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Abstract

The obnoxious p-median problem (OpM) is to determine a set of opened
facilities such that the sum of distances between each client and the opened fa-
cilities is maximized. OpM is a general model that has a wide range of practical
applications. However the problem is computationally challenging because it is
known to be N P-hard. In this work, we propose an effective parallel iterative
solution-based tabu search algorithm to solve OpM. The proposed algorithm
combines a delete-add compound move instead of a typical time-consuming
swap move to improve neighborhood exploration, a solution-based tabu search
procedure to strictly prevent visited solutions from being revisited, a perturba-
tion scheme similar to the shaking phase of variable neighborhood search for
search diversification, and a parallel strategy of leveraging multiple processors
of a computer. Experimental results on 144 benchmark instances demonstrate
that the proposed algorithm is able to find new lower bounds for 7 instances
and match the best known results for the other instances. Further experimental
analysis sheds light on the key ingredients to the performance of the proposed
algorithm. The code of our PISTS algorithm can be accessed on GitHub at
https://github.com/changjian-github /PISTS-for-OpM, which will facilitate fu-
ture comparative studies.
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1. Introduction

Obnoxious facility location problems belong to a set of location models in
which clients try to avoid facilities and keep away from them [I1 2] [3, 4 [5]. Typ-
ical applications include optimal locations of nuclear reactors, garbage dumps,
electric power supplier networks, water purification plants, etc [6} [7) [8, [0]. Take
the locations of quarantine sites as an example. In the epidemic situation, a
large number of quarantine sites need to be established for patient admission.
Locations of such public facilities are required to be far away from the residential
communities for the reason of potential infection. Due to its wide applications,
various models and solution approaches have been proposed in the literature
10, [T, (12 [13) [14).

In this paper, we focus on the well-known obnoxious p-median problem
(OpM), the objective of which is to determine a set of opened facilities such
that the sum of distances between each client and the opened facilities is max-
imized. The distance between a client and the opened facilities is defined as
the minimum distance between this client and each opened facility. For solving
OpM, a branch-and-cut (B&C) algorithm and several heuristic algorithms have
been proposed in the literature [4, [15, 16, 1’7, [18]. The B&C algorithm is ex-
perimentally demonstrated to work well for solving medium instances. Due to
the N P-hard nature of the problem [I9], heuristic algorithms are more widely
studied to solve large and challenging OpM instances.

Colmenar et al. [4] developed a greedy randomized adaptive search proce-
dure (GRASP), by investigating different greedy constructive and local search
procedures. The constructive procedure either randomly chooses a solution
from a candidate list constructed by a greedy strategy or chooses a solution
in a greedy way from a set of randomly constructed solutions. Based on the
first improvement strategy, the local search procedures swap elements either
randomly or based on the objective contribution. Extensive experiments show
that the proposed GRASP algorithm outperforms the B&C algorithm of [15] by
reducing the computational time geometrically.

Lin et al. [16] proposed a hybrid binary particle swarm optimization al-
gorithm (HBPSO) that combines typical particle swarm optimization (PSO)
search with greedy iterative local search. An innovative add-drop operation is
incorporated that greedily adds an element into a solution and then greedily
drops an element out of the resulting partial solution. Experimental results
disclose that new better solutions can be found within shorter computational
time compared to GRASP.

Herrédn et al. [I7] designed a parallel algorithm based on variable neighbor-
hood search (PVNS) for solving OpM. The local search procedure sequentially
adds and drops an element in a greedy way, in order to quickly obtain an ap-
proximation of the best solution in the typical swap neighborhood. Moreover,
multiple sequential VNS algorithms are simultaneously run to make full use of
the processors in the computer. Extensive experiments reveal that this PVNS
approach performs well in terms of solution quality and computational efficacy.

Mladenovié et al. [I8] developed a basic variable neighborhood search (VNS)



algorithm that consists of a random initial solution constructive procedure, a
local search procedure and a random interchange move based shaking procedure.
The local search procedure identifies the best facility to replace a given facility
rather than the best interchange among all the feasible pairs of facilities as in
the typical best improvement search strategy. Moreover, a heap data structure
is incorporated to efficiently evaluate the neighbor solutions. Although the
proposed algorithm is simple in nature, it is experimentally demonstrated to be
competitive with other existing OpM algorithms.

We observe that most heuristic algorithms proposed for solving OpM em-
ploy a basic local search procedure based on the typical swap neighborhood,
which is time-consuming to identify the best solution at each local search it-
eration. Meanwhile, as a popular and powerful method, tabu search enhances
the performance of local search techniques by prohibiting previously visited so-
lutions from being revisited [20]. In particular, the solution-based tabu list is
able to eliminate the need of tuning the tabu tenure that typically impacts the
search performance [2I]. Hence, this invites us to design the solution-based tabu
search for performing neighborhood exploration. Furthermore, an extension of
the standard tabu search strategy, known as iterated tabu search, incorporates a
diversification mechanism to overcome the difficulty of the search trajectory be-
ing confined in a “narrow region” of the solution space. In addition, multi-core
processors are now available in almost all personal computers and algorithms
that exploit parallel techniques on such a computer can reduce their computa-
tion time. For instance, the parallel VNS algorithm proposed in [I7] is among
the best performing OpM methods. Yet, neither iterated tabu search nor its
parallel implementation was investigated for solving OpM in the literature.

In this work, we introduce the first parallel iterative solution-based tabu
search (PISTS) algorithm that alternates between a solution-based tabu search
procedure for search intensification and an adaptive perturbation procedure for
search diversification. The original features of PISTS and the contributions of
this work are summarized as follows.

