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Abstract The quadratic multiple knapsack problem (QMKP) consists in as-
signing objects with both individual and pairwise profits to a set of limited
knapsacks in order to maximize the total profit. QMKP is a NP-hard com-
binatorial optimization problem with a number of applications. In this pa-
per, we present an iterated responsive threshold search (IRTS) approach for
solving the QMKP. Based on a combined use of three neighborhoods, the
algorithm alternates between a threshold-based exploration phase where so-
lution transitions are allowed among those satisfying a responsive threshold
and a descent-based improvement phase where only improving solutions are
accepted. A dedicated perturbation strategy is utilized to ensure a global di-
versification of the search procedure. Extensive experiments performed on a
set of 60 benchmark instances in the literature show that the proposed ap-
proach competes very favorably with the current state-of-the-art methods for
the QMKP. In particular, it discovers 41 improved lower bounds and attains
all the best known results for the remaining instances. The key components
of IRTS are analyzed to shed light on their impact on the performance of the
algorithm.
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1 Introduction

Let N = {1,2,....,n} be a set of n objects and M = {1,2,...,m} a set of m
knapsacks. Each object i (i € N) is associated with a profit p; and a weight w;.
Moreover, each pair of objects ¢ and j (1 < i # j < n) generates a joint profit
pi; when they are allocated to the same knapsack. Each knapsack k (k € M)
has a weight capacity C. The quadratic multiple knapsack problem (QMKP)
is to assign objects of N to the knapsacks such that the total profit of the
allocated objects is maximized while the weight sum of the objects allocated
to each knapsack does not exceed the capacity of the knapsack.

Let x be a n x m binary matrix such that x;; = 1 if object ¢ is allocated to
knapsack k, z;; = 0 otherwise. Then the QMKP can be formulated as a 0-1
quadratic program:

n o m n—1 n m
Max > wapi+ > Y D> wakdirpis (1)

i=1 k=1 =1 j=i+1 k=1
subject to:
> wipw; <Cp,  VkeM (2)
=1
dmk<l,  VieN (3)
k=1

As a generalization and combination of the well-known multiple knapsack
problem [13,17,19] and the quadratic knapsack problem [1,2,7,18], the QMKP
is known to be NP-hard [12]. Like many knapsack problems [14], the QMKP
can be used to formulate a number of real-world problems where resources with
different levels of interaction have to be distributed among a set of different
tasks, for example, allocating team members to different projects in which
member contributions are calculated both personally and in pairs. The QMKP
is not to be confused with the quadratic knapsack problem with multiple
constraints [24].

Compared with its two composing problems (multiple knapsack problem
and quadratic knapsack problem), the QMKP is somewhat less studied in the
literature. Yet, given both its theoretical and practical relevance, the QMKP
is receiving increasing attention in recent years. In particular, a number of
heuristics has been proposed to solve this difficult problem. To our surprise,
no exact algorithm can be found in the literature.

The authors of [12] present one of the first studies on the QMKP and
proposed three different heuristics: a greedy heuristic which is based on an
object value density criterion, a stochastic hill-climbing method which uses a
local operator to remove objects from knapsacks and refill them greedily, and a
genetic algorithm which employs both specific crossover and heuristic mutation
operators. This paper also introduced a set of 60 benchmark instances from
20 existing instances of the quadratic (single-)knapsack problem defined in [1].
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These 60 instances were largely employed in the subsequent studies and will
also be used in this work for algorithm evaluations and comparisons.

In [20], the authors propose a genetic algorithm where initial solutions
are generated randomly and binary tournament is applied for selection. The
algorithm uses a dedicated crossover operator which maintains the feasibility of
solutions and two mutation operators with different improvement techniques.
Experimental evaluation showed the effectiveness of the proposed algorithm.

A steady-state grouping genetic algorithm is presented in [21] where a sin-
gle child is produced at each generation and replaces the least fit solution in the
population. Solutions are encoded as a set of knapsacks. The algorithm uses
the greedy heuristic of [12] for population initialization and the binary tourna-
ment for selection. Specialized crossover and mutation operators are proposed
for solution recombination and diversity maintenance. This algorithm is ex-
perimentally compared with the algorithms in [12].

An artificial bee colony algorithm (SS-ABC) is introduced in [23] in which
a local search is integrated. The initial food sources are randomly generated.
Onlooker bees choose one of the neighbor food sources using binary tourna-
ment selection. A scout bee is reconstructed randomly when the associated
food source is not improved for a predetermined number of iterations. A local
search based on swapping an unassigned object with an assigned object is em-
ployed to further improve the solution quality. Computational results showed
that the SS-ABC algorithm outperformed the previous approaches.

A memetic algorithm called ALA-EA is proposed in [22] for the QMKP
under the name ”quadratic multiple container packing problem”. ALA-EA
uses a network random key encoding scheme and initializes the gene values
with a greedy heuristic based on the object density. The chromosomes are
decoded using the best-fit heuristic and the resulting solutions are improved
by a simple exchange heuristic. Using the real world tournament selection
for reproduction, the algorithm generates offspring solutions by the uniform
crossover and swap mutation. We show in Section 3.5 a study of this algorithm.

A tabu-enhanced iterated greedy algorithm (TIG-QMKP) is presented very
recently for the QMKP in [11]. This algorithm makes alterations between a
constructive phase and a destructive phase. The constructive phase recon-
structs a partial solution with a greedy method which is followed by a local
improvement to ameliorate the solution quality. The destruction mechanism
removes a set of objects from the knapsacks by making use of a short-term
tabu memory. TIG-QMKP is one of the current best heuristics for the QMKP
since it discovered many best known results for the instances in the literature.
We will use this heuristic as one of our reference algorithms in the comparative
study.

In another very recent paper [10], strategic oscillation is applied to solve
the QMKP (SO-QMKP). This approach iteratively applies three stages. In
the first stage, an oscillation process explores both the feasible and infeasible
regions around a current solution and returns a new solution, after which a
local optimization procedure is applied to each new candidate solution to try to
get an improved solution in the second stage, and the last stage decides which
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solution is to be chosen to continue the search with an acceptance criterion.
Like TIG-QMKP, this algorithm obtains many best known solutions for the
benchmark instances and will be used as another reference for comparison.

In this paper, we present an iterated responsive threshold search algorithm
(IRTS) for solving the QMKP with the following main contributions.

— From the perspective of algorithm design, we propose a special responsive
mechanism for guiding a threshold process. By incorporating this mecha-
nism, the algorithm makes an original combination between a threshold-
based exploration phase and a descent-based improvement phase. The
threshold-based exploration phase examines three neighborhoods and ac-
cepts new solutions (including deteriorating solutions) as long as their qual-
ity satisfies a responsive threshold while the descent-based improvement
phase accepts only improving solutions identified in two neighborhoods.
When these two phases are found to be stagnating, a specialized perturba-
tion is applied to displace the search to a distant new region.

— From the point of view of computational performance, we assess the pro-
posed algorithm on a set of 60 benchmark instances commonly used in the
literature. Computational results show that the proposed approach com-
petes very favorably with the state-of-the-art methods and is able to find an
improved lower bound for 41 instances and match the best known solution
for the remaining 19 instances.

The rest of the paper is organized as follows. Section 2 describes the details
of the proposed algorithm. Section 3 presents a parameter sensitivity analysis,
experimental results and comparisons with the state-of-the-art algorithms in
the literature. Section 4 studies some key components of our proposed algo-
rithm. Conclusions are drawn in Section 5.

2 An iterated responsive threshold search algorithm for the QMKP
2.1 Main scheme

Basically, our iterated responsive threshold search (IRTS) algorithm alternates
between a threshold-based exploration phase (Exploration for short) and a
descent-based improvement phase (Improvement for short). Based on three
different neighborhoods, the threshold-based exploration phase prospects for
good solutions in a large area of the search space. At each iteration of this
phase, the algorithm accepts any encountered neighboring solution which may
or may not improve over the current solution but must satisfy a quality thresh-
old which is dynamically determined by a special responsive mechanism that is
adjusted as a function of the best local optimum found so far. As a complement
of this exploratory search phase, the descent-based improvement phase ensures
a more focused and directed search such that only improving neighboring so-
lutions are accepted. These two phases are repeated to seek increasingly better
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local optima until a search stagnation is encountered. The algorithm then trig-
gers a dedicated perturbation phase to displace the search process in a distant
zone of the search space from where a new round of Exploration-Improvement
cycles is launched.

As shown in Algorithm 1, IRTS starts from an initial solution s (Line 3)
generated by the procedure given in Section 2.3. After initializing some global
variables like the best solution s* found so far, the objective value of the best
local optimum f, and the first threshold coeflicient r which is used to define the
responsive threshold (Lines 4-7), the search enters into the main loop. For each
loop, IRTS realizes a threshold-based exploration phase which is composed of L
(L is a parameter) calls of the ThresholdBasedExploration(s,r, Np, CNr, CNg)
procedure (Lines 10-12, see Section 2.6). For each call, the search iteratively
examines three neighborhoods Np, CNpg,CNg which are induced by three
move operators (i.e., removing an allocated object, reallocating an object and
exchanging two objects, see Section 2.4 and 2.5). Any encountered neighbor-
ing solution s’ is accepted to replace the incumbent solution s as long as the
quality (i.e., the objective value) of s’ is not worse than a given threshold.
This threshold is dynamically tuned and depends on the objective value of the
best local optimum (f;,) found so far (as well as a parameter r called thresh-
old ratio). Thanks to this responsive threshold, the search process is expected
to explore various zones of the search space without being easily trapped in
local optima. At the end of this exploration phase, the search switches to the
descent-based improvement phase to intensify the search (Lines 13-21).

