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Abstract. The unconstrained binary quadratic programming (UBQP)
problem is a general NP-hard problem with various applications. In this
paper, we present a multilevel algorithm designed to approximate large
UBQP instances. The proposed multilevel algorithm is composed of a
backbone-based coarsening phase, an asymmetric uncoarsening phase
and a memetic refinement phase, where the backbone-based procedure
and the memetic refinement procedure make use of tabu search to obtain
improved solutions. Evaluated on a set of 11 largest instances from the
literature (with 5000 to 7000 variables), the proposed algorithm proves
to be able to attain all the best known values with a computing effort
less than any existing approach.

Keywords: multilevel approach; unconstrained binary quadratic opti-
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1 Introduction

The objective of the unconstrained binary quadratic programming (UBQP)
problem is to maximize the function:

f(x) = x′Qx =
n∑

i=1

Q(i, i) · xi +
n∑

i=1

n∑

j=1,j 6=i

Q(i, j) · xi · xj (1)

where Q = [Q(i, j)] is an n by n symmetric matrix of constants and x is an n-
vector of binary (zero-one) variables, i.e., xi ∈ {0, 1}, i = 1, . . . , n. (Considering
that a general item of f(x) is (Q(i, j)+Q(j, i)) ·xi ·xj , we set Q(i, j) = Q(i, j)+
Q(j, i) and Q(j, i) = 0, (i < j) to simplify the coefficient of xi · xj .)

UBQP is a well-known NP-hard problem that can formulate numerous appli-
cations in diverse areas, such as those from financial analysis [23], social psychol-
ogy [14], machine scheduling [1], computer aided design [19] and cellular radio
channel allocation [9]. Moreover, it is a unified model for a variety of combina-
torial optimization problems, such as graph coloring problem, maxcut problem,
set packing problem, etc. These problems can be easily recast into the form of



UBQP, and then solved by applying any UBQP algorithm. More information
can be found in [18] for the general transformation procedures.

Due to its theoretical significance as an NP-hard problem and its immense
potential applications, UBQP has attracted researchers to design various solution
procedures to tackle it. Exact methods based on branch and bound or branch and
cut [7, 15, 29] are quite useful to obtain optimal solutions to instances of limited
sizes. However, because of the high computational complexity, heuristic and
metaheuristic algorithms are commonly used to create approximate solutions
to larger problem instances. Examples of these methods include local search
[8], simulated annealing [4, 16], tabu search [11, 13, 27, 28, 32, 33], scatter search
[2], evolutionary and memetic algorithms [6, 20, 21, 25, 26], and neural network
algorithm [34].

These algorithms have continually improved our capability to find satisfac-
tory solutions to many problem instances. However, we observe that many meta-
heuristic UBQP algorithms encounter difficulties when they are applied to large
instances (with more than 5000 variables) .

In this work, we are interested in investigating the so-called multilevel ap-
proach to handling large UBQP instances. The multilevel approach is known to
be useful to tackle large instances of several other types of combinatorial opti-
mization problems [36]. For example, multilevel algorithms are among the best
performing approaches for large graph partitioning problems [31, 35, 24, 5].

Generally, the multilevel paradigm consists of three phases [36]: (1) a coars-
ening phase to create a hierarchy of coarser (smaller and intermediate) problems
through grouping or extracting problem variables; (2) an initial optimization
phase to obtain a solution to the coarsest (smallest) problem using an optimiza-
tion procedure; (3) an uncoarsening phase (also called projection) to recover
progressively each intermediate problem and apply to it the optimization proce-
dure to further improve the solution quality.

In this paper, we investigate for the first time the multilevel approach ap-
plied to UBQP. The proposed multilevel algorithm integrates a coarsening phase
based on the backbone notion [32] (Section 2.2), a population-based memetic
optimization procedure (Section 2.4) and an asymmetric uncoarsening phase
(Section 2.5). Experiments on a set of 11 largest UBQP benchmark instances
from the literature demonstrate that our proposed algorithm is able to attain
the current best known results with much less computing time than any other
existing algorithm (Section 3).

