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Abstract

The set of Pareto nondominated solutions obtained in some practical cases of mul-
tiobjective optimization problems can be huge, rendering decision making difficult.
Applying Lorenz dominance instead of Pareto dominance during the optimization
process can help to alleviate this difficulty. Lorenz dominance is a refinement of
Pareto dominance that integrates fairness in multiobjective optimization when ob-
jectives are considered equal and can help select only the well located solutions. By
introducing a partial order among a set of Pareto-nondominated solutions, Lorenz
dominance reduces the size of the nondominated front by keeping only fair solu-
tions. In this work, we investigate the use of the infinite order Lorenz dominance
within three new methods to solve a practical case of the multiobjective knapsack
problem, which involves elaborating efficient action plans in social and medico-social
structures. We assess the proposed methods on large problem instances with up to
8 objectives and 500 candidate actions and show their effectiveness in comparison
with four leading reference algorithms.
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1 Introduction

We are interested in a practical action planning problem in social and medico-
social structures in France. This problem is a critical step to increase the
efficiency of social and medico-social structures. Since the French law No.
2002-2 renovating social and medico-social actions, the social and medico-
social sector has been experiencing fast evolutions due to several reasons [39)].
First, this law considers actions (e.g., planning, resource allocation, structure
evaluation and coordination) as a fundamental basis for the management of
these structures. Second, the services offered by these structures (more than
34 000 in 2017) become more and more diverse, complexifying the task of
action planning. Third, the decline of budgets allocated to the structures in
recent years, on the one hand, and the increase of aging population, on the
other hand, push decision makers of these structures to find suitable ways to
optimize their financial, human and material resources. So, decision makers are
now faced to a challenging task of elaborating efficient multiobjective action
plans with strong constraints like a tight budget. Even if the social and medico-
social sector is increasingly computerized in recent years, the use of computing
systems is often limited to daily managing tasks and there is no true decision
support system able to assist the managers to make the best choices for the
short-term and long-term action plans. In the context of resource restriction
and lack of advanced optimization tools, decision making becomes extremely
difficult. In this work, we present a multiobjective decision support system
to assist managers to optimize their action plans. This work is a part of the
“MSQualité” toolkit developed by the company GePIP_-], which is specialized
in the social and medico-social sector in France.

The action planning problem involves elaborating optimized action plans in
order to improve the overall management efficiency of a structure and its qual-
ity of service (social and medico-social structures should elaborate at least one
action plan every five years). The aim is to identify a subset of actions among
many candidate actions while optimizing many objectives and satisfying some
imperative constraints (e.g., limited budget). Each action has a realization
cost and can influence, positively or negatively, some or all the objectives.
The global cost of the final solution (i.e., an action plan) should not exceed a
predefined budget. Also, a threshold constraint could be added to each objec-
tive indicating the minimal objective value that a solution must attain.

As we explain in Section [2| the action planning problem can be considered
as a practical case of the multiobjective knapsack problem (MOKP), where
actions represent items (objects) to be added in a knapsack constrained by its
capacity (i.e., budget) while optimizing the given objectives. In the practical
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setting, we may need to consider up to eight objectives simultaneously. The lit-
erature offers, in addition to the Indicator-based methods discussed in Section
3.2 a large number of general methods for solving multiple and many objec-
tive optimization problems including the MOKP [1)3/6/12/14123|241[42]43]/45].
Among these methods, MOEA/D [19/43], MOGLS [20/22], and PICEA [42]
are known to be relevant and strong representative methods. Considering the
specific features of our practical action planning problem, our previous study
[T1] focused on using the Indicator-based Multiobjective Local Search (IB-
MOLS) algorithm [4]5] combined with the R2 indicator [9]. Indeed, compared
to many evolutionary multiobjective methods, IBMOLS has several interesting
characteristics that make it suitable for our action planning problem. First,
contrary to methods employing the Pareto dominance relation for solution
assessment, IBMOLS uses a quality indicator for fitness assignment, and as
such does not require any specific diversity preservation mechanism. Second,
the decision maker can include preferences in the indicator definition to guide
the search to generate relevant solutions for the decision maker. Third, I1B-
MOLS requires only a small number of parameters (i.e., three), making it
easy to use in the practical setting. Finally, as a population-based local search
algorithm, IBMOLS is particular suitable for large-scale problems and has
shown its capacity of solving different multiobjective problems (see [11] for
application examples).

The study of [11] showed that IBMOLS coupled with R2 performs well for
the considered action planning problem even on large size problem instances
(up to 8 objectives and 500 actions). Also, the R2 indicator offers two ways
for the decision maker to incorporate preferences easily: a reference point and
a set of weight vectors. Indeed, we can use the position of the reference point
and the weight vector directions of the R2 indicator to shrink the search space
and guide the search process towards regions of interest in the objective space
[11]. However, the R2-IBMOLS method suffers from two inconveniences for its
use in practice: i) the number of nondominated solutions it generates can be
very high (several thousands for a large size instance), making it difficult for
the decision maker to choose the solution to be implemented; ii) the average
runtime of R2-IBMOLS can becomes very high since it critically depends on
the number of weight vectors of the R2 indicator being considered. Moreover,
in the practical setting, the objectives of the action plan could have the same
importance for the decision maker. In such a case, obtaining equitable solutions
becomes, for the decision maker, as important as the optimization of the action
plan. Unfortunately, this aspect is not considered in the R2-IBMOLS method.
In this work, we aim to mitigate these problems and improve the R2-IBMOLS
method in order to:

e generate only equitable nondominated solutions of the Pareto front by dis-
qualifying unfair solutions.
e reduce the number of nondominated solutions generated by the method.



e reduce the runtime of the method.

The ultimate goal is to develop a decision support system to assiss managers
of social and medico-social structures to elaborate effectively efficient action
plans to continually improve the quality of their structures. We summarize
the contributions of the work as follows.

First, we investigate three new methods relying on the infinite Lorenz dom-
inance principle [18] to take into account fairness during the optimization
process. We show that by using Lorenz dominance (L-dominance for short)
within R2-IBMOLS, instead of Pareto dominance (P-dominance for short),
we can significantly reduce the number of nondominated solutions and the
runtime, without sacrificing efficiency. Indeed, L-dominance (also called equi-
table dominance) is a refinement of P-dominance, which considers only the
well located solutions and leads to a reduced set of nondominated solutions
(a Lorenz-optimal front) by selecting only the most equitable solutions. By
“well located solutions”, we mean the closest solutions to the reference point
when decision maker’s preferences are given and the solutions located in the
center of the objective space when all the objective have the same importance.
Indeed, in this study we consider two cases: i) the decision maker has some
preferences about the importance of the objectives. These preferences are ex-
pressed by the placement of the reference point in the objective space. In this
case, the best solutions are those that are the closest to the reference point.
ii) The objectives have the same importance for the decision maker, in which
case the best solutions are those guaranteeing equity of the objectives. These
solutions are those situated in the center of the objective space (Figure [2] of
Section shows such an example).

Second, the methods investigated in this work are integrated in the MSQualité
toolkit, which provides the decision maker of a social and medico-social struc-
ture with an useful decision support tool to optimize their action plans.

Finally, one notices that studies related to fair optimization with L-dominance
are limited compared to the huge body of research on Pareto optimization.
This work comes to enrich the field of fair optimization while the proposed
techniques can be advantageously integrated into other multiobjective opti-
mization methods such as those mentioned above.

The remainder of the paper is organized as follow. Section [2| presents a for-
mal model of the action planning problem. Section [3| recalls basic definitions
about multiobjective optimization, the binary indicator search principle and
the IBMOLS algorithm. Section 4] introduces the Lorenz dominance principle
and related studies. Section [5|is dedicated to the proposed L-dominance based
algorithms for the considered problem. Section [6| shows computational results,
followed by concluding comments and perspectives.