During the Improvement phase (see Section 2.7), the search exploits two
neighborhoods C Ng, CNg (i.e., those generated by reallocating an object and
exchanging two objects) and replaces the current solution by a first met im-
proving neighboring solution. This phase stops when no improving solutions
can be found in the two neighborhoods meaning that a local optimum is
reached. If this local optimum has a better objective value than the recorded
best objective value f,, the algorithm updates f, as well as the threshold ra-
tio r (Lines 15-21) before resuming a new round of Exploration-Improvement
phases. Otherwise, if the recorded best local optimum objective value f, can
not be updated for a consecutive W of Exploration-Improvement phases, the
search is considered to be trapped in a deep local optimum. In this case, the
algorithm switches to a dedicated perturbation phase to make some important
changes to the current solution (Lines 23-28) and restarts a new Exploration-
Improvement phase with the perturbed solution as its initial solution.

The whole procedure thus iterates the Exploration-Improvement phases,
punctuated with the perturbation phase until a prefixed stop condition is ver-
ified. This is typically a time cutoff, a maximum number of allowed iterations,
or still a maximum number of allowed Exploration-Improvement phases.
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Algorithm 1 Pseudo-code of the IRTS algorithm for the QMKP

1: Input: P: a QM K P instance; L: exploration strength; p: perturbation strength coefficient;
W: the number of non-improving attractors visited before strong perturbation;

2: Output: the best solution s* found so far;

3: s < InitialSolution();

4: s* < s; /* s* records the global best solution found during the search */

5: fp < f(s*); /* fp records the objective value of the best local optimum */

6: r < CalculateRatio(fp); /* r denotes the threshold ratio, Sect. 2.6 */

7w < 0; /* set counter for consecutive non-improving local optima */

8: while stopping condition not reached do

9: /* Threshold-based exploration phase using neighborhoods Np, CNgi and CNg to ex-

plore the search space, Sect. 2.6 */

10: for i< 1to L do

11: (s,8*) <= ThresholdBased Exploration(s,r, Np, CNr,CNEg) and update the best
solution found s*;

12: end for

13: /* Descent-based improvement phase using neighborhoods CNp and CNg to improve

the solution, Sect. 2.7 */
14: (s, 8*) + Descent BasedImprovement(s,CNgr,CNg);
15:  if f(s) > fp then

16: Ip < f(s);

17: r < CalculateRatio(fp);

18: w < 0;

19: else

20: w— w+ 1;

21: end if

22: /* Density-based perturbation phase with neighborhood union Np UCNr UC N, Sect.
2.8 *

23: if w i W then

24: s < DensityBasedPerturbation(s, p, Np UCNgr UCNEg);

25: fp < f(s);

26: r + CalculateRatio(fp);

27: w <+ 0;

28: end if

29: end while

2.2 Search space, evaluation function and solution representation

Before presenting the ingredients of the IRTS algorithm, we first define the
search space {2 explored by the algorithm, the evaluation function f to measure
the quality of a candidate solution and the solution representation.

For a given QMKP instance with its object set N = {1,2,...,n} and its
knapsacks M = {1,2,...,m}, the search space {2 visited by IRTS is composed
of all allocations of objects to the knapsacks such that the total weight of
the objects allocated to each knapsack does not surpass the capacity of the
knapsack. In other words, the IRTS algorithm visits only feasible solutions.

Formally, let A : N — {0} U M be an allocation function of objects to
knapsacks (A(i) = 0 indicates that object 4 is not allocated to any knapsack).
For each knapsack k € M with weight wy, and capacity Cy, let I, = {i € N :
A(i) = k} (ie., I is the set of objects allocated to knapsack k). Then the
search space is given by:

Q={A:Vke MY, w; < Cy).

For any candidate solution (i.e., an allocation function A) s € 2, its quality
is evaluated directly by the objective function f of the QMKP. Let p; be the
profit of object ¢ and p;; be the joint profit of two objects ¢ and j. The objective
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value f(s) is given by the following sum of profits:

f(S):ZZPH'Z Z Dij (4)

keM i€y kEM i#j€l}

This function introduces a total order over (2. Given two solution s; and
S, $2 is better than s1 if f(s2) > f(s1).

To encode a feasible solution of {2, we adopt an integer vector s € {0, 1, ..., m}"
where n is the number of objects and m is the number of knapsacks. In this
representation, value s(i) = k (k € M) indicates that object i is allocated to
knapsack & while s(i) = 0 means that object 4 is not allocated to any knapsack.
This representation was also used in [12].

Notice that a solution s € (2 can also be considered as a partition of the set
of n objects into m+ 1 groups {Iy, I1, ..., I, } such that each I}, (k € M) is the
set of objects allocated to knapsack k while Iy contains the unallocated objects.
Hereafter, we will use H to represent the set of allocated objects of N (i.e.,
H = J,~, I};) and |H| the number of allocated objects (i.c., |[H| =n — |I)).

2.3 Initial solution

IRTS constructs an initial solution according to the greedy constructive heuris-
tic, which was first proposed in [12], and subsequently used in several studies
[10,11,20,21,23]. To present this greedy heuristic, we first introduce two basic
definitions: contribution and density of an object.

Definition 1 Given a solution s = {Ily, I, ..., I, }, the contribution of
object i (i € N) to knapsack k (k € M) with respect to s is given by:

VC(s,i,k) =pi + Z Dij (5)

J€lk,jF#i

Definition 2 Given the contribution VC(s,1,k), the density of object
i (i € N) with respect to knapsack k (k € M) is given by:

D(s,i, k) =VC(s,i,k)/w; (6)

Given these definitions, at each iteration of the greedy construction algo-
rithm, an unallocated object i (i € Iy) with the highest density D(s, i, k) and
satisfying w; +Zj61k w; < CY is selected and assigned to knapsack k (k € M).
This process is repeated until no more object with VC(s,i,k) >0 (i € Iy, k €
M) can be assigned to any knapsack without violating a capacity constraint.

After each object allocation, updating VC' can be realized in O(n) since
allocating (inserting) object ¢ into knapsack k increases the contribution of
any other object j (j € N,j # i) to insert into knapsack k with the pairwise
profit p;;. Given that the initialization procedure can repeat at most n times,
the initialization procedure can be realized in time O(n?) in the worst case.
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2.4 Basic move operators and unconstrained neighborhoods

One of the most critical features of local search is the definition of its neigh-
borhood. Typically, a neighborhood is defined by a move operator mwv, which
transforms a current solution s to generate a neighboring solution s’ by some
local changes of s. The transition from s to s’ is denoted as s’ = s @ mv. Let
MYV (s) be the set of all possible moves that can be applied to s, then the
neighborhood of s induced by muv is given by: N(s) = {s': s’ = s® mv, mv €
MV (s)}.

Our IRTS algorithm jointly employs three neighborhoods Ni, Ng and Np
which are defined by three basic move operators: DROP, REALLOCATE and
EXCHANGE. Operators REALLOCATE and EXCHANGE have been used
for local improvement in other approaches like [10,11], while operator DROP
is first introduced in this work.

Let s = {lo, I1, ..., I;m} be a solution. For an object i, let k; € {0,1,...,m}
be the knapsack to which the object is allocated. Our move operators are
described as follows:

- DROP(i): This move operator removes an already assigned object ¢ from
its associated knapsack. The neighborhood defined by this operator is given
by:

Np(s)={s':¢ =s® DROP(i),i € N,k; € M}

The objective value of the new solution after a DROP move can be effi-
ciently calculated as:

f(s") = f(s) =V Cl(s,i ki), ki€ M (7)

- REALLOCATE(i, k): This move operator displaces an object i from its
current knapsack k; € {0,1,...,m} to another knapsack k (k # k;, k # 0).
In fact, this move operator includes two cases: to allocate an unassigned
object i (k; = 0) to a knapsack k (k € M) and to reallocate an assigned
object i (k; # 0) to a different knapsack k (k # k;, k € M). The (uncon-
strained) neighborhood Np induced by this move operator is given by:

Ng(s)={s':s' =s® REALLOCATE(i,k),i € N,k € M\ {k;}}

Given the objective value of solution s, the objective value f(s") of a neigh-
boring solution s’ after applying REALLOCATE to s can be efficiently
calculated as:

F(s)+VC(s,i k) — VCl(s,i, k), if ki#0

1) = {f(s) +VC(s,i, k), otherwise ®

- EXCHANGE(i,7): This move operator exchanges a pair of objects (i, j)
where 1) one of them is an assigned object and the other is not assigned,
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or 2) both of them are assigned but belong to different knapsacks. Notice
that exchanging objects that are both unassigned or both included in the
same knapsack does not change the objective value and thus will not be
considered by our exchange move operator. We define Y = {Y¥},Y5,.... Y, }
be the set of all possible pairs of exchange objects where Y; = {(¢,7) : j €
N,i# j, ki # k;} contains all pairs related to object i. The unconstrained
neighborhood Ng induced by this move operator is given by:

Ng(s)={s':¢ =s® EXCHANGE(i,j),(i,j) € Y}

The objective value of a new solution s" after an EXCHANGE move can
be conveniently calculated as:

f(s) +VC(s,i k;) +VC(s,j, ki)

—VC(s,i,ki) =V C(s,j,kj) —2%pij, ifky,kjeM
f(s)+VC(s,i kj)—VC(s,j, ki) — pij, if ki =0,k; € M
f(s)+VC(s,j, ki) —VC(s,i,k;) — pij, if kj =0,k; € M

fs') =

(9)

One observes that both REALLOCATE and EXCHANGE can either im-
prove or deteriorate the quality of the current solution, while DROP always
decreases the objective value.

A neighboring solution s’ can be generated by applying one of the above
three move operators. After a solution transition, the algorithm updates the
contribution table V'C with a time complexity of O(n) since each of the three
move operators can be decomposed into one or several object insertion or
extraction operations and like object insertion (see Section 2.3), updating VC
after an object extraction requires O(n) time at most.