2 The Backbone Multilevel Memetic Algorithm

2.1 The general multilevel scheme

The general scheme of our multilevel algorithm for UBQP is shown in Algorithm
1. To begin with, the initial matrix Q0 is transformed into a sequence of coarser
matrices Q1, . . . , Qq such that n1 > . . . > nq where each ni (i = 1, . . . , q) is
the number of variables in Qi. To obtain each intermediate matrix, we apply



the idea of a backbone to create and extract backbone variables, as explained in
Section 2.2). This coarsening phase stops when q reaches a prefixed value called
the threshold level. For the series of matrices Q0, . . . , Qq, we call Q0 the highest
level problem and Qq the lowest level problem.

The next phase aims to generate an initial (optimized) solution to the lowest
level problem Qq. In our case, we employ the population-based hybrid meta-
heuristic approach (HMA) presented in [21]. Here, an initial population of solu-
tions Pq for Qq is generated and improved by HMA.

Finally, the uncoarsening phase successively selects and adds some previously
extracted variables to the current problem Qi (0 < i < q), leading to a higher
level (and larger) problem Qi−1. The solutions Pi of the current problem together
with the newly added variables are projected to the new problem Qi−1 and
further optimized by HMA to obtain an improved population Pi−1 of solutions.
The uncoarsening phase stops when the highest level i = 0 is reached. At this
point, the best solution found during the search is returned as the final solution
to the problem Q0.

The following sections detail each phase of our multilevel algorithm.

Algorithm 1 Outline of the backbone multilevel memetic algorithm for UBQP

1: Input: n0 × n0 matrix Q0; maximum coarsening level q
2: Output: the best solution and its objective function value
3: i = 0
4: while i < q do
5: Qi+1 ← Coarsen(Qi) /∗ Create coarser intermediate matrices; see Section 2.2 ∗/
6: i = i + 1
7: end while
8: Pi ← Initial Solution(Qi) /∗ Generate initial solutions to the coarsest (lowest level)

problem; see Section 2.3 ∗/
9: Pi ← Memetic Refinement(Pi, Qi) /∗ Apply the memetic algorithm to optimize the

initial solutions; see Section 2.4 ∗/
10: while i > 0 do
11: i = i− 1
12: Pi ← Projection(Pi+1, Qi) /∗ Back to a higher level matrix; see Section 2.5 ∗/
13: Pi ← Memetic Refinement(Pi, Qi) /∗ Apply the memetic algorithm to optimize the

current solutions ∗/
14: end while

2.2 The backbone-based coarsening phase

The backbone multilevel memetic algorithm employs a coarsening phase to clus-
ter backbone variables, following the approach of our previous work [32]. The
backbone terminology comes from the context of the satisfiability problem (SAT)
[22, 17]. There, the backbone of a satisfiable SAT problem is the set of literals
which are true in every satisfying truth assignment. In our approach, we use a
relaxed definition which is closely related to the notion of strongly determined

and consistent variables explored in [10], identifying a backbone variable with



regard to its contribution to a local optimum. In particular, the contribution of
a variable xk is defined as the change of the objective function value when xk is
flipped, i.e., changing the value of xk to 1 - xk.

From a given matrix Qi (i = 0, . . . , q), our coarsening procedure repeats the
following steps: 1) build a solution (an approximation of the global optimum) of
problem Qi, 2) use the solution to identify a set of backbone variables and, 3)
create a simplified (or lower level) problem (i.e., a smaller matrix Qi+1) by ex-
tracting from Qi the rows and columns corresponding to the backbone variables.
Algorithm 2 gives the pseudo-code of this backbone-based coarsening phase.

Algorithm 2 Pseudo-code of the backbone-based coarsening phase

1: Input: an n0 × n0 matrix Q0; maximum coarsening level q
2: Output: a series of coarser matrices Q1, Q2, . . . , Qq

3: i = 0
4: while i < q do
5: Si ← Initial Solution(ni)
6: Si ← Tabu Search(Si, Qi)
7: Record the best solution S∗ and its objective function value f(S∗)

8: Identify the backbone variables Bi in level i with regard to the solution S
#

i /∗
Formula (2) ∗/

9: Remove the corresponding row and column of each variable in Bi from Qi to get a
lower level matrix Qi+1

10: i = i + 1
11: end while

The coarsening phase mainly consists of a while loop which starts from the
highest level problem with i = 0. During the loop, we first construct an initial
solution Si by randomly assigning a value 0 or 1 to each variable of the current
level problem and employ tabu search (see Section 2.4) to find a good local
optimum for backbone identification. We additionally record the best solution
S∗ found so far and its objective function value f(S∗).