First, we analyze different compound moves to improve the neighborhood
exploration and experimentally determine that the ‘delete-add’ compound move
is a good alternative to the typical time-consuming ‘swap’ move. To further im-
prove tabu search, we use two separate tabu lists to forbid incomplete solutions
obtained by performing a ‘delete’ move and the feasible solutions obtained by
performing an ‘add’ move. This has the merit of exploring a wider area within
the given time limit by strictly preventing solutions from being revisited.

Second, the adaptive perturbation procedure is inspired by the shaking phase
in the VNS algorithm to dynamically adjust the perturbation strength &, which
systematically increases the distance between the new starting solutions from
the best found solution when the search stagnates and decreases to the min-
imum distance when the search is improving. The perturbation procedure is
randomized in nature by performing & random ‘delete-add’ moves to achieve
search diversification.

Third, experimental testings on 144 benchmark instances in the literature
indicate that the PISTS algorithm competes favorably with the state-of-the-art



algorithms by establishing new lower bounds for 7 instances and matching the
best known results for all the other instances.

Finally, the proposed compound move combined with the use of two different
tabu lists is a general intensification strategy and can advantageously be applied
to other cardinality constrained binary optimization problems.

The rest of this paper is organized as follows. Section [2] introduces the
problem formulation and neighborhood definition. Section [3| presents the main
scheme and important components of the proposed algorithm. Section [4]exposes
preliminary experiments to analyze the important search ingredients. Section [5]
reports computational results and comparisons with state-of-the-art algorithms
in the literature. Section [6] draws conclusions and suggests future research di-
rections.

2. Preliminaries

2.1. Problem formulation

Let I denote a set of clients, J denote a set of facilities, d;; be the distance
between client ¢ and facility j. The objective of OpM is to find p opened facilities
(p is given), i.e. a subset S, = {j1, jo,...,Jp} C J satisfying

r%:ixf = Zmin {dij : j € Sp} (1)
icl
In Equation (1), min{d,; : j € S,} denotes the distance between a given
client 7 and all the opened facilities, defined to be the minimum value among all
the distances between i and each open facility j. The objective function f is to
maximize the sum of the distances between all clients and the open facilities.

2.2. Neighborhood definition

Distance between solutions: For a given solution S, its nearest neighbor S,
differs only in one element from S, obtained by swapping an element in .S}, and
an element in J\S,. Alternatively, we define the distance between S, and S}, as

dist(S,,5}) = 15,\5}| (2)

where | - | denotes the cardinality of the set. Thus, the distance between a
solution and its nearest neighbor is 1.

Neighborhood Nj: The neighborhood N}, of a solution S, consists of all the
solutions having a distance of k from the solution S, which is formulated as

Ny, = {8/, : dist(Sy, S,) = k, S} € Q) (3)

where €2, denotes the solution space. The nearest neighborhood N; results
when k = 1.



3. Parallel iterative solution-based tabu search

3.1. General scheme

The general scheme of the proposed parallel iterative solution-based tabu
search (PISTS) is shown in Algorithm [I} The parallel implementation employs
the multiprocessing module of Python to leverage multiple processors on a given
machineﬂ The PISTS algorithm first creates an object ProcPool of the class
Pool to store nypoc processes. A shared memory mechanism is introduced so
that all processes can get access to the tabu lists. In this way, the solutions
previously visited by a process will not be revisited by the other processes.
Preliminary experiments indicate that such a parallel implementation requires
much less computational time to reach the same solutions compared to the typ-
ical parallel implementation without information interaction among processes,
especially for solving instances of large size. Then it repeats creating each pro-
cess by including a random initializer used for generating a randomized initial
solution and an iterative solution-based tabu search procedure I.ST'S() used for
improving the initial solution. After all the specified np,o. processes are com-
pleted, ProcPool is run to execute each process on a processor and the best
solution Sp.s: aggregated from all the processes is returned.

Algorithm 1 General scheme of PISTS

1: Input: number of processes nproc, time limit 7', tabu search depth d, itera-
tion cutoff h of using a specific neighborhood Ni, tabu lists TabuList ADD and
TabuListDLT

: Output: best solution Spest

: Create an object ProcPool = Pool() to store nproc processes

: Initialize tabu lists TabulList DT L and TabuListADD in shared memory

for i = 1 to nproc do

S; = random_initializer()
Add ISTS(S;,d,h, Ty, TabuListADD, TabulListDTL) to ProcPool

: end for

: Run ProcPool to return the best solution Spest

3.2. Iterative solution-based tabu search

Our proposed iterative solution-based tabu search (ISTS) shown in Algo-
rithm [2] alternates between a solution-based tabu search procedure and a per-
turbation procedure similar to the shaking phase in the VNS algorithm [17, 22].
For a given initial solution, the solution-based tabu search procedure is first
executed to reach a local optimum. Unlike the common tabu strategy which
typically forbids previously performed moves for a period of time, our solution-
based tabu strategy prevents the previously visited solutions from being revis-
ited. The perturbation procedure dynamically adjusts the perturbation strength

Thttps://docs.python.org/3/library /multiprocessing.html



k, which systematically increases the distance between the new starting solu-
tions from the best found solution when the search stagnates and decreases to
the minimum distance when the search is improving.