2 Action plan optimization problem

This section presents the action plan optimization problem and gives a math-
ematical formulation of the problem. More details can be found in [I1].

The action plan optimization problem studied in this work is a practical case
of the MOKP, which is a well-known mathematical model with many ap-
plications. As mentioned in Section [I} since the law No. 2002-2, social and
medico-social structures in France are constrained to continuously elaborate
improvement projects. They should carry out at least one self-assessment ev-
ery 5 years and one external assessment (assessment done by a person outside
the structure) every 7 years. This assessment aims to evaluate the operat-
ing structure, its improvement project and the quality of service offered to
the persons entering in the structure. At the end of the evaluation process,
recommendations are given to the decision maker to elaborate a new project
for the next period. For the new project, the decision maker defines the ob-
jectives to achieve, the resources to use, the constraints and the action plan
to implement. The origins of the actions are either issued from existing ac-
tion plans in the structure or other similar structures, or are decided by the
managers for continuous improvements. The objectives can be diverse, namely
qualitative (such as "improve resident’s quality of life”) or quantitative (such
as "increase the resident’s autonomy”). Usually, structures do not have the
required resources (especially the budget) to realize all feasible and desirable
actions. Thus, decision makers must choose, within the available budget, a
set of actions in order to maximize the overall quality of the structure while
attaining the predefined objectives of the project.We note that, in the real
case, we may need to consider up to eight objectives.

An action plan p can be defined as a subset of actions selected among a set
of candidate actions A, in order to optimize a set F' of conflicting objectives.
p can be represented by a vector p = (ay, as, ..., a,) with n equal to the size
of A. a;=1 if the action a; is selected to be implemented with the action plan
and a;=0 otherwise. The set of the possible action plans (solutions) is denoted
by P. Each objective is represented by a function f; that associates to every
action a; €A its impact on the objective j. The impact that an action plan
p = (ay,aq,...,a,) € {0,1}" has on an objective j is obtained by:

fj(p) = é%’fj’(ai) (1)

An objective j could have a constraint ¢; determining the minimal threshold
accepted for f;, this value is fixed by the decision maker. In this work, we
consider that all the objectives must be improved (i.e., f;(p) > ¢; > 0).



An additional constraint concerns the realization cost W of the solution that
can not exceed some budget 3 fixed by the decision maker. Indeed, each action
a; has a realization cost w; which can take negative values since there may be
actions with negative cost when it is about selling of objects or services for
instance. Actions with no cost are also to be taken into account. The global
cost of a solution p corresponds to the following cost sum of the actions of p:

W(p) = zé a;W;
W(p) <8

(2)

So, the optimization goal aims to find p* € arg max F(p) verifying:
p

p* € {0,1}"

Vi € {1,m}, f;(p*) > ¢ (3)
i aw; < 8

=1

However, p* is not unique since we deal with a multiobjective case. Instead, we
obtain a set of nondominated solutions whose size could be huge and increases
with the problem size and the number of objectives. So, it is important in prac-
tice to approximate only the optimal solutions that are the most interesting
ones for the decision maker.

3 Binary quality indicator based multiobjective optimization

This section is dedicated to the optimization with binary quality indicators.
First, we introduce the binary quality indicator principle followed by a focus
on the R2 indicator. Then, we present the IBMOLS [4] and R2-IBMOLS [11]
methods, which are the base of two of the three proposed methods in this work.
Before describing the binary quality indicator, we give some useful definitions.

Let X denote the decision space of a general optimization problem, Y the cor-
responding objective space, and m the number of objective functions fi, fs, ..., fin
that assign to each decision vector x € X a corresponding objective vector
y = {fi(z), fo(x), ..., fm(x)} € Y. We consider through this section that the
m objective functions have to be minimized.

Definition 1 The Pareto dominance relation on objective vectors of Y s
defined for all y, z by: y <p 2 <= [Vj € {1,..m}hv’ < 27 and Tk €
{17 "'7m}7yk < Zk]



The relation y <p z means that, according to the P-dominance relation <p,
the corresponding solution x5 to the vector z is P-dominated by the corre-
sponding solution x; to the vector y (x; is "preferable to” or "better than”

.CEQ).

Definition 2 = € X is said to be Pareto optimal (P-optimal for short) if and
only if it does not exist another solution ' € X dominating x.

The P-optimal set denoted by Xp contains all the P-optimal solutions. The
image f(x) of a P-optimal solution z in the objective space Y is called a
Pareto-nondominated point. The image Yp = f(Xp) of the P-optimal set Xp
in Y is called the Pareto front. Finding the real Pareto front is not an easy
task, especially on large size problems, but approximating this front is usually
possible, particularly with metaheuristics.

3.1 Binary quality indicator

The concept of binary quality indicators [44] is a natural extension of the P-
dominance relation on sets of objective vectors. To quantify the difference in
quality between two approximation sets A and B in the space of Pareto set
approximations €2, a function I : 2 x @ — R assigns to a pair of approxi-
mation sets a real value quantifying their difference in quality. The function
can also be used to compare one approximation set A against a fixed reference
(e.g., the set of P-optimal solutions). In this case, I represents a unary quality
indicator that assigns to each approximation set a real number representing its
distance to the reference which has to be minimized. Thus, the optimization
goal is transformed to the identification of a set of approximations that mini-
mizes I. Moreover, a quality indicator could be used to evaluate the difference
in quality of two single solutions or a single solution against a population of
solutions. This evaluation is usually used in the selection process of evolution-
ary algorithms. Indeed, during the selection process, the solution for deletion
from the population should be the one with the worst value of the indicator
being used with respect to the rest of the population.

Furthermore, in real word applications, the decision maker is not interested by
all nondominated solutions since usually the final decision concerns a unique
solution or a small number of solutions. So, several methods integrating deci-
sion maker preferences were developed [7/42]. In addition to being an effective
means for the optimization process, the quality indicator could be defined by
the decision maker, according to his (her) preferences. There are several qual-
ity indicators in the literature, such as Epsilon indicator [44], Hypervolume
indicator [45/30] and R2 indicator [9]. As mentioned in Section [1} the R2 in-
dicator is interesting because it offers two mechanisms to integrate decision



maker preferences: a reference point and a set of weight vectors. Brockhoff
et al. showed in [41] that the optimal distribution of the solutions can be af-
fected by moving the reference point, restricting the weight space or skewing
the weight vectors distribution. The R2 indicator is defined below (for more
details about the R2 indicator and its properties, see [9/10]).

The R indicator family is based on utility functions which map a vector iy € R™
to a scalar utility value u € R for assessing the relative quality of two Pareto
front approximation sets [9].

Definition 3 For a discrete and finite set U of utility functions, a uniform
distribution p over U, and a reference set R, the R2 indicator value of a Pareto
set approxzimation A is defined by:

re€ER

R2(R, A, U) |U| > <max{u )} — max{u(a )}) (4)

When R is constant, the R2 indicator can be defined as a unary indicator:

a€A

R2(A,U) \U] Z max{u(a) (5)

We use, throughout this paper, the standard weighted Tchebycheff function
u(z) = ur(?) = —maxjeq1,...m} Aj|2] — 25| within the R2 indicator as defined
in equation [f] where A = (A, ..., \) € A is a given weight vector and z* is an
utopian point.

3.2 Indicator-based multiobjective local search (IBMOLS)

Since the publication of the indicator-based evolutionary algorithm (IBEA)
proposed by Zitzler and Kuiinzli [44], the use of indicator-based algorithms
in evolutionary multiobjective optimization field is continuously increasing.
Several methods and studies using quality indicators were proposed. Among
them, we mention the following studies: an EMO algorithm using the hypervol-
ume measure as selection criterion [16], improving hypervolume-based EMO
algorithms by using objective reduction methods [§], the HypE algorithm [2],
R2-IBEA [37], R2-EMOA [40] and R2 indicator-based multiobjective search
[10]. More recently, a simple and fast hypervolume indicator-based multiob-
jective evolutionary algorithm (FV-MOEA) was presented in [25]. A R2-based
multiobjective particle swarm optimizer (R2-MOPSO) was introduced in [31].