To identify the set of backbone variables of Qi, we use Vi to denote the set
of the variables of Qi and Si a solution to Qi. We apply the method proposed
in [32] to first calculate, according to Equation (2), the contribution V Ck(S#

i )
of each variable xk in Vi with respect to the objective function f defined by
formula (1), where S

#
i is a solution composed of Si and the assignment of each

backbone variable acquired prior to the level i.

V Ck(S#
i ) = (1 − 2xk)(Q0(k, k) +

∑

m∈N0\{k},xm=1

Q0(k,m)) (2)

where N0 = {1, 2, . . . , n0} and xm is the value of each variable in S
#
i . As noted

in [11] and in a more general context in [13], V Ck(S#
i ) identifies the change in

f(S#
i ) that results from changing the value of xk to 1 - xk. We observe that under

a maximization objective if S
#
i is a locally optimal solution, then V Ck(S#

i ) ≤ 0
for all k ∈ N0, and the current assignment of xk will be more strongly determined
as V Ck(S#

i ) is more negative.



Then we use these V Ck(S#
i ) values to sort the variables in a non-decreasing

order and select the top nai variables with respect to their contribution values.
According to the study in [32], it is preferable to set nai = ni × 0.2 if i = 0 and
nai = nai−1 × 0.4 otherwise (i > 0). These variables constitute the set of our
backbone variables denoted by Bi and are extracted from the matrix Qi, leading
to a new and simplified lower level problem Qi+1.

Finally, we set i = i+1 and repeat the while loop until i reaches the maximal
level q (set to be equal to 3 in our experiments).

Obviously, each lower level problem Qi (i > 0) is a sub-problem of the high-
est level problem Q0 and the solution of Qi plus the value assignments of the
backbone variables extracted prior to level i constitute a solution of Q0.

2.3 Initial population of solutions

After the coarsening phase, a solution is sought for the problem of the lowest
level (Qq). For this, an initial population of solutions Pq is first constructed as
follows. Each solution in Pq is generated in such a way that each variable receives
randomly either 0 or 1. If this solution is not a duplicate of any solution in the
population, it becomes a member of Pq. The above procedure repeats until the
number of solutions reaches the population size which is fixed to 8 in this paper.
The solutions are then optimized by applying the population-based memetic
algorithm HMA which is explained below.

2.4 The population-based memetic algorithm HMA

The original population-based memetic algorithm HMA uses jointly the well-
known uniform and a path-relinking crossover operators [21]. In this work, only
the uniform crossover (UX) [30] is employed since experimental studies show that
UX performs well under the multilevel framework. UX operates on two parent
solutions randomly selected from the population and generates an offspring solu-
tion such that each of its variables takes the value of the corresponding variable
in either parent one or parent two with equal probability.

For each offspring solution, HMA applies a tabu search procedure to improve
the solution. The tabu search algorithm is based on a one-flip move neighbor-
hood, consisting of changing (flipping) the value of a single variable xi to its
complementary value 1 − xi. The implementation of this neighborhood uses a
fast incremental evaluation technique [12] to calculate the cost (move value) of
transferring to each neighboring solution. Each time a move is carried out, the
reverse move is forbidden for the next tl (tabu tenure) iterations. Accompanying
this rule, a simple aspiration criterion is applied that permits a move to be se-
lected in spite of being tabu if it leads to a solution better than the current best
solution. Tabu search stops when the best solution cannot be improved within
a given number α of moves.

To maintain the diversity of its population, HMA uses a dedicated rule to
decide whether an offspring solution is added to the population. For this, HMA
introduces a quality-and-distance goodness score for the offspring solution with



respect to the solutions of the population. If this goodness score is not smaller
than that of the worst solution in the population, then the offspring solution
is inserted into the population and replaces the worst solution. Otherwise, the
worst solution is replaced by the offspring solution with a small probability. More
details about the memetic algorithm can be found in [21].

2.5 The asymmetric uncoarsening phase

In a multilevel approach, the uncoarsening phase carries out the inverse of the
coarsening phase and typically traverses level by level the intermediate problems
from the problems of the lowest level q to the highest level 0. For each level,
each coarsened variable is uncoarsened to restore the original variables of the
immediate upper level i − 1. In this section, we explain how our uncoarsening
phase is realized with regard to our backbone-based coarsening phase.

variable contribution in a non-decreasing order

2 3
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i=0 S0’
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k=3
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Fig. 1. Illustration of the asymmetric uncoarsening phase

Our uncoarsening phase progressively brings back the backbone variables
extracted during the coarsening phase and allows them to take part in the sub-
sequent optimizations. To achieve this, several strategies can be applied. For
example, we can add back in a systematic way the extracted backbone variables
in the strict reverse order of their extraction. We will discuss this systematic un-
coarsening method in Section 4. Here we adopt another uncoarsening strategy
(called asymmetric uncoarsening) which our experiments have shown to be more
effective.