The outer ‘while’ loop of Algorithm [2] keeps exploring a sequence of Ny,
neighborhoods until a given time limit 7" is met. For each specific neighborhood
Ng, the inner ‘while’ loop iteratively executes the perturbation procedure to
generate a new solution S, and the solution-based tabu search procedure to
reach a new local optimum S; by refining the quality of S,. Given that the
perturbation procedure employs a random strategy that performs a number of
k random delete-add moves, each Nj neighborhood is iteratively explored until
the best solution is not improved for consequtive h number of iterations (h is
called Ny, iteration cutoff). Moreover, this limited number of iterations used for
exploring a specific neighborhood provides chances for exploring other regions
to avoid getting trapped in local optimum.

Algorithm 2 General scheme of ISTS

1: Input: initial solution S;, tabu search depth d, N} iteration cutoff h, time limit 7T,
tabu lists TabuListADD and TabuListDLT

2: Output: best solution found during the search Sy

3: Initialize tabu lists T'abuListADD = () for solutions obtained by performing add
moves and TabuListDLT = ) for solutions obtained by performing delete moves,
k=2, to = time()

4: Sy = 8TS(S;,d, TabuList ADD, TabuListDLT) > STS() is defined in Algorithm

B
5: while time() —to < T do > Iterative search in varying Ny
6: nonimp = 0 > Iterative search in a specific N
7: while TRUE do
8: Sp = perturb(Sy, k)
9: Sy = STS(Sp,d, TabuList ADD, TabuListDLT)
10: if f(S1) > f(Sg) then
11: Sqg = Si,k =2, nonimp =0
12: break
13: else
14: ‘ nonimp = nonimp + 1
15: end if
16: if nonimp > h then
17: k=k+1
18: break
19: end if
20: end while
21: if k>por k>n—pthen
22: | k=2
23: end if

24: end while

ISTS starts with k& = 2. If the best solution S, is not improved for a
consequtive h number of iterations when exploring a specific neighborhood Ny,



k is increased by 1 to switch the search to neighborhood Nyii. As long as a
new best solution S, is found, the search returns to neighborhood N,. Since
for any solution, at most min{p,|J| — p} elements can be deleted and added,
i.e., the largest jump distance is min{p, |J| — p}, k is also reset to 2 once k >
min{p, |J| — p} to guarantee the feasibility of the perturbed solution.

3.3. Solution-based tabu search

The solution-based tabu search (STS) procedure improves a starting solution
to reach a new local optimum. In order to design an effective tabu search, two
important issues should be considered.

The first one is to design a method that is able to quickly identify the best
non-tabu move for each iteration. Swap neighborhood is generally adopted for
solving problems with the similar solution structure [23]. For solving OpM, a
traditional swap neighborhood leads to p(|.J| — p) neighbor moves. Hence, it is
time-consuming to identify the best swap move at each iteration. To overcome
this problem, we use a delete-add compound move that first performs the best
delete move from the current solution S, to generate a partial solution S and
then performs the best add move on S} to reach a new feasible solution S,
where both the chosen delete and add moves should satisfy that the resulting
ST and S, are not in the tabu lists (see below). Egs. (4) and (5) give the
definition of the best delete move and the best add move, respectively.

St = argmin{f(s}) : s, = S \{i},i € S¢, s, ¢ TabuListDLT'} (4)
Se = argmin{f(s.) : s. = S, U{i},i € J\SL,sc ¢ TabuListADD}  (5)

where each partial solution s, is obtained by deleting an element i € S, from
the solution S, and each solution s, is obtained by adding an element i € J\S7
to the chosen partial solution S7. The best delete-add compound move can be
considered as an estimation of the best swap move in terms of the objective
function value, which is also used under the name of reduced local search [17]
without considering the tabu status of moves.

Another important issue is to design a suitable tabu strategy along with a
fast method to determine whether a neighbor solution has a tabu status (i.e.,
excluded for consideration). For the delete-add compound move, we design
two tabu lists where T'abulListDLT is used for solutions obtained by perform-
ing delete moves and TabuListADD for solutions obtained by performing add
moves. A traditional attribute-based tabu strategy needs to set a tabu tenure
(for each performed move) which is a parameter whose tuning typically impacts
the search performance [20]. An alternative strategy is the solution-based tabu
list, which eliminates the need of tuning the tabu tenure [24, 25 [26], 27]. Still
recording all visited solutions during the search in a tabu list will require too
much memory. Instead of saving each visited solution, we save its hash value.
In this way, to verify if a neighbor solution is an eligible candidate solution, it
suffices to check if the hash value of this solution is in the tabu list. To map
a solution to a hash value, we use a pseudorandom function SipHash-2-4[28],



which is designed to protect against hash collision attacks, while remaining sim-
ple to use and fast. On a 64-bit system, the function hash() returns an integer
ranging from —2% to 263 — 1, which is large enough for our purpose.

Algorithm [3] shows the general scheme of our solution-based tabu search
procedure. Generally speaking, it iteratively moves from one solution to an
improved neighbor solution, until the best solution S; is not improved during the
specified d number of consecutive iterations (d is called tabu search depth). For
each iteration, it first performs the best delete move with respect to the current
solution S., subject to the requirement that the hash value of the resulting
partial solution S? is not in the tabu list TabuListDLT. Meanwhile, the hash
value of S7 is joined in TabuList DLT. Then it performs the best add move with
respect to the just obtained partial solution S7, subject to the requirement that
the hash value of the resulting solution .S. is not in the tabu list TabuListADD.
Meanwhile, the hash value of S, is joined in T'abulList ADD. Finally, as long as
an improved solution is found, the best solution S; is updated.

