Tabu Search for Maximal Constraint
Satisfaction Problems

Philippe Galinier and Jin-Kao Hao

LGI2P
EMA-EERIE
Parc Scientifique Georges Besse
F-30000 Nimes
France
email: {galinier, hao}@eerie.fr

Abstract. This paper presents a Tabu Search (TS) algorithm for solv-
ing maximal constraint satisfaction problems. The algorithm was tested
on a wide range of random instances (up to 500 variables and 30 val-
ues). Comparisons were carried out with a min-conflicts++random-walk

(MCRW) algorithm. Empirical evidence shows that the TS algorithm
finds results which are better than that of the MCRW algorithm.the TS
algorithm is 3 to 5 times faster than the MCRW algorithm to find solu-
tions of the same quality.

Keywords: Tabu search, constraint solving, combinatorial optimization.

1 Introduction

A finite Constraint Network (CN) is composed of a finite set X of variables, a
set D of finite domains and a set C of constraints over subsets of X. A constraint
is a subset of the Cartesian product of the domains of the variables involved
that specifies which combinations of values are compatible. A CN is said to
be binary if all the constraints have 2 variables. Given a CN, the Constraint
Satisfaction Problem (CSP) consists in finding one or more complete assignments
of values to the variables that satisfy all the constraints [13] while the Maximal
Constraint Satisfaction Problem (MCSP) is an optimization problem consisting
in looking for an assignment that satisfies the maximal number of constraints
[4]. Known to be NP-complete (NP-hard) in general, both MCSP and CSP are
of great importance in practice. In fact, many applications related to allocation,
assignment, scheduling and so on can be modeled as a CSP or a MCSP.

Methods for solving CSP include many complete algorithms based on back-
tracking and filtering techniques [19] and incomplete ones based on repair heuris-
tics such as Min-conflicts [14]. Similarly, methods for solving MCSP include ezact
algorithms based on branch-and-bound techniques [4, 12, 20] and approzimation
ones based on the above mentioned repair heuristics [21].

The main advantage of an ezact (complete for CSP) method is its guarantee
of optimality (completeness for CSP). The main drawback of such a method
remains the time necessary to compute large scale instances. On the contrary,

repair techniques constitute an interesting alternative to deal with instances of
very large size although neither optimality nor completeness is guaranteed.

Repair methods belong in fact to a more general class of methods called
Local Search (LS). Local search, which is based on the notion of neighborhood,
constitutes a powerful approach for tackling hard optimization problems [16, 10].
Starting with an initial configuration, a typical local search method replaces
iteratively the current configuration or solution by one of its neighbors until
some stop criteria are satisfied; for example, a fixed number of iterations is
reached or a sufficiently good solution is found. Well-known examples of LS
methods include various hill-climbers, simulated annealing (SA) [11] and Tabu
search (TS) [5].

TS is generally considered to be one of the most promising methods in com-
binatorial optimization and already shows its power for solving many hard prob-
lems including the maximal satisfiability [6] and graph-coloring problem [8, 3].
In this study, we are interested in applying TS to solve MCSP and try to answer
the following question: 1s TS a competitive method for this problem ?

This paper presents a TS algorithm for solving MCSP. In order to evaluate
the effectiveness of the TS algorithm, extensive experiments are carried out on a
wide range of random instances (up to 500 variables and 30 values). Experimental
results were compared with a min-conflicts algorithm combined with random
walk (MCRW), which is considered to one of the most successful method for
MCSP [21].

The paper is organized as follows: after a brief review of repair methods
(Section 2), we present Tabu Search and its adaptation to MCSP (Section 3).
Then we define the context and method of the experimentation, followed by
comparative results between TS and MCRW (Section 4). We conclude the paper
with some conclusions and indications about our ongoing work (Section 5).

2 Repair Methods for MCSP

An instance of an optimization problem (S, f) is defined by a set .S (search space)
of configurations and a cost function f: S — R (R being the set of real numbers).
Solving such an instance consists in finding a configuration s € S that has the
minimal (or maximal) value of the cost function f.