2.5 Constrained neighborhoods and generation of neighboring solutions

The move operators (and their neighborhoods) introduced in the last sec-
tion do not consider the knapsack constraints. Consequently, the associated
neighborhoods may contain unfeasible solutions (violating some knapsack con-
straints). Since our IRTS algorithm explores only the feasible search space
(2 defined in Section 2.2, we introduce two constrained neighborhoods as-
sociated with the REALLOCATE and EXCHANGE operators. These con-
strained neighborhoods are both more focused and smaller-sized. By using
the constrained neighborhoods, the IRTS algorithm tries to avoid generating
irrelevant unfeasible neighboring solutions, consequently saves its computing
time needed to examine the neighboring solutions and improves its computa-
tional efficiency. Notice that when the D ROP operator is applied to a feasible
solution (this is our case), it always generates a feasible solution.

Recall that the REALLOCATE operator allocates an unassigned object
to a knapsack or reallocates an assigned object to another knapsack. In the
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general case, its associated neighborhood Np is of size |[N| x |M| — |H|. How-
ever, for a given object and a solution, if the weight of the object exceeds
the residual capacity of each knapsack of the solution, it is useless to examine
any neighboring solution relative to this object. The idea of our constrained
reallocate neighborhood is to limit the objects to be considered to a specifi-
cally identified subset X C N such that |X| is as small as possible, and the
resulting neighborhood still contains all feasible solutions of the unconstrained
neighborhood.

Given a solution s = {Iy, I1, ..., I,y }, let SW = {SW1,SWs,...,SW,,} be
a vector where each SW; = Zielk w; is the weight sum of the objects in
knapsack k of the solution s. The maximum spare or residual space mazSlack
among all the knapsacks is given by:

mazxSlack = gg\};{Ck — SWy} (10)

Then by defining subset X as X = {i € N : w; < maxzSlack}, our con-
strained neighborhood C'Ng induced by REALLOCATE is given by:

CNg(s)={s":s =s® REALLOCATE(i,k),i € X,k € M\ {k;}}.

Obviously, the size of C' N is | X | x |M|—|H| which is typically smaller than
the size of unconstrained neighborhood Ny (|N| x |[M| — |H|). In most cases
maxSlack can be updated in O(1) since only two knapsacks are impacted by
a 'reallocate’ move. One exception is when a move yields a smaller space than
maxSlack for the two knapsacks concerned by the operation and one of them
originally holds maxSlack. In this case, we need to traverse all knapsacks to
update maxSlack.

Similarly, a constrained neighborhood can be devised for the EXCHANGE
operator by exploring the following idea. Given an object i(i € Ij,), if it
can not be accommodated by a knapsack k (k # k;) even by removing the
object with the highest weight, then it is useless to try to exchange this
object i with this knapsack. For this purpose, we define a vector MW =
{MWy, MWy, ..., MW,,} where each MW, = maz;cr, {w;} stores the maxi-
mum weight among all objects in each knapsack. Then we can exclude any
neighboring solution which is obtained by exchanging object i (i € N) with
any object of knapsack k (k € M) if the following condition holds:

w; > MWk+(Ck—SWk) (11)

We define all possible pairs of exchangeable objects as Z = {Z1, Zs, .., Z,, }
where ZZ = {(Z,]) : ] S N,] 75 i,kj 75 ki,Mij + (Ck:j — SWk]> Z wz}
contains all pairs related to object i. Our constrained exchange neighborhood
CNg(s) is defined as:

CNg(s) ={s'": s =s® EXCHANGE(i,j), (i,j) € Z}.

Obviously, the neighborhood C'Ng typically has a smaller size than the
unconstrained neighborhood Ng since Vi € N, |Z;| < |Y;].

Usually, MW can be updated in O(1) since an ’exchange’ move only con-
cerns two knapsacks. One special case happens when object ¢ is to be ex-
changed with object j in another knapsack k such that j holds the maximum
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weight MW, of knapsack k. In this case, we need to traverse the objects of
the knapsack k.

2.6 Threshold-based exploration using neighborhoods Np, CNi and C'Ng

In the context of multiple neighborhood search, there are several ways to
combine different neighborhoods, such as neighborhood union and token-ring
search [6,8,15]. One main motivation for considering combination of diverse
neighborhoods is to allow the search procedure to continue its search with-
out being easily trapped in local optima. Given that a local minimum for a
neighborhood is not necessarily a local optimum for another neighborhood,
an algorithm that explores multiple neighborhoods is expected to have more
chances to locate better solutions. As it is shown in Section 2.1, our IRTS
algorithm alternates between the threshold-based exploration phase and the
descent-based improvement phase. These two phases both employ a neighbor-
hood composition strategy but differ in the number of neighborhoods they use
and their acceptance criterion for solution transitions.

In the threshold-based exploration phase, both improving and deteriorat-
ing solutions are allowed in order to favor a large exploration of the search
space. This phase is based on the three constrained neighborhoods Np, CNg
and CNg and adapts the Threshold Accepting heuristic ([4,5]) to define its
solution accepting criterion. Specifically, the three neighborhoods are exam-
ined iteratively in a token-ring search Np —- CNr — CNg — Np — CNg...
(see Algorithm 2). For each neighborhood under consideration, neighboring
solutions are examined in a random order. The acceptance of each sampled
solution is subject to a responsive threshold denoted by 7. Precisely, a neigh-
boring solution s’ is accepted to replace the incumbent solution if its objective
value is no worse than the given threshold T, i.e., f(s") > T.

Our responsive threshold is critical to the performance of the search algo-
rithm. A too small threshold (i.e., f, — T is large) makes the search similar
to a pure random search while a too large threshold (i.e., f, — T is small)
weakens the capability of the search to escape local optima. In our case, the
responsive threshold T is determined according to the recorded best local op-
timum objective value f, and a threshold ratio 7: T = (1 — r) X f,. Thus T
increases when f, increases and r decreases (r itself is inversely proportional
to fp). Since f, is updated during the search, the threshold 7" is dynamically
evolving too.

Notice that we do not give r a fixed value since f;, changes (with increasing
values) during the search course and moreover, the range of f, can be quite
different and large for different problem instances. To determine an appropriate
value of r, we design an inverse proportional function with respect to f, as
follows (a, b and ¢ are empirically fixed coefficients):

r=1/(a* (f,/10000) + b) + ¢ (12)
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This function is monotonically decreasing which means r strictly decreases
when f, enlarges. Empirically, we set a = 16.73, b = 76.56 and ¢ = 0.0021 for
the instances we used. These values are identified in the following manner. We
selected three different problem instances whose best objective values range
from small to large and we tuned manually for each of these three instances a
value of r which is kept unchanged during the search course. We then use the
best objective value as the f, and we obtain three pairs of (f,,r) values. The
value of a,b and ¢ are then decided by solving the simultaneous equations. In
our IRTS algorithm, r is recalculated each time f, is updated.

Algorithm 2 Pseudo-code of the threshold-based exploration phase

1: Input:

s: A feasible solution ;

L: Exploration strength;

fp: The objective value of the best local optimum;

r: The threshold ratio;
. Output: A new solution s and the best solution s*;
for : < 1 to L do

(s,s*) <= ThresholdSearch(s, fp,r, Np);

(s,s*) <= ThresholdSearch(s, fp,7,CNR);
(s,s*) <= ThresholdSearch(s, fp,7,CNE);
end for
: Return s and s*;

PN RN

2.7 Descent-based improvement using neighborhoods CNr and CNg

After each threshold-based exploration phase, the IRTS algorithm continues
with a descent-based improvement phase which is based on the constrained ’re-
allocate’ neighborhood C' Ny and constrained ’exchange’ neighborhood C'Ng.
The aim of this phase is to attain a local optimum (as good as possible) in
both CNg and C'Ng starting from the solution s returned by the previous
threshold-based exploration phase. To this end, the algorithm iteratively ex-
plores CNg and CNg in a token-ring way CNp — CNp — CNg — CNg....
For each iteration, a neighboring solution s’ is picked at random from the
neighborhood under consideration and replaces the incumbent solution s if
s’ is better than s (i.e., f(s') > f(s)). Since this search phase aims to find
solutions of increasing quality, the DROP neighborhood Np is not applicable
(since the DROP operator always decreases the objective value).

This process stops when no more improving neighboring solution can be
found in CNi and C'Ng to update s which corresponds to a local optimum.
At this point, s is checked to verify whether its objective value is better than
the best recorded objective value f,. If this is the case, we update f, and
reset to 0 the counter for consecutive non-improving Exploration-Improvement
phases w (see Algorithm 1, Sect. 2.1). Otherwise, w is increased by 1 and the
search switches back to the next threshold-based exploration phase. When
w reaches its maximum value W, the search is considered to be stagnating.
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To unblock the situation, the algorithm calls for a strong perturbation which
changes significantly the incumbent solution before restarting a new round of
threshold-based exploration and descent-based improvement phases.

2.8 Density-based perturbation phase using Np, CNr and C'Ng

As described previously, the threshold-based exploration phase may accept
deteriorating solutions (subject to the responsive threshold) and thus provides
a form of controlled diversification which allows the search to escape some
local optima. However, this mechanism may not be sufficient to escape deep
local optima due to the quality limit fixed by the threshold. To establish a
more global form of diversification, and thereby reinforce the capacity of the
algorithm to explore unexplored areas in the search space, we introduce a
dedicated perturbation strategy (based on object density) which is triggered
when the search is stagnating (i.e., when the best local optimum has not been
improved for W consecutive Exploration-Improvement phases).

Recall that the density of an object is defined as its contribution divided
by its weight (see Section 2.3). Intuitively, high density objects are preferred
to be included in the solution since their contributions are high while their
weights are relatively low. The general idea of our perturbation strategy is to
force a set of objects with the least densities to change their status (which
means to drop them, to reallocate them or to exchange them against other
objects) with the perspective of including objects with higher densities. One
notices that the perturbation may be strong in the sense that the deterioration
of the current solution after perturbation is not controlled.