Algorithm 3 General scheme of STS

1: Input: initial solution S;, tabu search depth d, tabu lists TabuListDLT and
TabulListADD
: Output: local optimum 5;
Set Se =85, =8;,n=0
: while n < d do
‘ Perform the best delete move from S. to generate the partial solution S;,
subject to the requirement that S is not forbidden by tabu list TabuList DLT
TabuList DLT = TabuList DLT U {hash(S¢)}
7: Perform the best add move on S to generate the feasible solution S., subject
to the requirement that S, is not forbidden by tabu list T'abuList AD D
8: TabuListADD = TabuListADD U {hash(S.)}
9: if f(S.) > f(Si) then

AN Al

@

10: ‘ S = Sc,n =0
11: else
12: ‘ n=n+1

13: end if
14: end while

4. Preliminary experiments

4.1. Effectiveness of the delete-add compound move

In order to determine whether the objective value obtained after performing
the best delete-add compound move is a good estimate of the true objective
value obtained after performing the best swap move, we carry out the following
experiment. For each of the 144 benchmark instances presented in Section [5]
we first randomly generate 1000 initial solutions. For any initial solution, the
objective function value of the best solution in Ny obtained by the swap move
is fopt- The estimate of f,,; obtained by the delete-add compound move is fes:.



If fest = fopt, #hit = 1; otherwise, #hit = 0. We summarize #hit of the 1000

runs and compute hit rate = Zgﬂo #hits/1000.

The delete-add compound move we use is based on a greedy strategy where
the best delete move and the best add move are performed. An alternative
compound move also based on the greedy strategy is to first perform the best add
move and then perform the best delete move. We call the add-delete compound
move as estimation-G1 and the delete-add compound move as estimation-G2.
In addition to these two compound moves, we also perform experiments for the
third compound move that uses a random add move and the best delete move
(called estimation-R1) and the fourth compound move that uses a random delete
move and the best add move (called estimation-R2).

Figure [1] shows the hit rates of the 144 instances by applying the four com-
pound moves, where the x-axis represents the sorted index of the 144 instances
in terms of an non-decreasing order of the estimation-G1 hit rates and the y-
axis represents the hit rate of each instance. We observe that estimation-G2
performs the best by reaching a hit rate of 100% for each of the tested 144
instances and estimation-G1 is slightly worse than estimation-G2. On the other
hand, the hit rates of estimation-R1 and estimation-R2 are much worse than
the two compound moves based on the greedy strategy. To conclude, this exper-
iment demonstrates that the delete-add compound move used in our algorithm
is a good approximation of the typical time-consuming swap move in terms of
the objective function value.

1.2
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0.8 : : : |
— estimate-G1
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Figure 1: Hit rates of four compound moves

4.2. Impact of using two tabu lists and the delete-add compound move

Our parallel iterative solution-based tabu search algorithm employs the delete-
add compound move and two tabu lists as two important search ingredients. In
order to verify their effectiveness, we generate the following PISTS variants.



PISTS-S1: use the ‘add-delete’ compound move and a single tabu list,
PISTS-D1: use the ‘add-delete’ compound move and two tabu lists,
PISTS-S2: use the ‘delete-add’ compound move and a single tabu list,
PISTS-D2: use the ‘delete-add’ compound move and two tabu lists.

- o

With the strategy of two tabu lists (PISTS-D1 and PISTS-D2), the resulting
partial solution after the first move and the feasible solution after the second
move enter the tabu lists each time a compound move is performed, which has
the merit of exploring a wider area within the given time limit by strictly pre-
venting solutions from being revisited. With the strategy of a single tabu list
(PISTS-S1 and PISTS-S2), we need to consider removing the tabu list used for
the partial solutions after the first move or removing the tabu list used for the
feasible solutions after the second move. If we remove the partial solutions ob-
tained by performing the first move from the tabu list, i.e., the partial solutions
could be revisited, then a sub-optimal feasible solution will be obtained after
performing the second move (the optimal feasible solution has entered the tabu
list already), which does not comply with the objective. If we remove the fea-
sible solutions obtained by performing the second move from the tabu list, i.e.,
the feasible solutions could be revisited, then a sub-optimal partial solution will
be obtained after performing the first move (the optimal partial solution has
entered the tabu list already), which stimulates a deeper exploitation around
the revisited feasible solutions. Hence, the single tabu list strategy here means
keeping the tabu list for the partial solutions resulted from performing the first
move.

To perform this experiment, we run the four variant algorithms on the 144
benchmark instances. We set the time limit for global search T, to be 3600
seconds, NNy iteration cutoff h to be 1, tabu search depth d to be 10 and the
number of processes nproc to be 12. For each PISTS variant, we summarize the
number of hits #hits and the number of improvement #/mp over small, medium,
large and all the instances, respectively. We set hit = 1 if the best objective
value of solving an instance reaches or surpasses the best known results BKR
and hit = 0 otherwise. Similarly, we set Imp = 1 if the best objective value
of solving an instance surpasses the best known results BKR and Imp = 0
otherwise. The experimental results of comparing the four PISTS variants are
summarized in Table [1} where the best results are marked in bold.

From Table [I} we observe that PISTS-D2 performs the best by matching or
surpassing the best known results for 143 instances and discovering the improved
results for 7 instances. This discloses the important roles of the two tabu lists
and the delete-add compound move to the performance of our algorithm.