IBMOLS [4] is another multiobjective algorithm combining a quality indica-
tor and a local search mechanism. Indeed, local search is known to be efficient



for many real-world applications, especially on large-scale problems. However,
most of these algorithms are usually based either on the P-dominance relation
or on aggregation methods. By contrast, IBMOLS uses the quality indicator
principle for the fitness assignment without requiring any specific diversity
preservation mechanism (this aspect should be considered in the indicator
definition). Moreover, IBMOLS presents two main advantages: i) a fixed pop-
ulation size is used during the local search enabling the algorithm to find
multiple nondominated solutions in a single run, without any specific mech-
anism dedicated to control the number of nondominated solutions (problem
encountered with the classical Pareto-based multiobjective local search [35]);
ii) IBMOLS requires only a small number of parameters: the population size
and the quality indicator.

In [I1], the IBMOLS approach is combined with the ¢ and R2 indicators to
solve the multiobjective action plan problem and assessed on simulated data
with 50 to 500 actions and 2 to 8 objectives. It was showed that R2-IBMOLS
is efficient to solve the action plan optimization problem. Unfortunately, R2-
IBMOLS is time consuming, especially on the large instances, and can generate
a high number of solutions, which makes it difficult to use in practice. In this
paper, we show that by fixing the size of R2-IBMOLS archive and using L-
dominance instead of P-dominance to select the solutions to be archived, we
obtain high-quality compromises on the one hand, and reduce the runtime and
the number of generated nondominated solutions, on the other hand. Also,
we propose two other alternative L-dominance-based algorithms to solve the
problem with objectives having the same importance.

4 Lorenz dominance

The notion of Lorenz dominance (L-dominance) was first proposed in eco-
nomics to measure the inequalities in income distributions. Then, in recent
years, some L-dominance-based approaches integrating the concept of equity
were proposed in the multiobjective optimization field (we talk about fair opti-
mization). L-dominance refines P-dominance by selecting only the well located
solutions. Moreover, the set of P-optimal solutions obtained in some multiob-
jective problems can be huge, making it difficult for the decision maker to eval-
uate the alternative choices. Applying L-dominance instead of P-dominance
would be a suitable approach to alleviate this problem. L-dominance intro-
duces a partial order relation among P-nondominated solutions to reduce the
size of the output. Figure (1| shows, for one solution y of a minimization prob-
lem, the difference between P-dominated area and L-dominated area (gray
color). Since the resulting search space is reduced by the (Pigou-Dalton) trans-
fer principle and the Lorenz transformation operated on the objective vectors
(definitions 5 and 6 below), L-dominance allows finding more efficient and well



located solutions than P-dominance. This fact is well described in [15].
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Fig. 1. P-dominated area (left). L-dominated area (right).

As reported in [18], in order to choose between two nondominated solutions,
we have to define a preference relation = on cost vectors, such that y = 2
means that the corresponding solution to the cost vector y is preferable to the
corresponding solution to the cost vector z. Also, to formalize the fact that
all the objectives are treated equivalently, we define the following axiom:

Definition 4 For a cost vector y € Y and any permutation © of {1,...,m},
(Yr(1)s > Yn(m)) ~ (Y15 -, Ym ), where ~ is the indifference relation defined as
the symmetric part of 3.

Furthermore, fair optimization should satisfy the (Pigou-Dalton) transfer prin-
ciple [38] which states that a transfer of any small amount from one cost vector
to any other relatively worse-off, while preserving the mean of the costs, could
produce more distributed cost vector. As a property of the preference relation
=, the transfer principle is defined by the following axiom:

Definition 5 For a cost vector y € Y such that y; > y; and for all € such
that 0 < € < y; —y;, y — €e; + €e; < y where e; and e; are respectively the it
and the j*" unit vectors.

For example, y = (7,3,4) and z = (5,3,6) are both P-nondominated vectors,
but the transfer principle implies that z is preferable to y (z = y) because
there exists a transfer of size ¢ = 2 to pass from z to y.

In order to identify those vectors that can be compared using the transfer
principle, we recall the definition of the generalized Lorenz vector, on which
L-dominance is based.

Definition 6 For any cost vector y € Y, the generalized Lorenz vector of
y is the vector L(y) = (y1,y1 + Y2, s Y1 + Y2 + . + Ym), where y; > yo >

... > ym represent the components of y sorted in non-increasing order. The 1"

10



J
component of L(y) is L(y) = > .
i=1
Now, the generalized L-dominance is defined as follow:

Definition 7 The L-dominance relation is defined by:
Vy,z €Y,y <p z < L(y) <p L(2).

4.1 State of the art on Lorenz dominance based optimization

Lorenz dominance was defined in [27] to solve the linear multiple criteria op-
timization problem, and then was applied to location problems [28/33] and
portfolio optimization problem [34]. L-dominance was also applied to multi-
objective optimization as we review below.

In [29], Kostreva et al. used ordered weighted averaging aggregations to derive
equitably efficient solutions to both linear and nonlinear multiobjective prob-
lems. In [36], Perny et al. introduced a formal framework to define robustness
in combinatorial problems using L-dominance to compare solutions accord-
ing to multiple scenarios. They also proposed a new approach to find Lorenz-
efficient solutions for two robust optimization problems and introduced, within
L-dominance, the ordered weighted average as an axiomatically founded mea-
sure of robustness. In [15], Dugardin et al. used L-dominance with NSGA-II
[13] in an algorithm called L-NSGA-II and assessed its performance against
other algorithms. Golden and Perny [I8] introduced the notion of infinite or-
der Lorenz dominance (IOLD) and showed that, using an ordered weighted
average, it is possible to formulate the search of nondominated solutions as
a single-objective optimization problem. Our work is based on IOLD, so we
provide more description of this notion in the next section. Moghaddam et al.
[32] applied L-dominance to an adapted bi-objective simulated annealing algo-
rithm (to solve a single machine scheduling problem) and showed significant
improvements over a Pareto-based multiobjective simulated annealing algo-
rithm. More recently, Galand and Lust [I7] proposed an adaptation of the
classic two-phase method to generate Lorenz optimal solutions and evaluated
experimentally their method on two bi-objective problems.

4.2 Infinite order Lorenz dominance (IOLD)

When two objective vectors y and z cannot be compared in terms of P-
dominance, we perform the corresponding generalized Lorenz vectors L(y) and
L(z) and compare instead L(y) to L(z). But, there may be no P-dominance
between L(y) and L(z). In this case, the indetermination might be solved by

11



comparing L%(y) = L(L(y)) to L*(z) = L(L(z)). To reduce the incompara-
bility, this process can be iterated to higher levels. Perny and Golden [I§]
introduced the k™ order Lorenz vector L*(y) defined as follows:

Ly =" R0 (©)
L(L*Yy)) if k>1

and the k" order L-dominance is defined by:

Vy,z €Y,y <} z & L*(y) <p L*(2) (7)

From these two last definitions, the authors defined a strict infinite order
dominance (strict L*°-dominance) as follows:

<r=U =i (8)

k>1

and proposed algorithm [I| to compute <7° for any two vectors y, z.

Algorithm 1 Strict L*>-dominance
1y <y
2: 2z
3: while not(y/ <p 2’ or 2/ <py’) do
4y L)
5. 2« L(2)
6
7
8
9

: end while
. if (v <p ') then
Dy =<yYz
: end if
10: if (¢’ <p ¢/) then
11: 2z <7y
12: end if

Algorithm [I] tries to select between vectors that are not discriminated by L-
dominance. However, nothing proves that it terminates for any pair of vectors.
To solve this problem, Perny and Golden formulated the search of nondom-
inated solutions as a single-objective optimization problem and provided a
direct mathematical definition of L*>°-dominance (definition , making possi-
ble the comparison of any pair of vectors.