Specifically, we first sort all the allocated objects according to the ascending
order of their densities D(s,i,k) (i € H,k € M) and then force the first
PL objects to change their status. PL is called perturbation strength and is
calculated by:

PL=px|H| (13)

where p (a parameter) is the perturbation strength coefficient and |H| repre-
sents the number of allocated objects in s. Precisely, for each of the PL objects,
we examine the union of the three neighborhoods Np U CNir U CNg relative
to this object and select the best neighboring solutions to replace the current
solution. This transition may lead to an improving or deteriorating solution.
The status of the displaced objects are prohibited to be changed again during
the perturbation phase. The rationale of using the combined neighborhood is
that there is no absolute dominance of one neighborhood over another when
the best-improvement strategy is used for solution transitions. Though DROP
moves always decrease the objective value, it could generate the most prof-
itable move when no improving move exists for the other two neighborhoods.
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Table 1 Parameter settings of the IRTS algorithm

Parameters Description Value Section
diversification strength 30 2.6

P perturbation strength coefficient 0.1 2.7

w max number of consecutive non-improving 20 2.8

Exploration-Improvement phases

3 Computational Experiments

In this section, we carry out extensive experiments on a set of 60 well-known
QMKP benchmark instances, in order to evaluate the performance of the pro-
posed algorithm. These instances are characterized by their number of objects
n € {100,200}, density d € {0.25,0.75} (i.e. number of non-zero coefficients of
the objective function divided by n(n + 1)/2), and the number of knapsacks
m € {3,5,10}. For each instance, the capacities of the knapsacks are set to
80% of the sum of object weights divided by the number of knapsacks. These
instances are built from the quadratic knapsack instances introduced in [1]
which can be download from: http://cedric.cnam.fr/ soutif/ QKP/QKP.html.

Our IRTS algorithm is coded in C++! and compiled using GNU g++ on an
Intel Xeon E5440 processor (2.83GHz and 2GB RAM) with -O3 flag. When
solving the DIMACS machine benchmarks? without compiler optimization
flag, the run time on our machine is 0.44, 2.63 and 9.85 seconds respectively
for graphs r300.5, r400.5 and r500.5. All computational results were obtained
with the parameter values shown in Table 1 which are identified with the
analysis of Section 3.1. The exact experimental conditions are provided in the
corresponding sections below when we present the computational results and
comparisons.

For our experimental studies, we apply a number of statistical tests in-
cluding Friedman test, Post-hoc test and Wilcoxon signed-rank test [3]. The
Friedman test is a non-parametric statistical test which aims to detect statisti-
cal differences in treatments across multiple test attempts. When a difference
is detected by this test, a Post-hoc test can be additionally applied to de-
cide which groups are significantly different from each other. Contrary to the
Friedman test, the Wilcoxon signed-rank test is a paired difference test which
is useful to compare two related samples, matched samples or repeated mea-
surements on a single sample.

3.1 Analysis of IRTS parameters

IRTS requires three parameters: L (exploration strength), W (the number
of consecutive non-improving attractors) and p (perturbation strength coeffi-
cient). In this section, we show a statistical analysis of these parameters. We

L Our best results are available at http://www.info.univ-angers.fr/pub/hao/qmkp.
html. The source code of the IRTS algorithm will also be available.

2 dfmax: ftp://dimacs.rutgers.edu/pub/dsj/clique/
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Table 2 Post-hoc test for solution sets obtained by varying p

p = 0.05 0.1 0.15 0.2
0.1 0.8853

0.15 0.9364 0.4276

0.2 0.0128 0.0004 0.1152

0.25 0.2497 0.0009 0.1833 0.9996

Table 3 Statistical results of varying p. T'ot. indicates the sum of average objective values
over 60 instances. # Bests denotes the number of best solutions found by each parameter
setting. The best result of each row is indicated in bold.

p= 0.05 0.1 0.15 0.2 0.25
Tot. 5018320 5018630 5018220 5017340 5017090
#Bests 36 52 49 40 44

test for each IRTS parameter a set of potential values with the other parame-
ters fixed to their default values from Table 1. We run our algorithms 10 times
on each instance with a time limit of 5 seconds for small instances (n = 100)
and 30 seconds for large instances (n = 200). These stopping criteria are also
used in [11]. The average solution values over the 10 runs are considered for
each instance and the corresponding parameter. Specifically, we test L in the
range [10,50] with a step size of 10, W in the range [5,25] with a step size of
5, and p in the range [0.05,0.25] with a step size of 0.05.

We applied the Friedman test to check whether the performance of IRTS
varies significantly in terms of its average solution values when changing the
value of a single parameter. The Friedman test finds no significant difference
with a p-value of 0.6856 and 0.8306 respectively when L and W vary in their
given range, which means that the IRTS algorithm is not sensitive to these two
parameters. On the contrary, a statistical difference is observed when p varies
in the given range with a p-value of 0.0003461 which indicates that this is a
sensitive parameter. Therefore, a Post-hoc test is performed to examine the
statistical difference between each pair of parameter settings and the results
are displayed in Table 2. From Table 2, we can see that there are three pairs
of parameter settings presenting significant difference (with p-value < 0.05)
where two of them are related to p = 0.1 (i.e. (0.1,0.2) and (0.1,0.25)). Table 3
shows that p = 0.1 produces the best average objective values and the highest
number of best solutions.

According to this analysis, we adopt p = 0.1, L = 30, W = 20 as the default
setting of the IRTS algorithm.

3.2 Computational results of the IRTS algorithm

In this section, we report the results obtained by our IRT'S algorithm on the set
of 60 instances under two different stopping criteria. The first stop criterion
is a short time limit where for each run 5 and 30 seconds are allowed for
instances with 100 and 200 objects, respectively. This stop criterion is similar
to the truncating time limit used in [10,11,23]. The second criterion is a long
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time limit where we use a cutoff time of 15 and 90 seconds for instances with
100 and 200 objects, respectively. By using the second stopping criterion, we
investigate the behavior of our IRTS algorithm when more time is available.
For both criteria and for each instance, our algorithm is executed 40 times.
Hereafter, we use IRTS_Short and IRTS_Long to denote respectively IRTS
running with the short and long time limit.

Table 4 shows the results of our IRTS algorithm. Columns 1 to 5 give the
characteristics of the instances, including the number of objects (n), density
(d), number of knapsacks (m), instance identity number (I) and capacity of
each knapsack (C). Column 6 (fpx) lists the best known results which are
compiled from results reported in [10,11,23]. Columns 7 to 16 show our own
results obtained under both short time limit and long time limit: the overall
best objective value (fpest), the average of the 40 best objective values (foug),
the standard deviation of the 40 best objective values (sd), the number of
times for reaching the fyes: (hit) and the earliest CPU time in seconds over
the runs when the fyes value is reached (CPU).

From Table 4, we observe that for all these 60 instances, our IRTS algo-
rithm can reach or improve the best known results within the short time limit.
Moreover, for 40 out of 60 cases, even our average results (fs.4) are better or
equal to the best known results. Finally, IRTS_Short has a perfect successful
rate (hit = 40/40) for 6 out of 60 instances, meaning that one run suffices for
IRTS to attain its best solution for these cases.

When a long time limit is available, our IRTS algorithm reaches a still
better performance. In particular, IRTS Long finds 17 improved best lower
bounds with respect to IRT'S_Short (starred in Table 4). The average solution
values of IRTS_Long are also better than those of IRTS_Short for 52 cases
out of 60 (86.7%). Moreover, IRTS_Long decreases the average value of the
standard deviations (sd) from 68.17 (of IRTS_Short) to 49.87, and increases
the average number of hit from 13.8 (of IRT'S_Short) to 18.53.

Additionally, we apply two statistical tests to compare both the best results
and the average results of IRTS_Short, IRTS_Long as well as the best known
results. The first test is the non-parametric Friedman test performed on the
best results obtained by IRTS_Short, IRTS_Long and the best known results
(BKR). The resulting p-value is 1.44e-15 which clearly indicates a significant
difference. The post-hoc test results shown in Table 5 reveal that the differences
lie in the pair of IRT'S_Short and BKR, and the pair of IRTS_Long and BKR.
Though a p-value of 0.0946 does not disclose a significant statistical difference
for the pair of IRTS_Short and IRTS_Long when testing their best results, a
Wilcoxon test performed on the average results (see Table 6) clearly shows
the average results of IRTS_Long are better than those of IRTS_Short for a
majority of cases. Indeed, the resulting p-value is 3.60e-10, and the sum of
the positive ranks are significantly larger than that of the negative ranks. To
provide more statistical information, we also list in Table 6 the minimum value,
the first quartile, the median, the mean, the third quartile and the maximum
value. We can observe that all these values of IRTS_Long are larger than or
equal to those of IRT'S_Short which confirms the dominance of IRT'S_Long.
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Table 4 Performance of IRTS on the 60 benchmark instances with short time condition (5
seconds per run for instances with 100 objects and 30 seconds per run for instances with
200 objects) and long time condition (15 seconds per run for instances with 100 objects and
90 seconds per run for instances with 200 objects). A value with an asterisk indicates an
improved lower bound obtained by IRT'S_Long over IRT'S_Short.