Given a CN < X, D, C > representing respectively the set of distinct vari-
ables, value domains, and constraints, MCSP is the optimization (minimization)
problem defined by:

— The set of configurations S is the set of all the complete assignments s
defined by s = {< V;,v; > | V; € X and v; € D;}. Clearly the cardinality of
the search space S is equal to the product of the sizes of the domains, i.e.
H?:l |DZ|

— The cost f(s) of a configuration s is the number of constraints violated by
s.

A typical repair method for MCSP begins with an inconsistent complete
assignment, often generated randomly, and then repairs iteratively the current
solution. To carry out a repair, a two step process is usually used: first choose
a vartable and then choose a new value for the chosen variable. Many heuristics
are possible for both choices leading thus to different repair methods [7]. One
example for choosing a value for a given variable is the Min-Conflicts (MC)
heuristic [14].

— Min-Conflicts Heuristic: For a given conflicting variable', pick a value
which minimizes the number of violated constraints (break ties randomly);
if no such value exists, pick randomly one value that does not increase the
number of violated constraints (the current value of the variable is picked
only if all the other values increase the number of violated constraints).

A MC-based repair algorithm may consist simply in iterating the MC heuristic.
The solving power of such a MC algorithm is limited because it cannot go beyond
a local optimum. However, its performance can be largely improved when some
noise strategies are introduced in MC. This is exemplified by MCRW which is a
MC algorithm combined with the random-walk strategy [17]: for a given conflict-
ing variable, pick randomly a value with probability p, apply the MC heuristic
with probability 1 — p. More precisely, a MCRW algorithm can be defined as in
Figure 1.

MCRW algorithm

begin
generate a random configuration s
nb_ter :=0

nb_moves := 0

while f(s) > 0 and nb_moves < maz_moves do

if probability p verified then

choose randomly a variable V' in conflict

| choose randomly a value v’ for V'

else

choose randomly a variable V in conflict

choose a value v' that minimises the number of conflicts for V
(the current value is chosen only if all the other values increase
| the number of violated constraints)

if v’ s different from the current value of V then

assign v’ to V
| nb_moves := nb_moves + 1
| nb_iter ;= nb_iter + 1
output(s);
end

Figure 1: The MCRW algorithm

1 A variable is said conflicting if it is involved in some unsatisfied constraints.

This algorithm is controlled by the random probability p, it should be clear
that the value for this parameter has a big influence on the performance of the
algorithm. The tuning of this parameter is explained in Section 4.3.

An iteration leading to a new configuration different from the current one
is called a move. Note that for MCRW, many iterations do not lead to a move
(see Section 4.1). An optimization is introduced as follows. If an iteration fails
to lead to a move for a conflicting variable V', V' will not be uselessly considered
for the next iterations until a move is effectively carried out.

There are other strategies to help MC to escape from local optima, we can
mention for instance Breakout [15] and EFLOP [22].

Recently, some empirical studies have been reported which compare the above
mentioned repair methods for solving constraint problems [7, 21]. Experimental
evidence shows that MCRW is among the most powerful methods of the repair
family. Consequently, MCRW is used in this paper as our reference to evaluate
the performance of the TS algorithm.

3 Tabu Search for MCSP

3.1 Tabu Search

This section gives a very brief review of Tabu Search (TS), emphasizing the
most important features which have been implemented in our TS algorithm for
MCSP. Instructive presentations of TS are given in [5], including many pointers
to other applications.

Like any LS method, TS needs three basic components: a configuration struc-
ture, a neighborhood function defined on the configuration structure, and a neigh-
borhood examination mechanism. The first component defines the search space
S of the application, the second one associates with each point of the search
space a subset of S while the third one prescribes the way of going from one
configuration to another. A typical TS procedure begins with an initial config-
uration in the search space S and then proceeds iteratively to visit a series of
locally best configurations following the neighborhood. At each iteration, a best
neighbor s’ € N(s)is sought to replace the current configuration s even if s’ does
not improve the current configuration in terms of the value of the cost function.

This iterative process may suffer from cycling and get trapped in local optima.
To avoid the problem, TS introduces the notion of Tabu lists, one of the most
important components of the method.