Definition 8 The strict L*°-dominance has a strict numerical representation
using the following ordered weighted average:

W) = 3 sin (“”“‘k)”) " o)

2m +1

12



This representation is given by the following property: Vy,z € Y,y <° 2 <=
W(y)<W(z) (see the proof of this property and equation [J] in [18]).

Now, to compare any pair of vectors y and z according to a strict L°°-
dominance, it is not necessary to run algorithm I}, we have just to compute and
compare W(y) and W(z). When W(y) # W(z), the vector having the smallest
score for W strictly L>°-dominates the other. Hence, algorithm (1| would stop
after a sufficiently large number of iterations. And when W(y) = W(z), there
is no strict dominance at any order of L-dominance application, and algorithm
[ would never terminates in this case.

Equation [9] presents two main advantages. First, it is easy to integrate W into
an evolutionary algorithm. Indeed, with few parameters, it makes it possible
to select individuals at a high level of comparison, and detect dominance rela-
tion, even when the difference is minimal between individuals. Second, using
W in the selection process of an evolutionary algorithm significantly reduces
the runtime of the algorithm, because it is no more necessary to check the
dominance between the individuals of the population. Dominance verification
is directly integrated in the definition of the equation.

5 Proposed Approaches

In this section, we use the strict L>°-dominance within three new algorithms
dedicated to solve the action plan optimization problem. Nevertheless, ideas
presented here could be easily adapted to solve other problems.

In the following, P denotes the current population of solutions and it is as-
sumed that objective values of all solutions are normalized. To achieve this,
the minimum m; and maximum M; values of each objective function f; in the
population P are computed first:

mj = mingep(f;i(z))

M; = mazzep(f;i(z))

(10)

Then each objective function j of each individual x of P is normalized as
follows:

NFj(z) = W (11)

where N Fj;(x) is the normalized j™ objective function of the individual z.

13



Note that extreme values are updated after each local search step and only
when a new solution is introduced in the current population. Each time the
maximum value M; or the minimum value m; is changed for some objective
function 7, the normalized objective values of each solution € P is updated.

5.1 The IOLD-R2-IBMOLS algorithm

The IOLD-R2-IBMOLS algorithm (Algorithm [2) combines the performance
of R2-IBMOLS [11], which offers two means to integrate decision maker pref-
erences (reference point and set of weight vectors), with the infinite order
Lorenz dominance that allows a comparison between nondominated solutions

at a high level of L-dominance (see Section [4.2)).

Algorithm 2 JOLD-R2-IBMOLS algorithm

1: Input: P (initial population of size N), T' (size of the archive)
2: Output: E (approximation set (|E| < T))
3: E <— infiniteOrderLorenzNonDominatedSolutions(P, T')
4. /* Compute fitness values of individual x in P */
5. for all z € P do
6:  fit(x) = R2(P,A, z*) — R2(P\{xz}, A, 2*)
7: end for
8: /* Local search step */
9: for all z € P do
10: forall j € {1,..,m} do
11 updateMinMax(j) /* Update minimal m; and maximal M; (for objective
functions normalization) */
12:  end for
13: repeat
14: x* <— one unexplored neighbor of x
15: P<+— PUzx*
16: fit(z*) = R2(P, A, z*) — R2(P\{z*}, A, 2*) /* Compute x* fitness */
17: Update all z € P fitness values
18: w <— the worst individual in P
19: remove w from P
20: Update all z € P fitness values
21:  until all neighbors are explored or w # z*
22: end for

23: E <— infiniteOrderLorenzNonDominatedSolutions(F U P, T")
24: if E does not change then

25:  return B

26: else

27:  perform another local search step

28: end if
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The algorithm begins by selecting nondominated solutions of a given initial
population P. For this, we use the infiniteOrder LorenzNon-Dominated-
Solutions function (having two parameters P and T'). According to the values
of W for all solutions of P, this function selects, at most, the T first L-
nondominated solutions of P (see Algorithm [3). To select the closest solutions
to the reference point, W is used with the same weights as those used to fix the
reference point (these weights are given by the decision maker). The parameter
T allows the decision maker to control the number of solutions stored in the
archive and the number of solutions returned by the algorithm. In this work,
we use the same value of T for both, but one could use two different values.
After that, the fitness of each solution z in P is evaluated as follows.

R2(z, A, 2*) = R2(P, A, 2*) — R2(P\{z}, A, 2%) (12)

Then, the IOLD-R2-IBMOLS algorithm applies a local search step to improve
each solution x in P. A neighbor is accepted if its R2 indicator value is better
than the worst solution in P. The neighborhood generation stops when the
entire neighborhood of a considered solution is explored or once an improving
solution is found (first neighboring solution that improves the quality of P
with respect to the R2 indicator). The neighborhood is not explored entirely
for seeking the best neighbor for two main reasons: i) it often enables to
speed up the convergence of the population, since most of the time only a
small part of the neighborhood is generated. ii) Contrary to the selection of
the best neighbor which leads to more deterministic local search steps, the
selection of a first improving move allows us to reach different local optima
(in the sense of multiobjective optimization) from a single initial solution.
The entire local search is terminated when the archive E of L-nondominated
solutions has not received any new solution during a complete local search
step. We note that the extreme objective values within the population are
computed after the initialization process as well as after each local search
step. To compute the R2 indicator value of a solution x, the normalized values
of objective functions NFj(z) are employed. Moreover, all fitness values of
members of current population P are updated after every change of P (when
a new neighbor is added to P and when an individual is deleted from P).

The main difference between IOLD-R2-IBMOLS and R2-IBMOLS is the
introduction of the in finiteOrder LorenzNonDominatedSolutions function
(Algorithm . Indeed, on the one hand, this function allows us to reduce
the number of nondominated solutions to be presented to the decision maker
by introducing the parameter 7', ensuring that the selected solutions are the
most preferable (with the use of W). On the other hand, fixing the size of the
archive allows reducing significantly the algorithm runtime, which is shown in
the next section.

In the iterated version of IOLD-R2-IBMOLS (Algorithm , a current ap-
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Algorithm 3 infiniteOrderLorenzNonDominatedSolutions(P, T") procedure

1: Input: P (set of solutions); T'(number of L-nondominated solutions to be
selected)
Output: S (set of L-nondominated solutions (|.S| < T'))
for all z € P do
Compute W(z)
end for
Sort solutions of P in increasing order of W values /* for maximization prob-
lem, sort in non-increasing order */
7. 8" «<— T first solutions in P
8: S <— L-nondominated solutions in S’

S

proximation set AS is maintained and updated. After each local search, a new
initial population is created for the next IOLD-R2-IBMOLS execution, using
the initWalk function.

Algorithm 4 Iterated IOLD-R2-IBMOLS algorithm
1: Input: N (population size) ; T' (size of the archive)
2: Qutput: AS (approximation set)
3: AS«+— o

4: while stopping condition not achieved do

5. P <+— initWalk(AS,N)

6:

7

8

9:

E <— IOLD-R2-IBMOLS(P,T) /* Local search step */
AS «— infiniteOrder Lorenz N onDominatedSolutions(AS U E,T')
: end while
Return AS

Even if the initial population is entirely created randomly for the first itera-
tion, when we iterate the local search process, the initWalk function generates
a new population P for the next iteration using information about good solu-
tions obtained during the previous iterations. Indeed, the initWalk function
applies random mutations on N randomly selected solutions of AS (each so-
lution of AS can only be selected at most once). To each selected solution, the
mutation is applied with a probability of 1/n (where n is the number of ac-
tions) and the mutated solution is added to the population if it is not present
in the population and if it additionally verifies the budget constraint § and
the objective thresholds. When |AS| < N, all solutions of AS are selected and
the missing individuals of P are filled with new random solutions.