10



Table 1: Comparisons among different PISTS variants

Indicator Algorithm  Small Medium Large All
#Hit-BKR ~ PISTS-S1 48 47 43 138
PISTS-S2 48 47 44 139
PISTS-D1 48 48 45 141
PISTS-D2 48 48 47 143
#New-BKR  PISTS-S1 0 1 3 4
PISTS-S2 0 0 4 4
PISTS-D1 0 1 5 6
PISTS-D2 0 1 6 7

4.3. Parameters analysis of the PISTS algorithm

The N}, iteration cutoff and tabu search depth are two important parameters

in our PISTS algorithm. To understand the impact of these parameters, we
perform experiments by varying Ny iteration cutoff h in {1,2,3,4,5,6} and
tabu search depth d in {10, 20, 30,40, 50,60}. For each pair (h,d), we perform
a single run for all the 144 instances and summarize the ratio of instances that
matches the best objective values. The results no less than 140/144 are marked
in bold. Table [2] indicates that smaller i generally leads to better results and

the setting (h = 1, d = 10) matches the best objective values for 143 out of
144 instances. This further confirms the rationality of the default parameter

settings used in our algorithm.

Table 2: Parameters analysis of the PISTS algorithm

h\d 10 20 30 40 50 60
1 143/144 142/144 141/144 139/144 140/144 140/144
2 141/144 140/144 141/144 138/144 135/144  134/144
3 137/144  138/144  137/144 135/144  135/144  133/144
4 136/144  136/144  135/144 134/144  132/144  130/144
5 133/144  132/144  132/144 130/144  128/144  128/144
6 132/144  130/144  129/144 130/144  127/144  126/144

5. Experimental results and comparisons with state-of-the-art algo-

rithms

The dataset?] we use contains 144 instances commonly used in the literature
[4, 16, 17, 18] where the number of nodes n = |I| 4 |J| ranges from 400 to

900. These instances are divided into three classes according to the number

2http://grafo.etsii.urjc.es/optsicom/opm /opm-files/ OpM_LIB_2016.zip
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of facilities p (small instances p = n/16, medium instances p = n/8 and large
instances p = n/4).

Our PISTS algorithm is written in Python and tested on an AMD Opteron
4184 CPU with 2.8GHz and 32GB RAM. To determine the stopping condition
of our algorithm, we refer to the time limit of 600 seconds used by basic vari-
able neighborhood search (VNS) [18], the time limit of 3600 seconds used by
branch-and-cut (B&C) [I5] and exploring tabu search (XTS) [I5], as well as
the maximum number of 20p iterations used by parallel variable neighborhood
search (PVNS). Given that our algorithm and the reference algorithms are exe-
cuted on different machines, we normalize the computational times by referring
to the CPU scores of the Passmark performance test ﬂ Using the Intel Core i5
660 CPU as the reference point, the normalized time limit of 3600 seconds on
our machine should be 2261/2872 % 3600 = 2834 seconds. Using the Intel Xeon
E7 4820 CPU as the reference point, the normalized time limit of 600 seconds
on our machine should be 20212/2872 x 600 = 4222 seconds. As soon as the
running time of performing 20p iterations comes or the running time of 2834
seconds is elapsed, we terminate the PISTS run.

5.1. Experimental results of our PISTS algorithm

Tables [3] to [f] present experimental results of the PISTS algorithm. The
second column BK R shows the best known results from the state-of-the-art
algorithms [I7, [I8]. Columns 3 to 6 report the best objective values fyest, the
average objective values f,,4, the standard deviation fsq and the number of
runs reaching BK R over 10 runs #hits. In addition, we also report the average
time t444 for a run to reach the best objective value and the standard deviation
tstq of the computation time over 10 runs. The best objective values of our
PISTS algorithm are marked in bold if the best known results are improved.

From Tables [3|to[5} we first observe that our PISTS algorithm is able to find
new improved best results for 7 instances and match the best known results for
all the other instances. Moreover, the standard deviation is much smaller when
compared with the average objective values, indicating that the performance of
our PISTS algorithm is quite robust in terms of the objective values. For small
and medium instances, the PISTS algorithm is able to reach the best known
results in each run. For 43 out of 48 large instances, the PISTS algorithm is still
robust by matching or surpassing the best known results in each run. In terms of
the computation time, we find that the average time to reach the best objective
value generally increases as the number of p grows. Unlike the robust average
objective values, the standard deviation of the computation time is relatively
large compared with the average computation time.

In summary, the experimental results disclose that our proposed PISTS al-
gorithm is very effective in attaining high quality solutions.

3http:/ /www.cpubenchmark.net/
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Table 3: Results of our PISTS algorithm for small instances