A tabu list is a special short term memory that maintains a selective histo-
ry H, composed of previously encountered solutions or more generally pertinent
attributes of such solutions. A simple TS strategy based on this short term mem-
ory H consists in preventing solutions of H from being reconsidered for fonext &
iterations (k, called tabu tenure, is problem dependent). Now, at each iteration,
TS searches for a best neighbor from this dynamically modified neighborhood
N(H,s), instead of from N(s) itself. Such a strategy prevents Tabu from being
trapped in short term cycling and allows the search process to go beyond local
optima.

Tabu restrictions may be overridden under certain conditions, called aspira-
tion criteria. Aspiration criteria define rules that govern whether a solution may
be included in N(H,s) if the solution is classified tabu. One widely used aspira-
tion criterion consists of removing a tabu classification from a move when the
move leads to a solution better than that obtained so far. Aspiration constitutes
an important element of flexibility in TS.

TS uses an aggressive search strategy to exploit its neighborhood. Therefore,
it 1s crucial to have special data structures which allow a fast updating of move
evaluations, and reduce the effort of finding best moves. Without this kind of
technique, the efficiency of TS may be compromised.

There are other interesting and important techniques available such as inten-
sification and diversification. In this paper, we show that a TS algorithm based
on the above mentioned elements may be very efficient and robust for MCSP.

3.2 A TS Algorithm for MCSP

Definition of the neighborhood

We choose for the TS algorithm the following neighborhood function N :
S — 29: for each configuration s in S, s’ € N(s) if and only if s and s’ are
different at the value of a single conflicting variable. In other words, a neighbor
of a configuration s can be obtained by changing the current value of a conflicting
variable in s. Note that the size of this neighborhood |N(s)| varies during the
search according to the number of conflicting variables in s.

Tabu list and definition of attributes

A move for MCSP corresponds to changing the value v of a conflicting vari-
able V to another value v, and therefore can be characterized by a couple
(attribute) < wariable, value >. Consequently, when the solution s moves to
s’ € N(s) by replacing the current value v of V' with a new one v, the < V,v >
is classified tabu for the next k iterations. In other words, the value v is not
allowed to be re-assigned to V during this period. Like the random probability
p for the MCRW algorithm, the tabu tenure k£ has a big influence on the perfor-
mance of the TS algorithm. The tuning of this parameter is explained in Section
4.3.

In order to implement the tabu list, we use a | X|*|D| matrix T. Each element
of T corresponds to a possible move for the current configuration. When a move
is done, the corresponding element of the matrix is set to the current number of
iterations plus the tabu tenure £. In this way, it is very easy to know if a move
is tabu or not by simply comparing the current number of iterations with that
memorized in T.

Aspiration function

The aspiration criterion consists of removing a tabu classification from a
move when the move leads to a solution better than the best obtained so far.

Solution evaluation and neighborhood examination

For MCSP, it is possible to develop special data structures to find quickly
a best neighbor among the given neighborhood. The main idea, inspired by a
technique proposed in [3], is based on a two dimensional table | X |*|D| v: if v is
the current value of V| then 4[V, v] indicates the the current number of conflicts
for V; for each v’ different from v, 4[V, v'] indicates the the number of conflicts
for V if v’ is assigned to V. Each time a move is executed, only the affected
elements of the table are updated accordingly. In this way, the cost for each
move is constantly available and a best move can be found quickly.

This technique is also used by our MCRW algorithm to find quickly a best
move among the values of a given (conflicting) variable. In particular, with this
data structure, iterations which do not lead to a move will have a negligible cost.

We give in Figure 2 the TS algorithm integrating the above elements.

Tabu algorithm

begin
generate a random configuration s
nbater :=0

initialize randomly the tabu list
while f(s) > 0 and nb_iter < maz_iter do
choose amove < V, v' > with the best performance among the non-tabu
moves
and the moves satisfying the aspiration criteria
introduce < V, v > in the tabu list, where v is the current value of V'
remove the oldest move from the tabu list
assign v’ to V
| nb_iter := nb_iter + 1
output(s);
end
Figure 2: The Tabu Search algorithm

Each iteration of TS consists in examining all the values of all the conflicting
variables in the current solution s and then carrying out a best move. Unlike
MCRW, each iteration modifies a variable and the number of moves carried out
by the algorithm is exactly the same as the number of iterations.