5.2 The IOLD-BMOLS algorithm

As mentioned in Section .2 we can use equation [J] to compare two solutions
1 and x9 at high level of L-dominance and the solution having the smallest
score (the highest in the maximization case) for W is preferable to the other

16



Algorithm 5 IOLD-BMOLS algorithm

1: Input: P (initial population of size N); T'(size of the archive)
2: Output: E (Pareto approximation set (|E| < T))
3: E <— infiniteOrderLorenzNonDominatedSolutions(P, T')
4: /* Calculate fitness values of individual  in P */
5. for all z € P do
6:  fit(z) = W(x)
7: end for
8: /* Local search step */
9: for all z € P do
10: forall j € {1,..,m} do
11: updateMinMax(j) /* Update minimal m; and maximal M; (for objective
functions normalization)*/
12:  end for
13: repeat
14: x* <— one unexplored neighbor of x
15: P+— PuUzx*
16: fit(z*) = W(x*) /* Compute z* fitness */
17: w <— the worst individual in P /* Individual with the smallest value of
w */
18: remove w from P
19:  until all neighbors are explored or w # x*
20: end for

21: E <— infiniteOrderLorenzNonDominatedSolutions(E U P, T')
22: if E does not change then

23:  return B

24: else

25:  perform another local search step

26: end if

one. So, in the IOLD-BMOLS algorithm (Algorithm, we use W to compute
the fitness of each solution z of the current population P, which is also applied
in the selection process.

Like IOLD-R2-IBMOLS, IOLD-BMOLS uses the infiniteOrdredLorenz-
NonDominatedSolutions function (Algorithm [3) to select all nondominated
solutions of a given initial population P. Then it computes the fitness of each
solution z in P with the formula of W given in equation [9] A local search
step is applied in IOLD-BMOLS, like in IO LD-R2-IBMOLS, except that the
worst individual from the population P is chosen for deletion. In TOLD-R2-
IBMOLS, the worst individual is selected in relation to its value of the R2
indicator, but in /OLD-BMOLS, the R2 indicator is replaced with W, so the

worst individual is selected in relation to its W score.

IOLD-BMOLS has also an iterated version (Algorithm|[]) with a similar struc-
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ture to the iterated version of TOLD-R2-IBMOLS. We just replace 1OLD-
R2-IBMOLS by IOLD-BMOLS for the local search step.

Algorithm 6 Iterated /TOLD-BMOLS algorithm

1: Input: N (population size) ; T' (size of the archive)

2: Qutput: AS (approximation set)

3 AS +— o

4: while stopping condition not achieved do

5. P <«— initWalk(AS, N)

6: FE<«— IOLD-BMOLS(P,T) /* Local search step */

7. AS «— infiniteOrder LorenzNonDominatedSolutions(AS U E, T)
8: end while

9: Return AS

5.8 The IOLD-EA algorithm

We now propose to use W in the selection process of an IO LD-based evolu-
tionary algorithm called: JOLD-EA (Algorithm [7]). The formula W is used
to compute the fitness of the solutions in the population P and to select the
members of the next generation. Indeed, contrary to evolutionary algorithms
based on calculation of P-dominance in the selection process, like NSGA-II
[13] and NSGA-IIT [14], which could be runtime expensive (especially on large
size problems), the use of W in the selection process allows us to reduce sig-
nificantly the runtime of the algorithm (since we do not need to check the
dominance between the individuals of the population).

Algorithm 7 IOLD-EA algorithm
: Input: P (initial population of size N), nbGen (number of generations)
Output: E (Pareto approximation set)
t=1
,Pt - P
while ¢t < nbGen do

Q; =child(P;)

Ry =P UQ,

for all x € R, do

fit(x) = W(x)

end for

t=t+1

P; «— infiniteOrdredLorenzSelection(R:, N)
: end while
: E <— infiniteOrdredLorenzSelection(P;, T')

©oNa R W

= s =
oM O

IOLD-EA has three parameters: an initial population P of size N, a given
number of generations to perform nbGen, and a number of solutions to re-
turn to the decision maker T'. Then, for a given t"* generation and a parent
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population P;, the function child(P;) creates an offspring population Q, of
N individuals, by recombination and mutation of P;. The formula W is used
to compute the fitness of each individual of the combined parents and off-
spring population R; = P, U Q; (of size 2V). To construct the new population
Pyi1, the infiniteOrdredLorenzSelection function (Algorithm (3)) selects the
N best individuals of R; according to their computed scores for WW. In the
end, the in finiteOrder Lorenz N on DominatedSolutions function returns to
the decision maker the T best solutions of the last population P,pgen. A de-
tailed description of TOLD-EA is outlined in Algorithm [7]

A summary of the proposed algorithms is given in Table 1.

Method Description

IOLD-R2-IBMOLS IOLD-R2-IBMOLS combines R2-IBMOLS and in finiteOrder Lorenz-N on-
DominatedSolutions function (Algorithm.

One iteration of IOLD-R2-IBMOLS is composed of:

- one iteration of R2-IBMOLS.

- selection of the T first L-nondominated solutions generated by the iteration
of R2-IBMOLS. This selection is mad according to the value of each solution
for the metric W.

In the iterated version of IOLD-R2-IBMOLS only the T first L-nondominated
solutions are archived.

IOLD-BMOLS In the IOLD-BMOLS algorithm, the R2 indicator of R2-IBMOLS is replaced
with the formula W to compute the fitness of each solution x of the current
population P. W is also used in the selection process.

In the iterated version of JOLD-BMOLS, only the T first L-nondominated
solutions are archived.

I0OLD-EA In IOLD-EA, the formula W is used to compute the fitness of the solutions in
the population P and to select the members of the next generation of TOLD-
EA algorithm.

IOLD-EA has three parameters: an initial population P of size N, a given
number of generations to perform nbGen, and a number of solutions to return
to the decision maker T'.

The T first L-nondominated solutions to return to the decision maker are
selected also according to their values for W.

Table 1
Summary of the studied algorithms.

6 Experimental setup

In this section, we present a set of experiments allowing a comparison of the
results obtained with the proposed algorithms (/OLD-R2-IBMOLS, IOLD-
BMOLS and IOLD-EA) with four reference methods: L-NSGA-IT [15], NSGA-
I11 [14], R2-IBMOLS [11] and MOEA /D [43]. With these experiments, we aim
to show that including L-dominance within a multiobjective algorithm allows
us to obtain high quality solutions while guaranteeing fairness between objec-
tives. Moreover, the simplicity of the JOLD formulation (Equation [J) makes
it easy to use for the fitness assessment of multiobjective local search algo-
rithms such as IBMOLS as well as in the selection process of an evolutionary
multiobjective algorithm.
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L-NSGA-II [15] is a L-dominance based version of the well-known NSGA-II
algorithm [13] algorithm. The main difference between them is the use of L-
dominance in the fast nondominated sorting procedure of NSGA-II. NSGA-III
(or many-objective NSGA-II) [I4] remains similar to the original NSGA-IT al-
gorithm with significant changes in its selection mechanism. The maintenance
of diversity among population members in NSGA-III is aided by supplying
and adaptively updating a number of well-spread reference points, whereas
NSGA-II uses a crowding distance operator to select the solutions of the last
front that maximize its diversity. In NSGA-III, the crowding operator is re-
placed by a reference point based approach (for more details, see [14]). Finally,
MOEA/D [43] decomposes a multiobjective optimization problem into several
scalar optimization subproblems, which are simultaneously optimized by us-
ing information from their neighboring subproblems. In [19], it is shown that
MOEA/D with the weighted sum approach also works well on the many-
objective knapsack problem.