Instance Jok TRTS_Short TRTS_Long

n d m [ C Joest Jav sd hit CPU(S)  frest Fau sd hit_ CPU(s)
100 25 3 2 738 28491 28491 28491.00 0.00 40  0.02 28491 28491.00 0.00 40 0.02
100 25 3 3 663 27179 27179 2717540  9.00 33 0.21 27179 27179.00 0.00 40 0.21
100 25 3 4 804 28593 28593  28593.00 0.00 40  0.09 28593  28593.00 0.00 40 0.09

00 25 3 5 723 27892 27892 27889.42 11.64 38 0.06 27892 27892.00 0.00 40 0.06
100 25 5 1 413 22509 22581 22489.50 39.47 3 0.27 22581  22530.68 36.22 10 0.28
100 25 5 2 442 21678 21678 21643.75 28.70 3 1.68 21704 21667.00 10.71 1  9.78
100 25 5 3 398 21188 21239 21210.80 34.97 23  0.33 21239 21235.95 13.73 38 0.26
100 25 5 4 482 22181 22181 22178.50 12.61 31 0.26 22181 22180.90 0.44 38 0.28
100 25 5 5 434 21669 21669 21625.40 35.15 6 1.06 21669 21656.42 18.53 23 1.05
100 25 10 1 206 16118 16221 16180.00 27.01 1 3.11 16221 16200.53 13.43 4 3.25
100 25 10 2 221 15525 15700 15618.82 54.86 8 0.43 15700 15665.65 42.73 22 0.44
100 25 10 3 199 14773 14927 14820.95 33.62 1 4.97 14927 14852.00 27.88 4.91
100 25 10 4 241 16181 16181 16178.30 8.05 33  0.08 16181 16181.00 0.00 40 0.08
100 25 10 5 217 15150 15326 15249.35 43.35 8 0.08 15326 15293.00 38.61 22 0.08
200 25 3 1 1381 101100 101445 101414.00 32.94 1 13.77 101471*101441.00 8.37 1  65.08
200 25 3 2 1246 107958 107958 107958.00 0.78 39 0.18 107958 107958.00 0.00 40 0.18
200 25 3 3 1335 104538 104575 104544.00 11.49 1 21.80 104589* 104559.00 16.72 5  55.50
200 25 3 4 1413 99559 100098 100098.00 0.00 40 0.98 100098 100098.00 0.00 40 1.33
200 25 3 5 1358 102049 102311 102307.00 3.36 13 293 102311 102310.00 2.14 27 2.81
200 25 5 1 828 74922 75596  75511.48 36.90 1 4.84 75623% 75554.10 32.47 4 33.45
200 25 5 2 747 79506 80033 79955.42 65.74 13  4.17 80033  80023.40 21.88 33 4.14
200 25 5 3 801 77700 78043 78005.90 40.60 21  5.03 78043 78028.95 28.46 32 5.02
200 25 5 4 848 73327 74111 74011.22 59.60 2 22.20 74140" 74061.29 40.70 1  57.02
200 25 5 5 815 76022 76610 76544.85 59.83 12 1.83 76610 76597.62 20.69 29 1.41
200 25 10 1 414 51413 52259 52032.70 122.34 2 20.84 52293" 52158.50 76.56 1 7291
200 25 10 2 373 54116 54746 54582.20 87.53 1 18.72 54830" 54666.25 57.24 1  39.00
200 25 10 3 400 52841 53646 53535.57 73.44 1 8.80 53661" 53588.28 40.10 1 65.28
200 25 10 4 424 50221 51176 50951.64 85.59 1 10.88 51297 51078.20 69.96 1 56.17
200 25 10 5 407 52651 53616 53482.40 55.98 1 26.42 53621* 53532.24 41.60 1 33.13
100 75 3 1 669 69977 69977 69975.90 6.56. 39 0.14 69977 69977.00 0.00 40 0.14
100 75 3 2 714 69504 69504 69491.45 14.85 23 0.01 69504 69499.60 10.36 34 0.01
100 75 3 3 686 68832 68832 68831.50 3.28 39 0.12 68832 68832.00 0.00 40 0.12
100 75 3 4 666 70028 70028 70028.00 0.00 40 0.01 70028 70028.00 0.00 40 0.01
100 75 3 5 668 69692 69692 69687.50 12.16 35 0.01 69692 69692.00 0.00 40 0.01
100 75 5 1 401 49363 49421 49327.80 78.65 7 0.06 49421  49365.98 61.80 9 0.06
100 75 5 2 428 49316 49365 49340.80 11.30 4 0.15 49365 49350.60 10.70 13 0.16
100 75 5 3 411 48495 48495 48495.00  0.00 40  0.02 48495  48495.00 0.00 40 0.03
100 75 5 4 400 50246 50246 49934.50 144.30 7 0.80 50246 50141.50 169.68 29 0.80
100 75 5 5 400 48752 48753 48732.80 24.69 10 0.74 48753  48749.10  9.91 23 0.75
100 75 10 1 200 29931 30290 30159.38 101.14 6 0.91 30296" 30240.20 68.34 1  5.69
100 75 10 2 214 30980 31101 31030.35 42.35 2 3.84 31207 31095.80  50.10 5.84
100 75 10 3 205 29730 29908 29868.53 37.36 7 0.20 29908 29894.75 19.21 20 0.19
100 75 10 4 200 31663 31762 31671.34 44.95 5 1.13 31762 31706.50 42.98 13 1.08
100 75 10 5 200 30229 30507 30408.50 76.99 3 4.27 30507 30458.50 26.71 6  4.38
200 75 3 1 1311 270718 270718 270627.00 156.93 19  2.40 270718 270685.00 81.17 29 2.38
200 75 3 2 1414 257090 257288 257232.00 111.85 22  1.59 257288 257273.00 58.87 33 1.58
200 75 3 3 1342 270069 270069 269887.00 212.10 16  0.95 270069 269926.00 189.44 21 0.96
200 75 3 4 1565 246882 246993 246651.00 389.98 6 7.48 246993 246877.00 161.74 15 7.52
200 75 3 5 1336 279598 279598 279570.00 66.56 31  1.59 279598 279570.00 66.56 31 1.59
200 75 5 1 786 184909 185353 184854.00 235.13 1 29.05 185493* 184904.00 251.61 1  36.05
200 75 5 2 848 174682 174836 174649.00 90.26 1 5.14 174836 174688.00 80.04 1  5.21
200 75 5 3 805 186526 186753 186591.00 100.00 1 16.26 186774 186674.00 81.19 1  52.13
200 75 5 4 939 166584 166990 166619.00 199.02 1 9.35 166990 166747.00 126.66 1  9.54
200 75 5 5 801 193084 193310 193180.00 116.40 1 29.56 193310 193217.00 111.03 6 28.95
200 75 10 1 393 112354 113103 112652.00 153.91 1 16.65 113139*112809.00 169.70 1  60.75
200 75 10 2 424 105151 105807 105393.00 185.17 1 8.79 105807 105437.00 161.37 1 8.75
200 75 10 3 402 113869 114567 114280.00 121.61 1 4.80 114596 114367.00 96.64 1 84.14
200 75 10 4 469 98252 99075 98756.40 143.42 1 28.25 99106" 98851.55 103.44 1  74.50
200 75 10 5 400 116513 117309 116809.00 135.07 1 16.34 117309 116947.00 123.62 1 16.28
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Table 5 Post-hoc test for best objective values of IRT'S computational results along with
best known results

BKR IRTS_Short
IRTS_Short 4.75e-10
IRTS_Long 0.00 9.46e-02

Table 6 Statistical data and Wilcoxon test of IRTS computational results between
IRTS_Long and IRTS_Short. The best result of each column is indicated in bold.

Min. Ist Median  Mean 3rd Max. R+ R- p-value Diff?
Qu. Qu.
IRTS_Short 14820 29720 61710 83640 104800 279600
IRTS_Long 14850 29740 61750 83680 104800 279600 1378 0 3.60e-10 Yes

3.3 Comparative results with a truncating time limit per instance

In order to further evaluate our IRTS algorithm, we compare it with three
recent QMKP algorithms in the literature.

- An artificial bee colony algorithm (SS-ABC) [23]. The tests were performed
on a Linux based 3.0 GHz Core 2 duo system with 2 GB RAM. According
to SPEC - Standard Performance Evaluation Corporation (www.spec.org),
our computer is slightly faster than the reference machine of [23] with a
factor of 1.05. The authors set 300 generations for SS-ABC and run it 40
times for each instance.

- A tabu-enhanced iterated greedy algorithm (TIG-QMKP) [11]. The eval-
uations were performed on a computer with a 2.8GHz Intel Core i7-930
processor with 12 GB RAM. Solving the DIMACS machine benchmarks on
this computer requires 0.40, 2.40 and 9.06 seconds respectively for graphs
r300.5, r400.5 and r500.5% without compilation optimization flag. Com-
pared to the results achieved by our machine (see Section 3), this computer
is faster than ours with a factor of around 1.1. The authors reported the
results obtained by running their algorithms 40 times for each instance and
truncating each run at the mean time indicated in [23] for each instance.

- A strategic oscillation algorithm (SO-QMKP) [10]. The same machine and
testing protocols as those of TIG-QMKP [11] are used.

To perform a fair comparison, we run our algorithms 40 times on each
of the 60 instances and stop each run at the indicated time which was first
reported in [23] and adopted in [10,11] for comparisons. Table 7 summarizes
the results of the IRTS algorithm along with those reported by the three
reference algorithms. We list in the table the characteristics of the instances
including the truncating time for each instance (column T'ime), the previous
best known results (fy;) and for each algorithm, the overall best objective
value (frest) and the average of the 40 best objective values (fqug)-

From Table 7, one observes that our IRTS algorithm always attains the best
known results or finds improved results for all 60 instances. Specifically, IRTS

3 We thank the authors of [11] for providing us with these values.
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Table 7 Comparative results of IRT'S with respect to SS-ABC, TIG-QMKP and SO-QMKP.
The truncating time for each instance was first reported by SS-ABC and then used for TIG-
QMKP and SO-QMKP. 'The best results of the four compared algorithms are indicated in
bold.