4 Experimentation and Results

In this section, we present comparative results between TS and MCRW over
several classes of MCSP instances.

4.1 Comparison Criteria

In this study, we choose two criteria to compare TS and MCRW. The first one is
the quality of solution measured by the best cost value, i.e. the number of violated
constraints, that a method can find. The second criterion is the computing effort
needed by an algorithm to find its best solutions or solutions of a given quality.
This second criterion is measured by the number of moves and the running time.

Note that the number of moves instead of iterations is used in the second
criterion. The reason for this choice is the following. For TS, each move coincides
with an iteration. But for MCRW, the number of moves is in general much lower
than the number of iterations, because an iteration of MCRW does not lead to a
move if the current value of the chosen variable is picked. In our implementation,
the data structure shared by TS and MCRW has the property that an iteration
which does not lead to a move is much less costly than an iteration leading
to a move. Therefore, counting iterations instead of moves, will put MCRW
at a disadvantage, especially if the iterations which do not lead to a move are
frequent. As we explain later, this is indeed the case for MCRW.

4.2 MCSP Instances

Let us note that a satisfaction problem (such as CSP and SAT) is very dif-
ferent from an optimization problem (such as MCSP and MAX-SAT). There
exist some interesting results such as the phase transition phenomenon which
seperates under-constrained problems and over-constrained ones [1, 9, 18, 2].
Under-constrained problems tend to have many solutions. Therefore, it is usual-
ly easy to find a satisfiable assignment which is also an optimal solution for the
optimization problem. Over-constrained problems tend to be easy to be proven
unsatisfiable. This means only that they are easy from the point of view of sat-
isfiability, but nothing is known about the difficulty of finding a minimal cost
solution from the point of view of optimization.

In summary, for the satisfaction problem, hard instances tend to be around
the phase transition. However, for the optimization problem, it is not possible
to determine whether a given instance is difficult to solve or not except for
under-constrained instances.

In our expriments, we choose a classical and simple binary MCSP model
and evaluate the algorithms with instances coming from sufficiently diversified
classes.

More precisely, the MCSP model used depends on 4 parameters: the num-
ber n of variables, the size d of domains (all domains have the same size), the
density p1 and the tightness p2 of constraints. A quadruple (n, d, p1, p2) defines
a particular class. An instance of a given class is built by choosing randomly
p1.n.(n—1)/2 constraints among the n.(n — 1)/2 different pairs of variables and,
for each constraint, py.d? forbidden tuples among the d? possible tuples. Different
instances of a same class can be generated using different random seeds.

Classes used in this work are taken from the following sizes: small (n/d =

50/10), medium (n/d = 100/15), large (n/d = 250/25) and very large (n/d =

300/30, 500/30). For each size, we choose one or several values for the couple
(p1,p2) in such a way that the instances of the class are not easily satisfiable
and have a cost value smaller than 30.

4.3 Parameter tuning for TS and MCRW

The performance of TS and MCRW 1is greatly influenced by some parameters:
the size of tabu list ¢/ and the random walk probability p. We use the following
procedure to determine the appropriate values for these parameters for each
class of instances. First, a preliminary study determined the following ranges of
parameter values: 10 < ¢/ < 35 and 0.02 < p < 0.1. Then, different discrete
values between these ranges were further tested as follows. For TS (respectively
MCRW) each of the values {10, 15, 20, 25, 30, 35, 40, 45} ({0.02, 0.03, 0.04,
0.05, 0.07, 0.1, 0.2, 0.3, 0.4} for MCRW) was used to run 50 times on the class
(10 instances, 5 runs per instance, each run being limited to 50,000 moves) and
the best value identified for the class.