6.1 Instances generation

Based on the action plan optimization model given in Section [2/and a study of
ten real action plans, we have generated several partially structured instanceﬂ
with different number of actions, n € {50, 100, 150, 250, 500} and different
number of objectives to optimize, m = 2,3,4,5,6,8. In our experiments, we
limited the number of the objectives to eight because in practical cases we have
rarely more. To design instances that are similar to the real action plans, for
each objective function, an action has a chance of 50% to be neutral, 40% to
have a positive impact and 10% to have a negative impact. Moreover, the cost
of 40% of the actions is set to zero. The non-null action values are uniformly
taken from the interval [0,100] (positively or negatively). The non-null action
costs are uniformly taken in the interval [—10%, 10].

6.2 FEzxperimental protocol

Using the instances proposed above, we have tested /O LD-R2-IBMOLS, IOLD-
BMOLS, IOLD-EA, R2-IBMOLS, L-NSGA-II, NSGA-III and MOEA /D with
the following parameters: for L-NSGA-II, NSGA-III, IOLD-EA and MOEA /D,
we have used a population of size of 100, a mutation probability of 1/n (where
n is the number of the actions). For IOLD-R2-IBMOLS, I0LD-BMOLS and
R2-IBMOLS we have used the iterative version with a fixed population of size
of 10. The choice of a population size of 10 solutions in our experiments is based

2 These instances are available at:
http://www.info.univ-angers.fr/~hao/gepiplanning/R2-IBMOLS.zip
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on the recommendation given in [5] that IBMOLS performs well especially
with a small population (no more than 15 individuals). For each algorithm,
the initial population is generated randomly while satisfying the following con-
straints: 1) the costs of the individuals do not exceed the budget 3; ii) each
individual z should improve all the objectives (f;(x) > 0 Vj € {1,...,m}).
Algorithm [8 shows the initial population generation procedure.

Algorithm 8 Initial population generation
1: Input: N (population size), 8 (budget)
2: Qutput: P (initial population)

3. P=go
4: while |P| < N do

5. x = randomSolution()

6:  while cost(z) > [ do

7 x = x less one random action with positive cost
8: end while

9:  for each objective function f; do

10: while f;(z) <0 do

11: x = x less one random action with negative value for f;
12: end while

13:  end for

4. P=PU{x}

15: end while

16: Return P

Moreover, the following selection strategy is adopted: one random neighbor of
each individual of the current population is selected to be a member of the
child population in L-NSGA-II, NSGA-IT and IOLD-EA or to integrate the
current population of /TOLD-BMOLS, I0LD-R2-IBMOLS and R2-IBMOLS.
The neighborhood generation remains unchanged: the " neighbor of the so-
lution = (aq, as, ..., a,) is obtained by flipping the value of a; and only the
neighbors verifying the constraint 8 and the objective thresholds are consid-
ered as candidate (when the cost of the neighbor is greater than /3, another
neighbor is generated). For all instances, the budget constraint § is fixed to
one million and the thresholds are fixed to 1 (¢; > 1 V5 € {1,...,m}).

To compute the R2 indicator value of each solution x of IOLD-R2-IBMOLS
and R2-IBMOLS, equation [12]is used with the reference point z* = (2,2, ..., 2)
and 100 weight vectors (JA] = 100), uniformly distributed in the objective
space. The same weight vectors are used in the MOEA /D algorithm with the
weighted sum approach.

To generate these vectors, we have used the hypervolume-based algorithm
proposed in [37]. This algorithm uses the hypervolume indicator to produce
weight vectors so that they uniformly disperse and maximize their hypervol-
ume in the objective space. This method is interesting because it does not
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depend on the dimension of the objective space and works in the same way
for both low-dimensional and high-dimensional spaces. However, this method
can be time consuming if the weight vectors are generated at each iteration. In
our experiments, the weight vectors are generated once and remain the same
throughout each experiment. Also, in [37], the first weight vector is generated
randomly, in our experiments it is fixed according the reference point. The
reference point z* is also used within NSGA-III. We note that the reference
points of NSGA-IIT could be predefined in a structured manner or supplied
by a decision maker and their number could be large. In ours experiments, we
are focusing on the region of objective space given by z* (Figure . We have
finally fixed the parameter T' of IOLD-BMOLS, IOLD-R2-IBMOLS and the
neighborhood size of MOEA /D to 10.

7%
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Fig. 2. Target region of the bi-objective space (gray area).

For the quality assessment, we have performed 30 runs of each method on each
instance. The stopping condition for each run corresponds to 200 % n % m steps
of local search for TOLD-BMOLS, I0LD-R2-IBMOLS and R2-IBMOLS and
200+n*m generations for TOLD-EA | L-NSGA-IT and NSGA-III (where n is the
number of actions and m is the number of objectives). The experiments were
performed on an Intel core i5-2400 CPU machine with 2 x 3.10Ghz frequency
and 16Gb of RAM.

6.3 Computational results

In this section, we present the experimental results obtained on the simulated
data with the experimental protocol described previously.

Figures [3] and [4] show approximation sets obtained with the proposed algo-
rithms (/OLD-BMOLS, IOLD-R2-IBMOLS and IOLD-EA) over 30 runs
compared to NSGA-III, L-NSGA-II, R2-IBMOLS and MOEA/D on three
representative instances: an instance with 2 objectives and 50 or 500 actions
(Figure [3) and another instance with 4 objectives and 500 actions (Figure |4]).
Each plot of Figure [4| shows the obtained results for two objectives.

These figures show that the solutions obtained by /OLD-BMOLS, IOLD-R2-
IBMOLS and IOLD-EA are nondominated by those obtained by NSGA-III,
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¢ [OLD-BMOLS ¢ IOLD-BMOLS

¢ IOLD-R2-IBMOLS * IOLD-R2-IBMOLS

¢ [OLD-EA + IOLD-EA
NSGA-IIT NSGA-IIT
L-NSGA-IT 1,5x10* L-NSGA-IT

¢ R2-IBMOLS ¢ R2-IBMOLS

¢ MOEA/D + MOEA/D

1,25x10*
10

f, 7500
5000

2500

f,

Fig. 3. Obtained solutions by the tested algorithms for the instances 2-50 (left) and
2-500 (right).

e JOLD-BMOLS

e IOLD-EA

e [OLD-R2-IBMOLS
NSGA-III
L-NSGA-II

e MOEA/D

e R2-IBMOLS

Fig. 4. Obtained solutions by the tested algorithms for the instance 4-500.

L-NSGA-II, R2-IBMOLS or MOEA/D. Moreover, according to the preferred
direction (gray arrow) given by the reference point z* = (2, ..,2), the solutions
obtained by IOLD-BMOLS, IOLD-R2-IBMOLS and IOLD-EA are better
located in the bi-objective space of Figure 3| and, also better located for three
out of four objectives of Figure . Indeed, on the 4" objective (f; in Figure
, R2-IBMOLS obtained better solutions than IOLD-BMOLS, IOLD-R2-
IBMOLS and IOLD-EA. Also, we note that the blue surface of Figure[d]is wide
because R2-IBMOLS generates more nondominated solutions than the other
algorithms (the archive of R2-IBMOLS was not limited in our experiments).