The idea of our asymmetric uncoarsening phase is based on the hypothesis
that the values of the backbone variables with a high contribution (formula (2))
will have a higher probability of being optimal than the values of variables with
a lower contribution. Therefore, it is desirable to freeze highly contributing vari-
ables at their assigned values as long as possible during the uncoarsening phase



and to restore first those backbone variables with small contributions. These
restored variables become part of the variables considered by the optimization
process applied at each uncoarsening step. Since the backbone variables are re-
stored according to contribution values instead of the order in which they are
extracted, we refer to this strategy as an asymmetric uncoarsening phase. Notice
that asymmetric uncoarsening may lead to a number of levels different from that
created by the coarsening phase.

Figure 1 illustrates our asymmetric uncoarsening strategy. Each box repre-
sents the set Vi of all the variables of Qi and the length of the box represents
the size of Vi. The left portion of the figure shows a coarsening phase with 2
levels which extracts the backbone variables to simplify the highest level prob-
lem Q0 into two lower level problems Q1 and Q2 in sequence. The right portion
of the figure shows an asymmetric uncoarsening phase with 3 levels by adding
back progressively the backbone variables from the lowest level problem Q

′

3 to
a series of intermediate levels and finally to the highest level problem Q

′

0.

The process is achieved as follows. As mentioned in the backbone-based coars-
ening phase, the variables at each coarsening step are sorted in a non-decreasing
order with regard to their contribution values and a certain number of variables
are selected as backbone variables. Based on this, we separate the set of the
backbone variables extracted at each coarsening step into K subsets, marked as
1, . . . ,K (In our example, K = 3, see below for the meaning of K). During the
uncoarsening phase, we first select the subsets marked as 1 (which contain the
backbone variables with small contributions) and add the variables contained in
these subsets into set V

′

3 to create the set V
′

2 , leading to the higher level problem
Q

′

2. The same operations are successively applied to variable subsets marked as
2 and K (In our example, K = 3). In this way, we finally go back to the highest
level problem Q0.

Algorithm 3 Pseudo-code of the asymmetric uncoarsening phase

1: Input: The lowest problem Qq, a fixed uncoarsening level K > 1
2: Output: The best binary n0-vector S∗ and the objective function value f(S∗)
3: Divide the set of backbone variables extracted at each coarsening level into K

subsets with equal size
4: Fetch one subset from each coarsening level and combine them to generate the set

UCk for each uncoarsening level k = K, . . . , 1
5: k = K
6: while k > 0 do
7: k = k − 1
8: Uncoarsen the variables in UCk+1 to obtain the matrix Qk by inserting the row

and column of each variable in UCk+1 into the matrix Qk+1

9: Project each solution in population Pk+1 to the corresponding solution in Pk

10: Pk ← Memetic Refinement(Pk, Qk)
11: Record the best solution found so far S∗ and its objective function f(S∗)
12: end while

The pseudo-code of the asymmetric uncoarsening phase is shown in Algo-
rithm 3. To begin with, we separate the set of backbone variables extracted at



each coarsening level into K subsets where K defines the number of the un-
coarsening steps needed to go back to Q0. Then we fetch one subset from each
coarsening level and combine them to construct the set UCk for each uncoarsen-
ing step k (k = K, . . . , 1). This is a preparatory step for the uncoarsening phase
(Alg. 3, lines 3-4).

From this point, an uncoarsening loop is launched with k starting at K. For
each step, we reduce k by 1 and uncoarsen the variables in UCk+1 by including
them into the set Vk+1 to construct the set Vk and by inserting the row and
column of each variable in UCk+1 into the matrix Qk+1 to obtain the matrix
Qk. In addition, the solutions of population Pk are obtained by projecting the
solutions of Pk+1 plus the added backbone variables in UCk+1 with their corre-
sponding values. Finally, the memetic optimization algorithm is used to refine
the population Pk. The above loop continues until the highest level k = 0 is
reached. The best solution found so far S∗ and its objective function f(S∗) are
always recorded.