Instance BKR  frest favg  fsta  #hits  tang  tota
pmedl17-p25.A 7317 7317 7317.0 0.0 10 1.3 04
pmed18-p25.A 7432 7432 7432.0 0.0 10 1.4 038
pmedl19-p25.A 7020 7020 7020.0 0.0 10 1.2 04
pmed20-p25.A 7648 7648 7648.0 0.0 10 1.0 0.2
pmed21-p31.A 7304 7304 7304.0 0.0 10 1.6 0.8
pmed22-p31.A 7900 7900 7900.0 0.0 10 1.7 0.9
pmed23-p31.A 7841 7841 7841.0 0.0 10 1.4 09
pmed24-p31.A 7425 7425 7425.0 0.0 10 1.1 1.0
pmed25-p31. A 7552 7552 7552.0 0.0 10 1.7 0.9
pmed26-p37.A 8112 8112 &112.0 0.0 10 22 14
pmed27-p37.A 7556 7556 7556.0 0.0 10 24 1.7
pmed28-p37.A 7366 7366 7366.0 0.0 10 22 0.5
pmed29-p37.A 7404 7404 7404.0 0.0 10 23 1.2
pmed30-p37.A 7704 7704 7704.0 0.0 10 28 1.5
pmed31-p43.A 7424 7424 7424.0 0.0 10 39 1.5
pmed32-p43.A 7794 7794 7794.0 0.0 10 46 2.3
pmed33-p43.A 7598 7598 7598.0 0.0 10 45 22
pmed34-p43. A 7725 7725 7725.0 0.0 10 3.2 1.0
pmed35-p50.A 7155 7155 7155.0 0.0 10 31 21
pmed36-p50.A 8179 8179 8179.0 0.0 10 4.3 4.3
pmed37-p50.A 7830 7830 7830.0 0.0 10 45 2.7
pmed38-p56.A 7432 7432 7432.0 0.0 10 9.5 4.9
pmed39-p56.A 7712 7712 7712.0 0.0 10 80 29
pmed40-p56.A 8211 8211 8211.0 0.0 10 11.1 5.3
pmedl17-p25.B 6905 6905 6905.0 0.0 10 21 14
pmed18-p25.B 7662 7662 7662.0 0.0 10 1.0 04
pmed19-p25.B 6816 6816 6816.0 0.0 10 1.3 0.3
pmed20-p25.B 7349 7349 7349.0 0.0 10 1.2 0.9
pmed21-p31.B 7331 7331 7331.0 0.0 10 1.1 0.8
pmed22-p31.B 7695 7695 7695.0 0.0 10 1.9 05
pmed23-p31.B 7137 7137 7137.0 0.0 10 23 1.5
pmed24-p31.B 7190 7190 7190.0 0.0 10 25 0.7
pmed25-p31.B 7552 7552 7552.0 0.0 10 1.5 05
pmed26-p37.B 7643 7643 7643.0 0.0 10 2.7 22
pmed27-p37.B 7448 7448 7448.0 0.0 10 23 1.0
pmed28-p37.B 7388 7388 7388.0 0.0 10 29 1.8
pmed29-p37.B 7529 7529 7529.0 0.0 10 20 1.0
pmed30-p37.B 8048 8048 8048.0 0.0 10 29 1.2
pmed31-p43.B 7320 7320 7320.0 0.0 10 3.7 2.7
pmed32-p43.B 7899 7899 7899.0 0.0 10 32 2.0
pmed33-p43.B 7611 7611 7611.0 0.0 10 3.1 1.9
pmed34-p43.B 7514 7514 7514.0 0.0 10 34 1.3
pmed35-p50.B 7570 7570 7570.0 0.0 10 4.7 3.4
pmed36-p50.B 8144 8144 8144.0 0.0 10 34 24
pmed37-p50.B 8379 8379 8379.0 0.0 10 48 1.3
pmed38-p56.B 7535 7535 7535.0 0.0 10 56 22
pmed39-p56.B 7625 7625 7625.0 0.0 10 11.9 5.8
pmed40-p56.B 8022 8022 8022.0 0.0 10 13.2 8.0
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Table 4: Results of our PISTS algorithm for medium instances

Instance BKR  frest favg  fsta #hits tavg tstd
pmed17-p50.A 5411 5411 5411.0 0.0 10 7.4 2.5
pmed18-p50.A 5746 5746 5746.0 0.0 10 3.8 2.2
pmed19-p50.A 5387 5387 5387.0 0.0 10 4.4 2.5
pmed20-p50.A 5872 5872 5872.0 0.0 10 3.5 2.2
pmed21-p62.A 5784 5784 5784.0 0.0 10 8.0 4.6
pmed22-p62.A 5995 5995 5995.0 0.0 10 5.9 2.5
pmed23-p62.A 5785 5785 5785.0 0.0 10 9.8 6.9
pmed24-p62.A 5528 5528 5528.0 0.0 10 6.1 4.0
pmed25-p62.A 5767 5767 5767.0 0.0 10 8.8 5.8
pmed26-p75.A 5789 5789 5789.0 0.0 10 18.9 12.9
pmed27-p75.A 5668 5668 5668.0 0.0 10 8.4 5.2
pmed28-p75.A 5681 5681 5681.0 0.0 10 8.1 5.9
pmed29-p75.A 58380 5880 5880.0 0.0 10 12.7 6.6
pmed30-p75.A 6189 6189 6189.0 0.0 10 18.3 10.8
pmed31-p87.A 5905 5905 5905.0 0.0 10 10.6 9.7
pmed32-p87.A 5925 5925 5925.0 0.0 10 33.5 17.5
pmed33-p87.A 5793 5793 5793.0 0.0 10 273 19.7
pmed34-p87.A 5849 5849 5849.0 0.0 10 20.8 8.6
pmed35-p100.A 5845 5845 5845.0 0.0 10 15.0 6.3
pmed36-p100.A 6461 6461 6461.0 0.0 10 19.6 10.0
pmed37-p100.A 6203 6203 6203.0 0.0 10 239.4 127.6
pmed38-pl12.A 5915 5915 5915.0 0.0 10 240.3 128.5
pmed39-p112.A 5935 5935 5935.0 0.0 10 42.0 33.1
pmed40-p112.A 6272 6272 6272.0 0.0 10 78.7 521
pmed17-p50.B 5563 5563 5563.0 0.0 10 2.7 2.3
pmed18-p50.B 5852 5852 5852.0 0.0 10 3.1 2.5
pmed19-p50.B 5423 5423 5423.0 0.0 10 4.7 2.4
pmed20-p50.B 5665 5665 5665.0 0.0 10 4.7 14
pmed21-p62.B 5870 5870 5870.0 0.0 10 5.5 3.4
pmed22-p62.B 6259 6259 6259.0 0.0 10 9.6 7.9
pmed23-p62.B 5724 5724 5724.0 0.0 10 6.9 2.7
pmed24-p62.B 5752 5752 5752.0 0.0 10  25.3 15.0
pmed25-p62.B 5692 5692 5692.0 0.0 10 13.0 11.8
pmed26-p75.B 5923 5923 5923.0 0.0 10 8.9 5.2
pmed27-p75.B 5844 5844 5844.0 0.0 10 15.7  12.2
pmed28-p75.B 5642 5642 5642.0 0.0 10 424 319
pmed29-p75.B 5709 5709 5709.0 0.0 10 9.7 5.9
pmed30-p75.B 6041 6041 6041.0 0.0 10 10.6 7.2
pmed31-p87.B 5621 5621 5621.0 0.0 10 10.4 5.7
pmed32-p87.B 5852 5852 5852.0 0.0 10 137.5 1325
pmed33-p87.B 5840 5840 5840.0 0.0 10 26.1 17.5
pmed34-p87.B 5857 5857 5857.0 0.0 10 19.8 16.3
pmed35-p100.B 5639 5639 5639.0 0.0 10 57.1  41.8
pmed36-p100.B 6219 6219 6219.0 0.0 10 138.1 114.7
pmed37-p100.B 6211 6212 6211.8 0.6 9 245 14.9
pmed38-pl12.B 5949 5949 5949.0 0.0 10 54.0 36.2
pmed39-p112.B 6198 6198 6198.0 0.0 10 593 35.3
pmed40-p112.B 6200 6200 6200.0 0.0 10 176. 101.
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Table 5: Results of our PISTS algorithm for large instances