As our performance metric, we use the Euclidean distance from reference point
z* applied to the obtained approximation sets. Indeed, in our experiments, we
target the central region of the objective space. This targeting is given by
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Instance | IOLD- |IOLD-R2-|IOLD-EA|NSGA-III|L-NSGA-II| R2-IBMOLS|MOEA /D
BMOLS | IBMOLS
250 2.096 2.050 1.999 2.080 2.049 1.912 2.072
2.100 2.111 2.078 2.090 2.109 2.018 2.003 2.053
2150 2.118 2.080 2.087 2.140 1.911 1.937 2.134
2250 2.120 2.104 2.097 2.142 2.03} 1.991 2.141
2,500 2.119 2.097 2.009 2.155 2.097 2.032 2.173
3,50 2.531 2.394 2./69 2.729 2.540 2.567 2.631
3.100 2.389 2.459 2413 2774 2.493 2.521 2714
3150 2.552 2.377 2449 2.734 2.486 2.579 2.682
3250 2.476 2.472 2.516 2.825 2.462 2.697 2.729
3.500 2.481 2.482 2.400 2.672 2.429 2.656 2.652
4250 2.864 2.849 2.669 3.351 2.981 2.992 3.113
4.100 2.910 2.884 2.78) 3.452 3.101 2.768 2.924
4150 2.805 2.895 2.737 3.353 2.763 3.035 3.118
4250 3.025 2.664 2.713 3.339 2.969 3.046 3.101
4.500 3.061 2.926 2.810 3.480 2.994 3.129 3.242
550 3.117 3.208 3.194 3.814 3.237 3.566 3.613
5100 3.214 3.158 3.033 3.919 3.416 3.655 3.798
5150 3.301 3.106 3.082 3.728 3.246 3.640 3.673
5250 3.324 3.171 2.930 3.915 3.533 3.709 3.812
5500 3.217 3.149 3.144 3.625 3.243 3.742 3.462
650 3.467 3.598 3.496 4.220 3.378 3.699 3.727
6100 3.699 3.582 3.509 4.091 3.610 4.035 4.068
6150 3.631 3.569 3.358 4.206 3.767 3.031 4.057
6250 3.530 3.501 3.328 4.260 3.535 3.051 4.093
6500 3.626 3.517 3.308 3.807 3.649 3.959 3.713
850 4182 1.127 4.005 5.032 4.181 4.263 4.367
8100 4.076 4175 1.079 5.058 4121 4.433 1.628
8150 4.085 4.024 1.056 4.594 4.139 4.498 4.529
8250 4.109 7.079 3.910 4.381 4.347 4.582 4.361
8500 4.170 1.051 3.986 4.445 4.272 4573 4.393
Table 2

Mean of the minimal Euclidean distances from the approximation sets to the refer-
ence point z*.

the equality of the component of the reference point z* = (2,2, ...,2) of R2-
IBMOLS, IO0LD-R2-IBMOLS and NSGA-III and by the L-dominance relation
used in IOLD-EA, IOLD-BMOLS. So, the best approximations are formed by
solutions that are the nearest to the reference point. To measure the distance
of the whole approximation sets from the reference point, we have computed
the minimal, the median and the maximal distances from the reference point
to the approximation sets obtained by each algorithm.

Tables 2, 3 and 4 report the comparison between IO LD-BMOLS, IOLD-R2-
IBMOLS, IO0LD-EA, NSGA-III, L-NSGA-II, R2-IBMOLS and MOEA/D in
terms of mean values obtained for minimal, median and maximal Euclidean
distances over 30 runs, using the set of 30 instances of different sizes (approx-
imation set with a smaller distance value is better). The first column shows
the instance name, indicating its main characteristics: m and n respectively
correspond to the number of objectives and the number of actions consid-
ered. Each cell of the table contains the mean value for the corresponding
distance over 30 runs. The values in bold style mean that the corresponding
algorithm is better in average than the other algorithms for the considered
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Instance | IOLD- |IOLD-R2-|IOLD-EA[NSGA-III|L-NSGA-II| R2-IBMOLS|MOEA /D
BMOLS | IBMOLS
2.50 2.201 2.070 2.087 2.105 2.088 2.019 2.097
2.100 2.121 2.105 2.105 2.157 2.065 2.071 2.132
2.150 2.152 2.121 2.112 2.170 2.054 2.060 2.164
2250 2.130 2.153 2.114 2.192 2.075 2.076 2.176
2.500 2.129 2.139 2.095 2.229 2.112 2.102 2.188
3.50 2.588 2.444 2.565 2.975 2.600 2.719 2.823
3.100 2.452 2.500 2.475 2.916 2.664 2.521 2.871
3.150 2.631 2.437 2.506 2.917 2.616 2.716 2.892
3.250 2.520 2.527 2.642 3.043 2.713 2.815 2.995
3.500 2.527 2.592 2.478 2.787 2.589 2.800 2.754
450 2.932 2.984 2.993 3.519 3.208 3.311 3.403
4100 2.984 3.013 2.997 3.642 3.325 3.090 3.448
4150 2.913 3.047 2.989 3.596 3.157 3.326 3.501
4250 3.075 2.965 2.970 3.721 3.180 3.337 3.599
4500 3.118 3.056 3.005 3.793 3.166 3.376 3.666
5.50 3.384 3.391 3.433 4.001 3.622 3.819 3.868
5.100 3.376 3.333 3.297 4.100 3.654 3.898 3.893
5_150 3.503 3.36/ 3.294 4.116 3.529 3.882 4.002
5250 3.504 3.342 3.242 4.091 3.712 4.007 4.046
5_500 3.312 3.338 3.395 4.089 3.615 4.001 4.075
650 3.554 3.724 3.718 4.394 3.865 4.042 4111
6.100 3.757 3.814 3.704 4.529 4.040 4.351 4.407
6_150 3.703 3.795 3.669 4.479 4.039 4.290 4.378
6250 3.688 3.727 3.602 4.444 3.944 4.266 4.353
6_500 3.742 3.668 3.542 4.650 3.901 4.411 4.451
8.50 4.313 1.251 4.164 5.140 4.549 5.408 5.030
8.100 1.322 4.358 4.281 5.218 4.687 5.623 5.127
8.150 4.207 1.214 4.269 4.900 4.647 5.580 4.663
8250 1.212 4.257 4.137 4.718 4.689 5.599 4.697
8_500 1.273 4.204 4.170 4.728 4.616 5.608 4.701
Table 3

Mean of the median Euclidean distances from the approximation sets to the refer-
ence point z*.

instance and corresponding distance. The values in italic style indicate that
the corresponding algorithm is better than the algorithm corresponding to the
values in normal style, but it is worse than the algorithm corresponding to the
values in bold style, for the corresponding instance and distance (i.e., the 2"¢
best algorithm).