3 Experimental Results

In this section, we carry out extensive experiments to evaluate the performance
of our backbone multilevel memetic algorithm (BMMA). Since the multilevel
scheme is designed to cope with large problem instances, we take a set of 11
largest instances with variables from 5000 to 7000 that are known to be very dif-
ficult to solve for several algorithms. The source code of the generator and input
files to replicate these problem instances can be found at: http://www.soften.ktu.lt
/∼gintaras/ubqop its.html. As indicated in [21, 27, 28], these instances are known
to be much more challenging than those (with 2500 variables at most) from OR-
LIB [3]. Table 1 describes the properties of these benchmark instances including
their sizes, densities and matrix coefficients. Note that the entry of each instance,
say Q(i, j) is a random integer number between -100 and +100. In addition, the
best objective results ever reported in the literature are given in the last column
(BKR).

Table 1. Main characteristics of Palubeckis benchmark test problems

Instance n Density Q(i, j) BKR
p5000.1 5000 0.5 [-100, +100] 8559680
p5000.2 5000 0.8 [-100, +100] 10836019
p5000.3 5000 0.8 [-100, +100] 10489137
p5000.4 5000 1.0 [-100, +100] 12252318
p5000.5 5000 1.0 [-100, +100] 12731803
p6000.1 6000 0.5 [-100, +100] 11384976
p6000.2 6000 0.8 [-100, +100] 14333855
p6000.3 6000 1.0 [-100, +100] 16132915
p7000.1 7000 0.5 [-100, +100] 14478676
p7000.2 7000 0.8 [-100, +100] 18249948
p7000.3 7000 1.0 [-100, +100] 20446407



Our BMMA algorithm is programmed in C and compiled using GNU GCC
on a PC running Windows XP with Pentium 2.83GHz CPU and 2GB Memory.
The stopping criteria is the completion of a round of the multilevel procedure
rather than a time limit. Given the stochastic nature of our BMMA algorithm,
each problem instance is independently solved 20 times.

Table 2. Computational results of the BMMA algorithm

BMMA
Instance BKR Best Av. σ Tbest Tb avr TAV R

p5000.1 8559680 8559680(1) 8558912 424 86 86 645
p5000.2 10836019 10836019(2) 10835253 527 92 219 607
p5000.3 10489137 10489137(2) 10488450 1057 344 351 630
p5000.4 12252318 12252318(2) 12251122 809 98 275 584
p5000.5 12731803 12731803(11) 12731423 493 158 326 554
p6000.1 11384976 11384976(5) 11384566 854 170 400 878
p6000.2 14333855 14333855(5) 14333101 1132 341 416 939
p6000.3 16132915 16132915(3) 16130610 1147 179 545 848
p7000.1 14478676 14478676(4) 14477235 1423 656 944 1349
p7000.2 18249948 18249948(1) 18247518 1424 951 951 1289
p7000.3 20446407 20446407(9) 20444603 3414 550 761 1132

Av. 13626885 13626885 13625708 1155 330 479 860
Deviation%. 0.000000 0.008633

Table 2 presents the results of our BMMA algorithm. Columns 1 and 2 give
the instance names and the best known results in the literature. Columns 3 to 8
report respectively BMMA’s best solution values Best and the number of times
to reach Best over 20 runs in parentheses, the average solution values Av., the
standard deviation σ, the best time Tbest and the average time Tb avr to reach the
best solution values Best, and the average time TAV R consumed for a BMMA
run (in seconds). The last two rows report the average over the 11 instances for
each evaluation criteria and the average percent deviation of the solution values
from the best known values.

From Table 2, we find that the average objective values attained by BMMA
are very close to the best known results, with an average percent deviation
0.008633%. Finally, the best and average time to reach our best solution values
are only 330 and 479 seconds, respectively. In sum, our BMMA algorithm is
quite effective in finding the best known values for these challenging instances.

3.1 Comparison between the BMMA and HMA algorithms

We now assess the advantage of the multilevel scheme by comparing the BMMA
algorithm with its optimization algorithm HMA which is applied at each un-
coarsening level (see Section 2.4). For this purpose, we run HMA within the
time limit TAV R (see Table 2), i.e., the time of a BMMA run. The results are
shown in Table 3.