Instance BKR  frest favg  fsta #hits tavg tstd
pmed17-p100.A 4054 4054 4054.0 0.0 10 10.9 5.8
pmed18-p100.A 4220 4220 4220.0 0.0 10 625 31.1
pmed19-p100.A 4033 4033 4033.0 0.0 10 8.4 1.8
pmed20-p100.A 4063 4063 4063.0 0.0 10 5.1 2.8
pmed21-p125.A 4155 4155 4155.0 0.0 10 859 555
pmed22-p125.A 4358 4358 4358.0 0.0 10 196.6 119.3
pmed23-p125.A 4114 4114 4114.0 0.0 10 5.2 3.8
pmed24-p125.A 4091 4091 4091.0 0.0 10 28.0 21.9
pmed25-p125.A 4155 4155 4155.0 0.0 10 10.5 4.7
pmed26-p150.A 4341 4341 4341.0 0.0 10 93.4 27.9
pmed27-p150.A 4062 4062 4062.0 0.0 10 52.6 21.5
pmed28-p150.A 4099 4099 4099.0 0.0 10 1472 91.3
pmed29-p150.A 4141 4141 4141.0 0.0 10 100.2  45.2
pmed30-p150.A 4385 4385 4385.0 0.0 10 27.0 8.5
pmed31-p175.A 4135 4136 4135.2 0.4 10 204.0 150.1
pmed32-pl175.A 4242 4242 4242.0 0.0 10 229.6 136.1
pmed33-pl175.A 4105 4105 4104.4 0.9 7 2722 136.9
pmed34-p175.A 4287 4287 4287.0 0.0 10 2142  98.7
pmed35-p200.A 4007 4007 4005.4 2.3 6 183.4 84.6
pmed36-p200.A 4319 4319 43184 0.9 7 342.7 159.0
pmed37-p200.A 4593 4593 4593.0 0.0 10 243.2  99.2
pmed38-p225.A 4428 4428 4428.0 0.0 10 260.7 68.9
pmed39-p225.A 4369 4369 4366.8 2.3 4 3873 152.8
pmed40-p225.A 4571 4572 4571.7 0.5 10 259.0 130.5
pmed17-p100.B 3992 3992 3992.0 0.0 10 12.3 7.5
pmed18-p100.B 4122 4122 4122.0 0.0 10 66.9 185
pmed19-p100.B 4016 4016 4016.0 0.0 10 2.1 1.5
pmed20-p100.B 4067 4067 4067.0 0.0 10 12.3 8.3
pmed21-p125.B 4033 4033 4033.0 0.0 10 26.1 13.3
pmed22-p125.B 4338 4338 4338.0 0.0 10 34.1 11.8
pmed23-p125.B 4095 4095 4095.0 0.0 10 304 262
pmed24-p125.B 4072 4072 4072.0 0.0 10 1153 919
pmed25-p125.B 4233 4233 4233.0 0.0 10 22.8 13.6
pmed26-p150.B 4173 4173 4173.0 0.0 10  75.6  34.1
pmed27-p150.B 4144 4144 4144.0 0.0 10 9.1 2.9
pmed28-p150.B 4069 4069 4069.0 0.0 10 248.8 166.2
pmed29-p150.B 4157 4157 4157.0 0.0 10 118.0 35.6
pmed30-p150.B 4313 4313 4313.0 0.0 10  25.0 14.3
pmed31-p175.B 4138 4138 4138.0 0.0 10 11.5 5.5
pmed32-pl175.B 4244 4247 4244.3 0.9 10 134.9 107.3
pmed33-pl75.B 4156 4156 4155.4 1.2 8 163.4 63.3
pmed34-pl175.B 4270 4270 4270.0 0.0 10 162.5 42.0
pmed35-p200.B 4109 4109 4109.0 0.0 10 105.7  48.5
pmed36-p200.B 4319 4321 43204 0.9 10 320.7 191.9
pmed37-p200.B 4609 4609 4609.0 0.0 10 160.7  48.8
pmed38-p225.B 4446 4446 4446.0 0.0 10  26.2 17.2
pmed39-p225.B 4266 4268 4267.3 0.6 10 288.3 75.6
pmed40-p225.B 4525 4532 4530.6 2.8 10  52.0 15.