Instance Tok SS-ABC [23] TIG-QMKP [11] SO-QMKP [11] IRTS
n d K T Time Joest Jav best Joest Jav Joest fav

. . . 59.25 .
100 25 3 2 3.69 28491 28443  28004.00 28473 28224.35 28491  28467.00 28491 28491.00
100 25 3 3  2.87 27179 26901  26585.33 27013 26905.40 27179  27155.35 27179  27159.15
100 25 3 4 3.74 28593 28568  28109.03 28593  28573.60 28593  28570.40 28593 28591.72
100 25 3 5 3.57 27892 27849 27073.67 27892  27721.68 27892  27811.53 27892  27880.60
100 25 5 1 2.70 22509 22390 22117.12 22264 22126.00 22509 22337.43 22581 22463.43
100 25 5 2 2.93 21678 21584  21224.03 21580 21430.38 21678  21540.35 21678 21614.00
100 25 5 3 240 21188 21093 20771.12 21100 21015.03 21188 21104.75 21239 21170.90
100 25 5 4  3.26 22181 22178  21767.50 22180 22043.00 22181  22136.00 22181 22168.95
100 25 5 5 3.18 21669 21301 20875.47 21669  21397.58 21669  21462.88 21669 21606.80
100 25 10 1 1.42 16118 15953 15573.65 16118 15863.00 16065 15886.58 16213 16144.13
100 25 10 2 1.84 15525 15487  14896.35 15525 15398.43 15510 15359.95 15700 15544.30
100 25 10 3 1.58 14773 14339  14027.83 14773 14554.00 14663 14568.38 14860 14757.24
100 25 10 4  2.10 16181 15807 15397.00 16181 16089.95 16159 16013.00 16181 16160.00
100 25 10 5 1.82 15150 14719 14376.80 15150 15023.45 15130 15021.33 15326 15187.25
200 25 3 1 23.99 101100 100662 100103.02 100218  100056.23 101100 100653.50 101445 101410.00
200 25 3 2 18.61 107958 107958 107545.20 107787  107644.98 107805 107607.15 107958 107957.00
200 25 3 3 29.85 104538 104521 104006 98 104479  104251.50 104538  104271.68 104575 104544.00
200 25 3 4 38.93 99559 98791  98344.32 98896 98557.40 99559 99003.63 100098 100098.00
200 25 3 5 29.22 102049 102049 101406.48 101973 101635.43 102041 101667.73 102311 102307.00
200 25 5 1 19.88 74922 74922  T74132.95 74239 73977.78 74559 74237.40 75596  75491.48
200 25 5 2 16.75 79506 79506  79073.32 79480 79234.28 79400 79153.55 80033 79914.90
200 25 5 3 22.86 77700 77607 77069.52 77700 77420.50 77632 77452.25 78043 77992.93
200 25 5 4 28.07 73327 73181  72607.25 73173 72477.65 73327 72884.03 74111 73999.22
200 25 5 5 20.74 76022 76022  75455.98 75884 75693.18 75996 75751.38 76610 76532.10
200 25 10 1 10.37 51413 49883  49079.47 51413 50845.78 51323 50862.70 52115 51862.20
200 25 10 2 8.48 54116 53298  51831.55 54116 53608.45 53975 53649.03 54716  54454.75
200 25 10 3 11.15 52841 52281 51324.28 52735 52456.28 52841 52337.73 53646 53401.80
200 25 10 4 12.83 50221 49210 48190.60 50221 49656.40 50190 49802.43 51176  50832.48
200 25 10 5 10.99 52651 51921 51437.97 52651 52328.38 52470 52211.58 53568 53406.60
100 75 3 1 2.07 69977 69721  69373.00 69977  69936.05 69935 69925.73 69977  69970.13
100 75 3 2 1.86 69504 69462 69041.00 69504  69442.78 69504  69442.48 69504 69465.50
100 75 3 3 1.86 68832 68635 67960.05 68811 68811.00 68832  68812.58 68832 68823.00
100 75 3 4 1.88 70028 69986 69687.68 70028 70019.88 70028  70028.00 70028 70028.00
100 75 3 5 2.12 69692 69679 69136.40 69692  69638.48 69653 69640.53 69692 69674.60
100 75 5 1 2.07 49363 4922 48937.47 49345 49218.10 49363 49197.53 49421  49310.80
100 75 5 2 1.96 49316 49313  48908.05 49316 49081.53 49305 49137.38 49365 49311.80
100 75 5 3 1.71 48495 48472  47874.50 48495  48327.48 48495  48287.88 48495  48479.60
100 75 5 4 1.83 50246 50199 50017.93 49866 49866.00 50246 50025.03 50246  49935.17
100 75 5 5 2.01 48752 48710 48409.75 48752 48619.60 48752 48653.18 48753  48689.20
100 75 10 1 1.22 29931 29875 29429.20 29877 29548.68 29931 29788.48 30290 30023.00
100 75 10 2 1.45 30980 30939 30697.80 30980 30832.15 30973 30829.05 31079  30909.93
100 75 10 3 1.30 29730 29465 28983.78 29695 29439.95 29730 29519.48 29908 29794.85
100 75 10 4 1.40 31663 31663 31218.85 31550 31333.45 31587 31392.48 31682 31576.68
100 75 10 5 1.42 30229 30219 29736.47 30096 29895.40 30229 29918.70 30465 30211.50
200 75 3 1 14.11 270718 269736 267117.92 270718 270525.90 270718 270617.48 270718 270518.00
200 75 3 2 16.27 257090 256195 253916.75 257090  256764.98 257026  256852.30 257288 257117.00
200 75 3 3 11.87 270069 268890 267079.03 270069 269974.03 270069 269955.03 270069 269796.00
200 75 3 4 30.64 246882 246205 244618.40 246704  246356.53 246882  246473.13 246993 246658.00
200 75 3 5 10.46 279598 279490 276605.00 279598 279572.30 279598 279562.43 279598 279548.00
200 75 5 1 1234 184909 184448 183046.65 184909  184500.80 184822  184529.00 185221 184801.00
200 75 5 2 1234 174682 173575 171738.85 174682  174239.48 174682  174267.00 174836 174499.00
200 75 5 3 12.10 186526 185107 185059.52 186443 186170.68 186526  186216.75 186678 186510.00
200 75 5 4 27.03 166584 165273 164042.20 166358 166159.55 166584 166165.38 166990 166602.00
200 75 5 5 14.06 193084 192764 190474.27 193084  192712.25 193053  192702.25 193253 193133.00
200 75 10 1 7.64 112354 111000 109624.73 112262 111889.75 112354 112043.68 112834 112443.00
200 75 10 2 9.96 105151 103540 102603.18 105092  104669.83 105151  104781.50 105807 105241.00
200 75 10 3  8.04 113869 112509 111388.20 113868  113510.55 113869 113563.08 114567 114084.00
200 75 10 gl 14.81 98252 96859  95681.70 98252 97807.73 98028 97747.55 99006  98664.60

8.21 116513 115125 113909.60 116513 115856.30 116298 115807.53 117092 116649.00




20 Y. Chen and J.K. Hao

Table 8 Wilcoxon test for results obtained with truncating time limit

Algorithm Pair Best Results Average Results
R+ R- p-value Diff? R+ R- p-value Diff?
IRTS vs 1770 0 2.45e-11 Yes 1829 1 1.76e-11 Yes
SS-ABC
IRTS vs 1176 0 1.68e-09 Yes 1803 27 6.43e-11 Yes
TIG-QMKP
IRTS vs 1035 0 5.36e-09 Yes 1714 56 4.01e-10 Yes
SO-QMKP
IRTS vs BKR 861 0 2.52e-08 Yes - - - -

improves the best known result for 41 out of 60 instances (68.3%) and reaches
the previous best known solutions for the remaining 19 instances. Recall that
the best known results (column fp;) are the best objective values extracted
from the columns fpeq; of the three reference algorithms. One can confirm that
our IRTS algorithm competes very favorably with these reference algorithms
in terms of the best solution found. Considering the average results, our IRTS
algorithm are able to attain significantly better f,,, values compared to the
reference algorithms. Compared to SS-ABC, IRTS holds better average results
for all the instances except one case (100-75-5-4). Compared to TIG-QMKP,
IRTS obtains better average results for 57 out of 60 instances. Compared to
SO-QMKP, IRTS attains 55 better average results, 1 equal average result and
3 worse average results.

In order to assess the validity of our conclusion, we apply the Wilcoxon test
with a significance factor of 0.05 for pairwise comparison between our IRTS
algorithm and the three reference algorithms as well as the best known results.
Table 8 summarizes the results where the left part of the table is dedicated
to the statistical data with the best results as input, and the right part of the
table provides the statistical data with the average results as input. From Table
8, we can observe that a statistical difference is detected for each compared
case with p—wvalue < 0.05. The dominance of our IRTS algorithm is confirmed
by the fact that the sum of the positive ranks are significantly larger than the
sum of the negative ones which corresponds to our observations on Table 7.

3.4 Comparative results with a long time limit

Given the fact that our IRTS algorithm can achieve significantly improved
results when more time is available (see Section 4), this section is dedicated
to a comparison of our IRTS algorithm with two best performing reference
algorithms (TIG-QMKP [11] and SO-QMKP [10]) by extending the time limit
to 15 seconds for instances with 100 objects and 90 seconds for those with
200 objects. For this experiment, we run the source codes of TIG-QMKP and
SO-QMKP provided by the authors of [11,10] on our computing environment
under exactly the same condition. Additionally, we include the state-of-the-art
integer programming solver CPLEX 12.4 as another reference method based
on the 0-1 quadratic model of the QMKP given by (Eq. 1-3). For CPLEX, each
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instance is solved once with a time limit of 1 hour which corresponds to the
accumulated time limit of 40 runs used by IRTS, TIG-QMKP and SO-QMKP.

Table 9 shows the results of CPLEX, our IRTS algorithms together with
the two reference algorithms TIG-QMKP and SO-QMKP. For CPLEX, we
report the lower bound (LB), the upper bound (UB) and the gap (GAP).
The gap is computed by using the formula: (UB-LB)/LB x 100. For the
heuristic algorithms, the overall best objective value (fyest) and the average
of the 40 best objective values (fqvy) are listed.

From Table 9, we can see that none of the 60 instances is solved to opti-
mality by CPLEX 12.4 with the given time limit. Across the whole instance
set, CPLEX always finds lower bounds worse than the previous best known
results which were obtained within a computing time of 38.93 seconds (see the
column Time of Table 7). The resulting p-value of 1.67e-11 of the Wilcoxon
test additionally demonstrates their statistical difference (see Table 10). For all
60 instances, CPLEX produces a large positive gap from 87.94% to 654.55%.
Typically, this gap increases when the problem size enlarges, when the number
of knapsacks increases or when the density grows. Compared to the current
best performing QMKP heuristic algorithms, CPLEX is easily dominated (see
the box and whisker plot displayed in Figure 1). We mention that we also
tested CPLEX 12.4 without any time limit. Even under this condition, no
optimal solution was found even for the smallest instance. From these obser-
vation, it seems that it is impractical to use CPLEX to solve these QMKP
benchmarks with the basic quadratic model. More studies are needed to check
whether CPLEX can achieve better results with alternative models. However,
such a topic is clearly beyond the scope of this paper.