From Tables 2 and 3, one observes that the BMMA algorithm outperforms
the HMA algorithm in terms of several different criteria. Specifically, when it
comes to the best solution values found, HMA is inferior to BMMA on 3 in-



Table 3. Computational results of the HMA algorithm

HMA
Instance BKR Best Av. σ Tbest Tb avr TAV R

p5000.1 8559680 8559355(1) 8558671 783 349 349 600
p5000.2 10836019 10836019(1) 10835298 262 452 452 600
p5000.3 10489137 10489137(2) 10488711 637 518 555 600
p5000.4 12252318 12252275(1) 12250982 637 589 589 600
p5000.5 12731803 12731803(9) 12731195 684 251 434 600
p6000.1 11384976 11384807(1) 11384506 812 884 884 900
p6000.2 14333855 14333855(1) 14332723 1456 761 761 900
p6000.3 16132915 16132915(2) 16130419 1098 603 641 900
p7000.1 14478676 14478676(1) 14476628 1300 1072 1072 1300
p7000.2 18249948 18249948(2) 18247600 1403 1086 1119 1300
p7000.3 20446407 20446407(6) 20444120 3728 508 855 1300

Av. 13626885 13626836 13625532 1164 643 701 873
Deviation%. 0.000358 0.009928

stances (5000.1, 5000.4 and 6000.1). In addition, HMA’s best and average so-
lution deviation from the best known results are 0.000358% and 0.009928%, in
comparison with BMMA’s deviation values 0.000000% and 0.008633%. Further-
more, the best and average time for BMMA to find the best solution values
are respectively 330 and 479 seconds which are 49% and 32% less than that of
HMA. These outcomes must be qualified by observing that, as shown in [21],
given longer time limits HMA consistently attains the best-known results of the
literature.

3.2 Comparison between BMMA and other state-of-the-art

algorithms

In order to further evaluate our BMMA algorithm, we compare it with sev-
eral best-performing algorithms in the literature. These methods are respec-
tively named ITS [28], MST2 [27], SA [16] D2TS [13], HMA [21], BGTS [33]
and DHNN-EDA [34]. Given the fact that all these algorithms were run under
different environments, often with larger time limits, it is thus hard to make
a completely fair comparison. Nevertheless, this experiment indicates that our
proposed algorithm performs exceedingly well in relation to these reference state-
of-the-art algorithms.

Table 4 compares the best solution values reported by each reference algo-
rithm. To highlight the difference among the reference algorithms, we show the
gap between the best solution of each algorithm and the best known solution.
From Table 4, we observe that the BMMA, BGTS and HMA algorithms perform
similarly well in that they are all able to attain the best known results on all the
instances. In addition, the BMMA algorithm outperforms the other four refer-
ence algorithms, named ITS, MST2, SA and DHNN-EDA and is slightly better
than the D2TS algorithm. To be specific, the four reference algorithms have an
average solution gap from 586 to 2661 and the D2TS algorithm has an average
solution gap of 39 to the best known values.

Table 5 compares the average time to reach the best solution values. The
BGTS, HMA and D2TS algorithms are run on a PC with a Pentium 2.66GHz



Table 4. Comparison between BMMA and other algorithms : Gap to the best known solution

Instance BMMA BGTS D2TS HMA ITS MST2 SA DHNN-
EDA

p5000.1 0 0 325 0 700 325 1432 2244
p5000.2 0 0 0 0 0 582 582 1576
p5000.3 0 0 0 0 0 0 354 813
p5000.4 0 0 0 0 934 1643 444 1748
p5000.5 0 0 0 0 0 0 1025 1655
p6000.1 0 0 0 0 0 0 430 453
p6000.2 0 0 0 0 88 0 675 4329
p6000.3 0 0 0 0 2729 0 0 4464
p7000.1 0 0 0 0 340 1607 2579 4529
p7000.2 0 0 104 0 1651 2330 5552 5750
p7000.3 0 0 0 0 0 0 2264 1707

Av. 0 0 39 0 586 589 1394 2661

Table 5. Comparison between BMMA and other algorithms : Best time (seconds)

Instance BMMA BGTS D2TS HMA ITS MST2 SA DHNN-
EDA

p5000.1 86 556 2855 587 507 540 605 1572
p5000.2 219 1129 1155 464 421 649 691 1572
p5000.3 351 874 1326 758 672 788 945 1572
p5000.4 275 379 838 1453 596 935 1059 1572
p5000.5 326 629 623 686 551 719 1057 1572
p6000.1 400 597 509 994 978 1037 615 2378
p6000.2 416 428 1543 1332 839 887 1085 2378
p6000.3 545 601 2088 1406 957 1218 1474 2378
p7000.1 944 1836 1217 1435 1771 1449 1952 3216
p7000.2 951 1569 849 1770 1013 1722 1738 3216
p7000.3 761 703 3520 2456 1446 2114 2138 3216

