with FastVC [4] and LinCom [13] on the social net-
works, technological networks and web link networks (totally 37 instances). The best of
the fbest values are in boldface and the best of the favg values are in italic. The best result
of DTS MVC is starred if it improves on the current best known result BKR. n/a denotes
”not available”.

Instance DTS MVC FastVC LinCom
Graph |V | |E|

BKR
δ fbest favg CPU(s) fbest favg CPU(s) fbest favg

soc-BlogCatalog 88784 2093195 20752 1 20752 20752.00 16.59 20752 20752.01 0.61 20752 20752.01
soc-brightkite 56739 212945 21190 1 21190 21190.01 51.37 21190 21190.10 0.40 21190 21190.09
soc-buzznet 101163 2763066 30613 4 30617 30625.79 548.02 30625 30625.50 239.30 30613 30613.00
soc-delicious 536108 1365961 85319 4 85824 85933.04 937.86 86184 86224.40 10.58 85319 85333.75
soc-digg 770799 5907132 103234 1 103242 103244.69 91.34 103244 103245.00 4.73 103234 103234.01
soc-douban 154908 327162 8685 1 8685 8685.00 0.00 8685 8685.00 0.01 n/a n/a
soc-epinions 26588 100120 9757 1 9757 9757.00 0.96 9757 9757.85 0.28 9757 9757.02
soc-flickr 513969 3190452 153271 1 153271 153271.52 192.07 153272 153272.00 63.51 153271 153271.45
soc-flixster 2523386 7918801 96317 1 96317 96317.00 23.25 96317 96317.00 2.88 96317 96317.02
soc-FourSquare 639014 3214986 90108 1 90108 90108.99 88.71 90108 90109.30 71.72 90108 90108.13
soc-gowalla 196591 950327 84222 1 84222 84222.54 445.45 84222 84222.40 46.37 84222 84222.07
soc-lastfm 1191805 4519330 78688 1 78688 78688.01 5.35 78688 78688.00 2.27 n/a n/a
soc-livejournal 4033137 27933062 1868924 1 1869051 1869074.41 976.36 1869060 1869082.00 973.69 1868924 1868932.92
soc-LiveMocha 104103 2193083 43427 1 43427 43427.53 377.29 43427 43427.00 176.74 n/a n/a
soc-pokec 1632803 22301964 843344 1 843415 843431.68 941.55 843422 843438.00 868.47 843344 843347.38
soc-slashdot 70068 358647 22373 1 22373 22373.00 0.51 22373 22373.00 0.49 n/a n/a
soc-twitter-follows 404719 713319 2323 1 2323 2323.00 0.00 2323 2323.00 0.07 n/a n/a
soc-youtube 495957 1936748 146376 1 146376 146376.00 67.91 146376 146376.34 13.02 146376 146376.10
soc-youtube-snap 1134890 2987624 276945 1 276945 276945.00 80.49 276945 276945.00 27.71 276945 276945.21
tech-as-caida2007 26475 53381 3683 1 3683 3683.00 14.25 3684 3684.00 0.01 n/a n/a
tech-as-skitter 1694616 11094209 525086 1 527269 527402.17 945.33 527587 527636.00 696.36 525086 525099.14
tech-internet-as 40164 85123 5700 1 5700 5700.00 0.00 5700 5700.00 0.05 n/a n/a
tech-p2p-gnutella 62561 147878 15682 1 15682 15682.00 4.95 15682 15682.00 0.05 n/a n/a
tech-RL-caida 190914 607610 74607 10 74719 74757.60 980.67 74930 74942.50 10.75 74607 74615.25
tech-routers-rf 2113 6632 795 1 795 795.00 0.00 795 795.00 0.00 n/a n/a
tech-WHOIS 7476 56943 2284 1 2284 2284.00 0.00 2284 2284.00 0.01 n/a n/a
web-arabic-2005 163598 1747269 114420 4 114426 114433.78 564.57 114429 114432.00 473.07 114420 114420.67
web-BerkStan 12305 19500 5384 1 5384 5384.00 129.30 5384 5384.72 6.82 5384 5384.13
web-edu 3031 6474 1451 1 1451 1451.00 0.00 1451 1451.00 0.00 n/a n/a
web-google 1299 2773 498 1 498 498.00 0.00 498 498.00 0.00 n/a n/a
web-indochina-
2004

11358 47606 7300 1 7300 7300.00 0.89 7300 7300.00 0.31 n/a n/a

web-it-2004 509338 7178413 414646 1 414616∗ 414651.86 422.10 414671 414675.00 22.78 414646 414649.00
web-sk-2005 121422 334419 58173 1 58173 58178.39 180.16 58173 58173.00 22.26 n/a n/a
web-spam 4767 37375 2297 1 2297 2297.00 0.15 2298 2298.00 0.03 2297 2297.26
web-uk-2005 129632 11744049 127774 1 127774 127774.00 0.00 127774 127774.00 0.08 n/a n/a
web-webbase-2001 16062 25593 2651 1 2652 2652.00 0.00 2652 2652.00 0.04 n/a n/a
web-
wikipedia2009

1864433 4507315 648300 1 648312 648324.46 816.33 648317 648320.00 808.05 648300 648312.39
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