4.4 Results

Problem Tabu MCRW Tabu-MCRW
tl| cost value f p |% | cost value f

min avg max min avg max|min| avg
50.10.10.60.0 (15| 4 4 4 10.05|42(4 4 4 0 0
50.10.10.70.0 (15| 14 14 14 |0.05|35(14 14 14| 0 0
50.10.30.30.0 ({15 5 5.08 6 |0.05|38| 5 5.5 6 0 -0.42
50.10.30.35.0 (15[15 15 15 |0.05|33(15 15.18 16 | O -0.18
50.10.50.20.0 [15| 8 8 8 |0.05|36| 8 826 9 0 -0.26
100.15.10.40.0|15| O 1.2 2 |0.03|35| 1 233 4 |-1 -1.13
100.15.10.45.0|25(8 9.72 12 |0.03(30| 8 11.02 13| O -1.3
100.15.10.50.0|30| 20 21.62 24 |0.03(26| 20 23.18 27 | O -1.55
100.15.30.15.0(10 0 0 |0.03(27| 0 006 1 0 -0.06
100.15.30.20.0(20 20.78 23 [0.03|25|19 223 25| 0 -1.51
250.25.03.55.0(40 842 12 |0.02|28| 6 1236 15| 0 -3.93
250.25.07.30.0(30 11.68 14 |0.03|34| 10 14.66 19 | -3 -2.97

250.25.10.21.0(25
250.25.10.22.0({30
250.25.10.23.0(35
300.30.03.50.0|45
300.30.05.35.0|35
300.30.07.25.0|25
500.30.04.25.0(30

488 7 |0.03(33| 3 69 10| 0 -2.02
10.86 14 |0.03(34| 10 14.17 19 | -2 -3.31
19.18 22 |0.02|32| 19 22.96 27 | -4 -3.77
10.1 15 |0.03|28| 8 149 22| -3 -4.79
13.96 17 |0.02(28| 14 18 23| -5 -4.04
3.48 6 |0.02(32 4 7.04 11| -3 -3.56
1.56 3 [0.02|36| 3 5.97 13| -3 -4.41

= =
DP—‘QDU‘(U‘(ZJDJ\]O)@D

Table 1. Comparative results of TS and MCRW, maximum moves = 100,000

Table 1 gives a summary of the results of TS and MCRW for the instances
we have tested in terms of quality of the solutions. To obtain these results,
both algorithms were run 50 times on each instance, each run being given a
maximum of 100,000 moves. The parameter of each algorithm (the size of tabu
list ¢/ and the random-walk probability p) is fixed according to the best value
found during the parametric study. For each algorithm, we give the minimum,
average and maximum value of the cost function. For MCRW, we also give the

average percentage of iterations that lead effectively to moves (column %). The
last two columns indicate the difference between the cost function of Tabu and
MCRW, in minimum and average.

From the data of Table 1, the following observations may be made. For small
instances, both methods obtain the same minimum for the cost function. For
medium and large instances, TS obtains better results for 4 out of 10 instances
(a smaller cost value, -1 to -4). For the 4 very large instances, TS obtains much
better results (-3 to -5). If we look at the average cost of the two algorithms, we
see that TS obtains better results than MCRW for 17 out of 19 instances and
the same results for the 2 others (seemingly easy ones). Finally, note that less
than half (25-42%) of MCRW iterations lead to moves (column %).

Table 2 gives more details about the performance of TS and MCRW. This
table shows different values of the cost function together with the number of
successful runs, the minimal, average and maximal number of moves (for the
successful runs). The last column gives the ratio between the average number
of moves between MCRW and TS, and hence indicates how much TS is faster
than MCRW (in terms of number of moves). For instance, the first line means
that both algorithms reach the cost f=15 at each of 50 runs, but TS needs on
average a number of moves 3.49 times smaller than MCRW. Note that although
only one instance is showed here, other instances have very similar behaviors.