5.2. Comparisons with state-of-the-art algorithms

In this section, we compare our PISTS algorithm with the best performing
algorithms in the literature, including greedy randomized adaptive search pro-
cedure (GRASP) [4], branch-and-cut (B&C) [15], exploring tabu search (XTS)
[15], parallel variable neighborhood search (PVNS) [I7] and basic variable neigh-
borhood search (VNS) [18]. For each algorithm, we summarize in Table [6] the
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average objective values Avg. Value, average computation time Awvg. Time and
the number of hits #hits over small, medium, large and all the instances, re-
spectively. The results Avg. Value and Awvg. Time of GRASP, B&C, XTS and
PVNS are extracted from [I7], which have been obtained on an Intel Core i5
660 CPU with 3.3GHz and 8GB RAM. The results Avg. Value and Avg. Time
of VNS are extracted from [I8], which have been obtained on an Intel Xeon E7
4820 CPU with 2.0GHz and 16GB RAM. According to the CPU scores of the
Passmark performance test, the running time Awvg. Time of PISTS and VNS are
normalized by using the Intel Core i5 660 CPU as the reference point. Since
the best known results BK R used in this paper are better than those used in
[17, 18], we update the results #hits of each reference algorithm based on the
reported detailed results.

From Table [f] we first observe that for the 48 small instances, PISTS per-
forms as well as GRASP, PVNS and VNS by reaching the best known results
for each instance and better than B&C and XTS. For the 48 medium instances,
PISTS performs best by reaching the best known results for each instance, 3
more instances than VNS, 8 more instances than PVNS, 13 more instances than
GRASP, 42 more instances than B&C and XTS. In terms of the average objec-
tive values, PISTS performs as well as VNS and better than the other reference
algorithms. For the 48 large instances, PISTS performs best by reaching the
best known results for each instance, 8 more instances than VNS, 3 more in-
stances than PVNS, 39 more instances than GRASP, 47 more instances than
B&C and XTS. Moreover, the average objective value found by PISTS is slightly
better than PVNS and VNS and much better than GRASP, B&C and XTS. In
terms of the computational time, PISTS performs slightly worse than PVNS
and much better than the other algorithms.

Furthermore, we performed the one-sided sign test for the best values of our
algorithm and the best performing PVNS and VNS algorithms. The one-sided
sign test is a non-parametric test, which assumes the samples are paired and does
not require the distribution of the objective values as well as the symmetry of
difference. The results indicate that our PISTS algorithm is significantly better
than both PVNS and VNS by obtaining the p-values of 0.0059 and 0.0020,
respectively.

To conclude, this comparison demonstrates the effectiveness of our proposed
PISTS algorithm in terms of both solution quality and computing time.
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Table 6: Comparisons with the best performing algorithms in the literatures

Indicator Algorithm Small Medium Large All
Avg.BKR 7582.4 5856.9 4213.2 5884.1
Avg.Value B&C 7452.0 5784.8  4090.3  5775.7
XTS 7463.0 5814.5  4169.8  5815.8
GRASP 7582.4 5855.5  4205.0  5881.0
PVNS 7582.4 5856.6  4213.1  5884.0
VNS 7582.4 5856.9 4212.8  5884.0
PISTS 7582.4 5856.9 4213.3 5884.2
Avg.Time B&C 1800.0 6915.7  7301.1  5338.9
XTS 272.4 397.2 331.7 333.8
GRASP 247.7 406.0 642.4 432.0
PVNS 8.4 28.6  108.9 48.7
VNS 23.1 105.6 158.2 95.6
PISTS 3.5 35.8 117.8 52.3
#Hit-BKR B&C 9 6 1 16
XTS 16 6 1 23
GRASP 48 35 9 92
PVNS 48 40 45 133
VNS 48 45 40 133
PISTS 48 48 48 144

6. Conclusion

In this paper, we proposed a parallel iterative solution-based tabu search al-
gorithm for solving the obnoxious p-median problem. The proposed algorithm
is characterized by an effective delete-add compound move to approximate the
time-consuming swap move, a solution-based tabu strategy using two tabu lists
and a hash function to quickly determine if a solution is previously visited, a
randomized perturbation scheme, and a parallel strategy of leveraging multi-
ple processors on a given machine. Extensive experiments on 144 benchmark
instances indicate that our algorithm is able to find new lower bounds for 7
instances and match the best known results for all the other instances. Compar-
isons with state-of-the-art algorithms show the competitiveness of the proposed
algorithm in attaining high-quality solutions.

For future research, several directions could be followed. First, the proposed
algorithm continuously switches between neighborhoods by performing random
moves to achieve search diversification. Combined random and directed moves
along with an adaptive selection scheme is worthy of investigation. Second, our
findings invite further studies to investigate the benefits of using the compound
move combined with the two tabu lists strategy for other cardinality constrained
binary optimization problems.
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