Using the non-parametric Mann-Whitney test and the Bonferroni correction
to adjust the individual significance levels, we perform a pair-wise comparison
of the algorithms for the obtained minimal, median and maximal distances.
We obtain the p—value corresponding to the lowest significance level for which
the null-hypothesis is rejected. In our experiments, we say that algorithm A;
outperforms algorithm A, if the Mann- Whitney test provides a confidence level
greater than 95% (p—value < 0.05). Table 5 reports the obtained results for
each pair of algorithms. Cells containing ”yes” means that the algorithm in the
corresponding line is statistically better than the algorithm in the correspond
column. Cells containing "no” means that the algorithm in the corresponding
line is not statistically better than the algorithm in the correspond column.
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Instance | IOLD- |IOLD-R2-|IOLD-EA|[NSGA-III|L-NSGA-II| R2-IBMOLS [MOEA /D
BMOLS | IBMOLS
2,50 2.249 2.241 2.238 2.250 2.236 2.247 2.287
2100 2.236 2.236 2.245 2.238 2.243 2.247 2.293
2150 2.236 2.338 2.236 2.238 2.236 2.244 2.278
2250 2.236 2.269 2.236 2.237 2.243 2.251 2.261
2500 2.236 2.238 2.238 2.259 2.236 2.241 2.273
3,50 2.749 2.703 2.812 3.099 2.884 2.928 3.042
3.100 2.655 2.654 2.690 3.201 2.962 2.997 3.087
3150 2.779 2.728 2.860 3.223 2.966 3.003 3.113
3250 2.627 2.840 2.856 3.377 2.912 3.013 3.204
3,500 2.785 2.994 2.743 3.196 2.968 3.007 3.184
450 3.275 3.212 3.263 3.711 3.556 3.578 3.601
4.100 3.117 3.246 3.236 3.766 3.596 3.439 3.677
4150 3.134 3.284 3.221 3.805 3.472 3.595 3.756
4250 3.194 3.227 3.241 3.816 3.482 3.589 3.782
4.500 3.248 3.246 3.282 3.922 3.490 3.600 3.837
550 3.803 3.599 3.719 4.161 4.041 4.100 4.127
5100 3.566 3.564 3.648 4.244 4.005 4.115 4.165
5150 3.628 3.566 3.555 4.258 3.023 4.124 4.193
5250 3.689 3.632 3.525 1.211 4.016 1.245 1.202
5500 3.405 3.569 3.683 4218 3.967 1.219 1.210
650 3.971 3.947 3.956 4.583 4312 1.483 4.497
6100 3.935 4.095 3.912 4.667 4.484 4.580 1.612
6150 3.860 4311 3.927 4.625 4.413 4.563 4.603
6250 3.847 3.050 3.866 4.585 4.412 4.554 4.551
6500 3.920 3.907 3.840 4747 4.200 4.665 4.691
850 1.551 4.568 4.445 5.326 5.035 5.656 5.111
8100 1.526 4.655 4.510 5.370 5.131 5.656 5.167
8150 4.440 1454 4.531 5.278 5.096 5.656 5.213
8250 4.387 4.432 1418 5.290 4.996 5.656 5.266
8500 4.432 4421 4.415 5.131 4.941 5.743 5.107
Table 4

Mean of the maximal Euclidean distances from the approximation sets to the ref-
erence point z*.

IOLD-BMOLS | IOLD-EA |IOLD-R2IBMOLS | L-NSGA-II| NSGA-III| R2-IBMOLS [ MOEA /D

I0LD-BMOLS no no yes yes yes yes

I0OLD-EA yes yes yes yes yes yes

IOLD-R2-BMOLS yes no yes yes yes yes

L-NSGA-II no no no yes yes yes

NSGA-III no no no no no no

R2-IBMOLS no no no no yes yes
MOEA /D no no no no yes no

Table 5

Statistical comparison of the algorithms with the Mann- Whitney test (the results
presented in the table are the same for the three distances).

From Tables 2, 3, 4, and 5, we can conclude that TOLD-BMOLS, IOLD-
EA and IOLD-R2-IBMOLS are more efficient than NSGA-III, L-NSGA-II
R2-IBMOLS and MOEA/D. Table 2, 3 and 4 show that, in general, the solu-
tions obtained by IOLD-BMOLS, IOLD-R2-IBMOLS, IOLD-EA are closer
to the specified region. For example, if we consider the minimal distance to
the reference point (Table 2), R2-IBMOLS obtains best scores only for 4 in-
stances (72.50”,72.1007,72_250” and ”"4.100”) and L-NSGA-II obtains best
scores just for three instances (72_150”,73.250” and ”76_50"). NSGA-III ob-
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tains no best score at all and it is less efficient than MOEA /D, which is
consistent with the finding in [21] about the weak convergence ability of this
algorithm on many objective problems. Considering our proposed algorithms,
Table 2 also shows that ITOLD-EA is more efficient than /0L D-BMOLS and
1OLD-R2-IBMOLS. This conclusion is confirmed by the Mann-Whitney test
in Table 5. Indeed, IOLD-EA outperforms all the considered algorithms and
10LD-R2-IBMOLS outperforms all the other algorithms except IOLD-EA.

In the practical case, it is desirable to present a reduced number of high-quality
solutions to the decision maker. Indeed, one solution could have several tens
of actions and the decision maker should be able to choose the most ade-
quate action plan easily. Table 6 reports the average number of nondominated
solutions obtained with each algorithm over 30 runs and the corresponding
average runtime (respectively nbSol and t). We note that the number of ob-
tained solutions is highly variable for the algorithms. The parameter T of the
10LD-BMOLS, I0LD-R2-IBMOLS and IOLD-EA algorithms allows the de-
cision maker to fix the number of desired solutions. In our experiments, we
have fixed the parameter 7" to 10 solutions (7" = 10). The number of nondom-
inated solutions obtained by NSGA-III equals the population size being used
(100 solutions in our experiments). This means that all selected solutions of
the last generation are nondominated solutions. Depending on the size of the
instances (especially the number of the actions), MOEA /D obtains a variable
number of nondominated solutions.

Table 6 also shows that even for the smallest instance (“2_50”), NSGA-III,
L-NSGA-II and R2-IBMOLS generate a high number of output solutions,
making decision making difficult. However, the in finiteOrder LorenzNon-
DominatedSolutions procedure (Algorithm [3)) could be used to order the
generated nondominated solutions and select the most interesting one(s) for
the decision maker.

Concerning the runtime, Table 6 shows that for all the considered instances,
the proposed algorithms (IOLD-EA, IOLD-BMOLS and 0L D-R2-IBMOLS)
are more time efficient compared to NSGA-III, L-NSGA-II and R2-IBMOLS,
except MOEA/D. Indeed, MOEA /D is faster than the proposed algorithms.
This gap could be due to the transformation operated on the objective vectors
to get the corresponding Lorenz vector in the algorithms using JOLD. We also
note that the use of IOLD and the parameter 7" within R2-IBMOLS allows
one to reduce greatly the runtime of R2-IBMOLS (up to a factor of 275 for
the instance 3-500 and a factor of 106 for the instance 6_500).
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7 Conclusion and perspectives

Within the context of elaborating practical and efficient action plans in social
and medico-social structures, we have studied the contribution of the infinite
order Lorenz dominance (IOLD), instead of the Pareto dominance, within
three population-based multiobjective algorithms: IOLD-BMOLS, TOLD-
R2-BMOLS and IOLD-EA. Based on this work, we draw two main conclu-
sions. First, using the infinite order Lorenz dominance within indicator-based
local search-based or evolutionary algorithms provides a viable method to find
high-quality and fair compromise solutions for our action planning problem.
Second, this approach provides the decision maker with an effective means to
control the number of generated solutions, while helping to reduce significantly
the runtime of the algorithm.

As indicated in the introduction, this work is part of the decision support sys-
tem “MSQualité” developed by the Company GePlI for social and medico-social
sector. Integrating IOLD-R2-IBMOLS and IOLD-EA within “MSQualité”
constitutes a valuable means that helps managers to elaborate effectively ef-
ficient action plans to continually improve the quality of their structures. To
further assist the decision maker, we plan to integrate a visualization tool like
the chord diagram proposed in [26], which is based on circular layout. This
visualization method provides an interesting way to present large volume of
data and enables the decision maker to observe, in the 2-D space, the rela-
tions among elements of the data and the relations between the optimization
objectives. Such a visualization might help the decision maker to detect har-
mony or conflicts between objectives/actions, consequently, group harmonious
objectives or actions.

Finally, this work shows that the proposed approaches work well for the prac-
tical problem with many objectives, an interesting future study would be to
experiment such methods on other many objective problems. Also, this work
demonstrates that even compared to powerful multiobjective methods like
MOEA/D and NSGA-III, algorithms based on Lorenz dominance (instead of
Pareto dominance) compete favorably. Consequently, it would be interesting
to investigate the idea of introducing fairness (based on L-dominance) within
other popular methods such as MOEA /D [43], MOGLS [20/22] and PICEA
[42]. Indeed, fairness is an important issue in many multiobjective decision
making problems, while studies on multiobjective optimization integrating
fairness or equity are still scarce. As a result, introducing dedicated mech-
anisms (e.g., those studied in this work) in existing multiobjective methods
will enlarge their applications to numerous situations where fair and equitable
solutions are explicitly sought.
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