Av. 479 846 1502 1213 886 1096 1214 2240

CPU and DHNN-EDA is run on a comparable PC with a Pentium 2.8GHz
CPU. The ITS, MST2 and SA algorithms are run on a Pentium III 800 PC. We
transformed their original times by dividing them by 3 given that our computer
is about 3 times faster than the Pentium III 800 PC [13].

From Table 5, we can make the following observations. First, among the three
algorithms (BMMA, BGTS and HMA) which reach the best known results for
all the 11 instances, our proposed BMMA algorithm needs an average time of
479 seconds to reach the best solution values, against 846 and 1213 seconds for
the BGTS and HMA algorithms respectively.

Second, for the 4 other algorithms (D2TS, ITS, MST2, SA, DHNN-EDA)
which fail to find the best known solutions for at least two instances, our BMMA
algorithm clearly dominates all of them both in terms of the best solution val-
ues and computational efficiency. In particular, BMMA needs one fifth of the
time needed by the most recent DHNN-EDA algorithm to attain much better
solutions.

In sum, this experimental study demonstrates the merit of our BMMA algo-
rithm for solving the large instances of the UBQP problem.



4 Discussion

In order to verify the proposed asymmetric backbone uncoarsening phase indeed
works well compared to a more customary type of multilevel procedure, we
also implemented a symmetric backbone uncoarsening phase, which adds back
progressively the backbone variables from the lowest level Qq to the highest level
Q0 by following the strict reverse order the backbone variables are extracted
during the coarsening phase. For this experiment, we kept other components of
our BMMA algorithm unchanged except the uncoarsening component. Table 6
shows the computational results of the two different uncoarsening methods.

As we can see in Table 6, the asymmetric uncoarsening performs better than
the symmetric one in terms of the best, average and standard deviation values.
Specifically, the asymmetric uncoarsening obtains the best known values for all
the instances while the symmetric uncoarsening leads only to 6 best known re-
sults. Moreover, the asymmetric uncoarsening reaches better average values with
a smaller deviation from the best known results (0.008633% versus 0.014415%
for symmetric uncoarsening). In addition, the asymmetric uncoarsening is also
superior to the symmetric uncoarsening in terms of the standard deviation, with
the value 1155 versus 1213.

Table 6. Comparison between the symmetric and asymmetric uncoarsening methods

Symmetric Asymmetric
Instance BKR Best Av. σ Best Av. σ

p5000.1 8559680 8559075 8558510 412 8559680 8558912 424
p5000.2 10836019 10836019 10834954 707 10836019 10835253 527

p5000.3 10489137 10489137 10487669 1247 10489137 10488450 1057

p5000.4 12252318 12252318 12250980 662 12252318 12251122 809
p5000.5 12731803 12731803 12731247 525 12731803 12731423 493

p6000.1 11384976 11384733 11384026 1285 11384976 11384566 854

p6000.2 14333855 14333727 14332568 997 14333855 14333101 1132
p6000.3 16132915 16130915 16129770 683 16132915 16130610 1147
p7000.1 14478676 14478676 14475669 1344 14478676 14477235 1423
p7000.2 18249948 18249844 18246763 1513 18249948 18247518 1424

p7000.3 20446407 20446407 20441970 3971 20446407 20444603 3414

Av. 13626885 13626605 13624921 1213 13626885 13625708 1155

Deviation%. – 0.002055 0.014415 – 0.000000 0.008633 –

5 Conclusion

Solving large random UBQP instances is a challenging task. In this paper, we
have shown the multilevel approach constitutes an effective approach to cope
with these large random UBQP instances. The proposed algorithm combines
a backbone-based coarsening phase, an asymmetric uncoarsening phase and a
memetic refinement procedure, each incorporating tabu search to obtain im-
proved solutions. Experiments on the most challenging instances (with 5000 to
7000 variables) from the literature demonstrate that the proposed algorithm is
able to find all the best known results while using much less computing time



than the previous state-of-the-art algorithms. We anticipate that our approach
can be further refined by investigating alternative strategies for the coarsening
and uncoarsening phases.
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