When we compare our IRTS algorithm with the two reference heuristic
algorithms, we can observe that IRTS attains a better result for 41 instances
and an equal result for the remaining 19 instances when comparing with TIG-
QMKP. With respect to SO-QMKP, IRTS performs better for 43 instances
and finds an equal result for the remaining instances. In terms of the average
results, our IRTS algorithm has a better, equal and worse performance in 53,
2 and 5 cases, respectively, in comparison with TIG-QMKP. When comparing
with SO-QMKP, the number of better, equal and worse average results be-
comes 58, 1 and 1, respectively. In Table 11, we report six summary statistics
of the three compared algorithms and their Wilcoxon test outcomes performed
on the average results. This test discloses a significant performance difference
between IRTS_Long and each of the two reference algorithms and the six sum-
mary statistic values of IRT'S_Long are entirely better than those of TIG_Long
and SO_Long. This experiment demonstrates that our IRTS algorithm outper-
forms the two reference algorithms under the long time limit.

3.5 Comparison with a memetic algorithm

In this section, we compare our IRTS algorithm with a memetic algorithm
(ALA-EA) presented in [22]. Since the source code of ALA-EA and the so-
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Table 9 Comparative results of IRTS with TIG-QMKP, SO-QMKP and CPLEX 12.4 with
a long time limit (15 seconds per run for instances with 100 objects and 90 seconds per run
for instances with 200 objects for IRTS, TIG-QMKP and SO-QMKP, one hour for CPLEX
14.2). The best results of the three compared algorithms as well as CPLEX are indicated in

bold.
Instance Tok CPLEX TIG-QMKP [11] SO-QMKP [10] IRTS

n K T L U %) Best Avg Best Avg Best Avg
100 25 3 2 28491 28169 52942.22 87.94 28491 28470.70 28491 28488.32 28491 28491.00
100 25 3 3 27179 26492 51010.72  92.55 27095 27015.90 27179 27175.20 27179 27179.00
100 25 3 4 28593 27793 53382.60 92.07 28593  28593.00 28593  28580.75 28593  28593.00
100 25 3 5 27892 27058 53083.61 96.18 27892  27885.33 27892  27821.98 27892  27892.00
100 25 5 1 22509 21194 55784.57 163.21 22413 22273.98 22509 22403.50 22581 22530.68
100 25 5 2 21678 20725 54647.80 163.68 21678 21648.00 21678 21622.43 21704 21667.00
100 25 5 3 21188 19674 52614.27 167.43 21181 21099.30 21188 21153.00 21239 21235.95
100 25 5 4 22181 20644 55098.88  166.90 22181  22180.42 22181  22164.32 22181 22180.90
100 25 5 5 21669 20054 54887.58 173.70 21669 21663.85 21669  21567.00 21669  21656.42
100 25 10 1 16118 14804 57710.44  289.83 16157 16057.60 16162 15996.83 16221  16200.53
100 25 10 2 15525 14191 56294.00 296.69 15700  15557.68 15617 15446.40 15700 15665.65
100 25 10 3 14773 13560 54274.15  300.25 14832 14736.23 14760 14648.43 14927 14852.00
100 25 10 4 16181 14630 56871.67 288.73 16181  16168.50 16159 16082.68 16181  16181.00
100 25 10 5 15150 14142 56609.11  300.29 15289 15189.45 15196 15094.89 15326  15293.00
200 25 3 1 101100 94992  222051.26 133.76 100372 100207.00 101218  100776.00 101471 101441.00
200 25 3 2 107958 105978 222937.93 110.36 107927  107814.00 107958 107663.00 107958 107958.00
200 25 3 3 104538 98214  219794.08 123.79 104532  104445.00 104538  104365.00 104589 104559.00
200 25 3 4 99559 93693 219675.07 134.46 99000 98836.80 99559 99170.50 100098 100098.00
200 25 3 5 102049 94818 217794.90 129.70 101999  101877.00 102084 101792.00 102311 102310.00
200 25 5 1 74922 67464 226198.30 235.29 74682 74361.52 74665 74389.82 75623 75554.10
200 25 5 2 79506 71876  226791.30 215.53 79604 79459.33 79473 79244.40 80033 80023.40
200 25 5 3 77700 70259  223882.05 218.65 77795 77720.58 77695 77570.82 78043  78028.95
200 25 5 4 73327 65940 223859.76 239.49 73189 72984.40 73405 73005.00 74140 74061.29
200 25 5 5 76022 69523 222056.15 219.40 76137 75905.14 76037 75829.90 76610 76597.62
200 25 10 1 51413 43054 230387.32 435.11 51592 51298.40 51389 51043.93 52293 52158.50
200 25 10 2 54116 45774 231059.61 404.78 54290 54077.30 54102 53831.20 54830 54666.25
200 25 10 3 52841 44187 227911.74 415.79 52985 52791.49 52841 52483.48 53661 53588.28
200 25 10 4 50221 41608 228108.72 448.23 50577 50282.50 50371 50002.82 51297 51078.20
200 25 10 5 52651 43847 226045.81 415.53 53337 52856.38 52596 52395.10 53621 53532.24
100 75 3 1 69977 69010 157543.51 128.29 69935 69935.00 69935 69935.00 69977  69977.00
100 75 3 2 69504 68157 158390.17 132.39 69504 69504.00 69504 69497.40 69504 69499.60
100 75 3 3 68832 67681 157395.07 132.55 68832  68816.20 68832  68813.00 68832 68832.00
100 75 3 4 70028 69717 154667.08 121.85 70028  70028.00 70028 70028.00 70028 70028.00
100 75 3 5 69692 68638 160393.28 133.68 69692  69681.30 9692  69652.22 69692 69692.00
100 75 5 1 49363 48270 161306.19 234.17 49421  49295.60 49363 49238.83 49421  49365.98
100 75 5 2 49316 48643 162654.44 234.38 49360 49266.80 49320 49226.60 49365 49350.60
100 75 5 3 48495 44474  161403.85 262.92 48495  48474.20 48495  48360.85 48495  48495.00
100 75 5 4 50246 48756  159342.88 226.82 50246  49966.60 50246  50124.20 50246 50141.50
100 75 5 5 48752 47286 164701.44 248.31 48752 48735.20 48752 48718.38 48753  48749.10
100 75 10 1 29931 28124 165782.37 489.47 30138 29900.84 30018 29897.80 30296  30240.20
100 75 10 2 30980 29436  167227.44 468.11 31092 30969.15 30973 30914.00 31207 31095.80
100 75 10 3 29730 27340 165637.23 505.84 29812 29662.00 29765 29638.80 29908 29894.75
100 75 10 4 31663 27916  163759.49 486.62 31672 31491.82 31634 31481.30 31762 31706.50
100 75 10 5 30229 27003 168992.47 525.83 30188 30046.10 30348 30055.42 30507 30458.50
200 75 3 1 270718 258740 644499.87 149.09 270718 270718.00 270718 270697.00 270718 270685.00
200 75 3 2 257090 248139 645348.35 160.08 257288 257099.00 257277 256931.00 257288 257273.00
200 75 3 3 270069 262806 649880.92 147.29 270069 270069.00 270069 270028.00 270069 269926.00
200 75 3 4 246882 227193 633617.30 178.89 246882  246684.00 246882  246555.00 246993 246877.00
200 75 3 5 279598 270979 655098.56 141.75 279598 279598.00 279598 279598.00 279598 279570.00
200 75 5 1 184909 164519 654784.78 298.00 184984  184774.00 184882 184641.00 185493 184904.00
200 75 5 2 174682 160577 656046.05 308.56 174776 174642.00 174682  174445.00 174836 174688.00
200 75 5 3 186526 175943 661330.18 275.88 186674  186507.00 186619  186352.00 186774 186674.00
200 75 5 4 166584 158807 643762.33 305.37 166832  166487.00 166584 166246.00 166990 166747.00
200 75 5 5 193084 173698 665834.00 283.33 193255  193002.00 193138  192836.00 193310 193217.00
200 75 10 1 112354 95514  665339.06 596.59 112591 112330.00 112457  112258.00 113139 112809.00
200 75 10 2 105151 88469 667546.03 654.55 105297  105064.00 105260  104947.00 105807 105437.00
200 75 10 3 113869 94768 672239.84 609.35 114237  113930.00 114007 113717.00 114596 114367.00
200 75 10 4 98252 88580 653941.84 638.25 98556 98219.93 98285 97885.95 99106 98851.55
200 75 10 5 116513 98288 676442.05 588.22 116725  116266.00 116298 116031.00 117309 116947.00
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Fig. 1 Box and whisker plot of the best results obtained with long time limit

Table 10 Wilcoxon test of best results obtained with long time limit

Algorithm Pair R+ R- p-value Diff?
BKR vs CPLEX 1830 0 1.67e-11 Yes
IRTS_Long vs CPLEX 1830 0 1.67e-11 Yes
IRTS_Long vs TIG_Long 861 0 2.52e-08 Yes
IRTS_Long vs SO_Long 946 0 1.16e-08 Yes

Table 11 Statistical data and Wilcoxon test of average results obtained with long time
limit. The results of the Wilcoxon test are responsible for (TIG_Long vs IRTS_Long) and
(SO_Long vs IRTS_Long). The best result of each column is indicated in bold.

Min. 1st Median  Mean 3rd Max. R+ R- p-value Dift?
Qu. Qu.
IRTS_-Long 14850 29740 61750 83680 104800 279600
TIG_Long 14740 29500 61450 83390 104600 279600 57 1654  6.48e-10 Yes
SO_Long 14650 29530 61320 83330 104500 279600 32 1738  1.24e-10 Yes

lution certificates are no longer available from the authors*, we decided to
implement their algorithm by following rigorously the description given in the
paper. By adopting exactly the same experiment protocol as used in [22], ALA-
EA is executed 30 times for each instance under two stop conditions which are
respectively a limit of 200 generations (denoted as 200) and 1000 consecutive
generations without improvement (denoted as final). Table 12 shows the com-
parative results between our IRTS algorithm (with the short time limit, see
Section 3.2) and the ALA-EA algorithm (under its two stop conditions 200
and final). For each instance, we show the best known result (column fp), the
best result of IRTS (under the short time condition, from column IRTS_Short
of Table 4) and the two best results of ALA-EA with its two stop conditions.
From this table, we observe that our IRTS algorithm (under the short time
condition) largely dominates ALA-EA. The Wilcoxon test between our best
results and those of ALA-EA leads to a p-value of 1.67e-11, confirming the
signification of the observed differences.

Even though the table does not include the computing times, we observed
that under the ’final’ condition, one run of ALA-EA consumes at least 80 and

4 This is confirmed by the authors of [22].
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Table 12 Comparative results of IRTS with a memetic algorithm

Instance Jok IRTS ALA-EA Instance Jbest RIS ALA-EA
n d K 1 200 nal n d K T “na
[s) 2]

100 25 3 2 28491 28491 25963 26023 100 75 3 2 69504 69504 68414 68414
100 25 3 3 27179 27179 25097 25097 100 75 3 3 68832 68832 66750 66750
100 25 3 4 28593 28593 25681 25681 100 75 3 4 70028 70028 69571 69571
100 25 3 5 27892 27892 24293 24293 100 75 3 5 69692 69692 69243 69243
100 25 5 1 22509 22581 21249 21262 100 75 5 1 49363 49421 48069 48069

00 25 5 2 21678 21678 19386 19394 100 75 5 2 49316 49365 48505 48505
100 25 5 3 21188 21239 18351 18351 100 75 5 3 48495 48495 47653 47653
100 25 5 4 22181 22181 19986 20027 100 75 5 4 50246 50246 48996 48996
100 25 5 5 21669 21669 18116 18216 100 75 5 5 48752 48753 48284 48284
100 25 10 1 16118 16221 13962 14007 100 75 10 1 29931 30290 28825 28873
100 25 10 2 15525 15700 13739 13739 100 75 10 2 30980 31101 30288 30288
100 25 10 3 14773 14927 12726 12832 100 75 10 3 29730 29908 28768 28816
100 25 10 4 16181 16181 13732 13870 100 75 10 4 31663 31762 30830 30830
100 25 10 5 15150 15326 12230 12269 100 75 10 5 30229 30507 29630 29651
200 25 3 1 101100 101445 95819 95819 200 75 3 1 270718 270718 265955 265955
200 25 3 2 107958 107958 105157 105196 200 75 3 2 257090 257288 250643 250643
200 25 3 3 104538 104575 101517 101517 200 75 3 3 270069 270069 268047 268094
200 25 3 4 99559 100098 95662 95680 200 75 3 4 246882 246993 245707 245707
200 25 3 5 102049 102311 97144 97144 200 75 3 5 279598 279598 276247 276247
200 25 5 1 74922 75596 68470 68502 200 75 5 1 184909 185353 180657 180771
200 25 5 2 79506 80033 74982 75080 200 75 5 2 174682 174836 167587 167641
200 25 5 3 77700 78043 73800 73887 200 75 5 3 186526 186753 184498 184498
200 25 5 4 73327 74111 68648 68872 200 75 5 4 166584 166990 163373 163413
200 25 5 5 76022 76610 72234 72234 200 75 5 5 193084 193310 187194 187194
200 25 10 1 51413 52259 45578 45578 200 75 10 1 112354 113103 107544 107662
200 25 10 2 54116 54746 49313 49322 200 75 10 2 105151 105807 101876 102016
200 25 10 3 52841 53646 48905 49058 200 75 10 3 113869 114567 110311 110346
200 25 10 4 50221 51176 44327 44404 200 75 10 4 98252 99075 95088 95088
200 25 10 5 52651 53616 48571 48748 200 75 10 5 116513 117309 114083 114116

350 seconds to solve instances with 100 and 200 objects, respectively. Even for
the 200 generations limit, ALA-EA requires more than 15 and 60 seconds for
instances with 100 and 200 objects, respectively.

4 Discussion

In this section, we turn our attention to an analysis of two ingredients of the
proposed IRTS algorithms: the neighborhoods and the perturbation strategy.

4.1 Observations on neighborhood effectiveness

As described in section 2.4, our IRT'S algorithm employs three dedicated neigh-
borhood structures which are induced by the DROP, REALLOCATE and
EXCHANGE operators. In this section, we investigate the influence of each
neighborhood over the performance of the algorithm. For this purpose, we
propose three weakened versions of IRTS such that for each IRTS variant,
we disable one particular neighborhood while keeping the other components
unchanged. For instance, IRT'S_NoReallocate is the IRTS algorithm without
the neighborhood CNg defined by REALLOCATE. Along with the standard
IRTS algorithm, four IRTS versions are tested on the whole instance set using
the short time limit of Section 3.2 (i.e., 5 seconds for instances with n = 100
and 30 seconds for instances with n = 200). Each algorithm is run 10 times
to solve each of the 60 instances. We calculate for each instance the absolute
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Fig. 2 Average solution gaps to the IRTS_Long best result

gap between the average results obtained by each algorithm variant and the
best result obtained by IRT'S_Long reported in Section 3.2. The best results of
IRTS_Long are the overall best results reported until now. The experimental
results are shown in Figure 2.

Figure 2 shows removing a neighborhood sacrifices the search power of
IRTS. Specifically, IRTS_NoReallocate achieves the worst performance with a
significant large gap between the average solution values and the best results.
Moreover, for all 60 instances, the average results of IRTS_NoReallocate are
worse than those obtained by the original IRTS algorithm. Though it is easily
dominated by the standard IRTS algorithm, IRT'S_NoExchange obtains much
better results than IRT'S_NoReallocate. Compared to IRTS_NoReallocate, IRT'S_NoExchange
decreases the gap between the average solution values and the best results for a
majority of cases. In particular, IRT'S_NoExchange is better than IRTS_NoReallocate
for 54 out of 60 instances in the average result obtained. When it comes to
IRTS_NoDrop, it is hard to see the difference between its performance and that
of IRTS from the figure because of the wide range of gap from 0 to almost
7000. Statistical data demonstrates that IRTS_NoDrop has a worse average
result for a large number of cases (45 out of 60 instances) and the average of
its 60 gap values (8477.10) is much larger than that of IRTS (7136.70) which
can be observed from Table 13.

This experiment confirms that all three neighborhoods contribute to the
performance of the IRTS algorithm. Among the three neighborhoods, the most
important one is REALLOCATE, the EXCHANGE neighborhood ranks sec-
ond, followed by the DROP neighborhood. Apart from the usefulness of each
individual neighborhood, their combined use within the IRTS algorithm con-
stitutes an important feature to ensure the performance of the algorithm.
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Table 13 Average value of the average solution gap to the best results for four IRTS
variants

Algorithm IRTS_NoDrop IRTS_NoReallocate IRTS_NoExchange IRTS
avg. 8477.1 190716.8 53537.2 7136.7
Table 14 Wilcoxon test for different perturbation strategies
Algorithm Pair Best Results Average Results
R+ R- p-value Diff? R+ R- p-value Diff?
Sort vs NoSort 365 70 1.48e-03 Yes 1254 231 1.08e-05 Yes
Sort vs Restart 292 114 4.39e-02 Yes 1047 384 3.39e-03 Yes

4.2 Influence of perturbation strategy

As shown in Section 2.8, our IRTS algorithm uses a specialized perturbation
strategy to ensure a more global diversification. The perturbation strategy
operates by sorting the objects in the knapsacks according to their densities
and forcing the first PL objects to change their status. In order to assess this
strategy, we compare it with a traditional restart strategy (denotes as Restart)
and a modified perturbation strategy where the step of sorting the objects is
eliminated (denoted as NoSort). The perturbation strategy used in IRTS is
denoted by Sort. We run the above three algorithm variants 10 times on all
60 instances using the short time limit and use the Wilcoxon test to check the
statistical difference between Sort and the other two versions both in terms of
the best results and average results (Table 14). This table discloses statistical
differences between Sort and each of the other two compared strategies for best
results as well as average results. When we examine the sum of the signed
ranks, it is clear that Sort is better than the compared variants by always
holding a higher sum of positive ranks for the two measures we used. This
experiment confirms thus the interest of the proposed perturbation strategy.

5 Conclusions

In this work, we have presented an iterated responsive threshold search algo-
rithm for solving the quadratic multiple knapsack problem. The proposed IRTS
algorithm is based on a joint use of three neighborhoods induced by three types
of move operators namely DROP,REALLOCATE and EXCHANGE. A key
innovation of our method is a special strategy for guiding a threshold process
which we call responsive thresholding. Our algorithm incorporates this strat-
egy by alternating between an exploration phase (with three neighborhoods) —
where neighboring solutions are accepted as long as their quality satisfies the
responsive threshold — and an improvement phase (with two neighborhoods)
where only improving solutions are accepted. To escape deep local optima,
IRTS integrates a guided perturbation strategy to reinforce its global diversi-
fication capacity.

We have assessed the performance of the proposed algorithm on a set of 60
well-known QMKP benchmark instances and demonstrated its effectiveness in
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comparison with the state-of-the-art methods in the literature. In particular,
the proposed algorithm has established 41 improved lower bounds which can
serve as new references for the evaluation of new QMKP algorithms. Addi-
tionally, we have provided an analysis to show the role of the employed neigh-
borhoods and investigated the impact of the dedicated perturbation strategy
over the performance of the proposed algorithm.

For future work, our responsive thresholding strategy can be integrated
with other types of thresholding procedures such as those proposed in [9].
Additional future applications of our approach can make use of other types of
neighborhoods and multi-neighborhood designs as in the frameworks of [15,
16).
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