Problem f Tabu MCRW MCRW /Tabu
succ. #moves succ. #moves #moves
min avg max min avg max avg
300.30.07.25.0{15| 50 | 1656 4299.7 7850| 50 | 6013 15022.2 33009 3.49
14| 50 | 1918 4864.6 9731 | 50 | 6324 17051.6 39896 3.5
13| 50 | 2010 5622.5 11330| 50 | 6367 21506.4 40769 3.82
12| 50 | 2018 6755.7 15415| 50 | 8694 25244.7 68226 3.73
11| 50 | 3326 8545 24332| 50 | 8701 33708.5 75467 3.94
10| 50 | 4513 10039.8 25924 49 | 9399 41296.3 96774 -
9| 50 [4738 12156.1 26545| 45 | 9438 46655.4 99023 -
8| 50 [6293 15773.7 39941| 37 (17335 53922.2 98593 -
7| 50 [6306 22562.5 59051 34 (20969 63521.8 95867 -
6| 50 (10722 31382.2 70505 20 (29033 69506.3 99111 -
5| 49 (12764 43022.3 93673| 9 (51662 70315.4 88173 -
4| 40 (18585 52437.2 99010 4 |[76503 85380 96824 -
3| 26 (20799 64812.5 96686 0 - - - -
2| 10 (57146 79492.5 97850(O - - - -
1 1 94525 94525 94525| 0 - - - -
0 0 - - - 0 - - - -

Table 2. More detailed comparative results of TS and MCRW, maximum moves = 100,000 for TS
and MCRW

In order to see if MCRW can catch up with TS if MCRW is given more
moves, a second experiment was performed with MCRW on 2 medium and 2 large
instances. In this experiment, the number of moves is extended from 100,000 to
500,000. Table 3 shows the results of this experiment for 300.30.07.25.0 as in
Table 2.

From Table 2, we may make the following remarks about this instance. The
minimum cost value that an algorithm can reach at each run is 6 for TS and 11
for MCRW. The minimum cost value reached (at least once) is 1 for TS and 4

for MCRW. For the values that both methods could reach at each run (f > 11),
TS is on average about 3 to 4 times faster than MCRW (in terms of number
of moves). For the values between 10 and 4, TS has always a higher number of
successful runs than MCRW.

Recall that for MCRW, only iterations leading to a real move are counted.
Since such iterations leading to a move represent only 25-50% according to the
instance (see Table 1), MCRW requires a number of iterations 10 to 15 times
higher than that of TS.

Data similar to those of Table 2 are available for all the other instances. From
the data, we observe very similar behavior. TS is on average 3 to 5 times faster
(in terms of number of moves) than MCRW to reach a given cost value and this
factor remains stable across all instances and for different cost values of a given
instance.

Problem f Tabu MCRW MCRW /Tabu
succ. #moves succ. #moves #moves
min avg ~ max min avg max avg
300.30.07.25.0{11| 50 |3326 8545 24332| 50 |11739 28242 77551 3.3
10| 50 | 4513 10039.8 25924| 50 | 11789 39613.3 104638 3.94
9| 50 [4738 12156.1 26545 50 [15019 48761 107704 4.01
8| 50 | 6293 15773.7 39941| 50 | 15027 63067.7 132980 3.99
7| 50 [6306 22562.5 59051 50 [15308 86265.8 227572 3.82
6| 50 (10722 31382.2 70505 50 [16239 133856 355128 4.26
5| 49 (12764 43022.3 93673| 47 | 33298 178486 415849 -
4| 40 |18585 52437.2 99010| 35 | 85267 236837 461983 -
3| 26 |20799 64812.5 96686 25 |106969 304038 493080 -
2| 10 (57146 79492.5 97850 12 (132130 339752 484847 -
1 1 |94525 94525 94525| 1 |425855 425855 425855 -
0 0 - - - 0 - - - -

Table 3. More detailed comparative results of TS and MCRW, maximum moves = 100,000 for TS,
500,000 for MCRW

From Table 3, we observe that MCRW (with a maximum of 500,000 moves)
obtains solutions comparable to those of TS (with a maximum of 100,000 iter-
ations) in terms of quality. In terms of moves required by MCRW and TS, the
ratio remains the same as before, i.e. around 3.5 to 4.

Other experiments have been carried out where the two algorithms were run
5 times each with a much larger number of moves (2,000,000) on these instances.
Similar results have been observed.

Recall that there are two big differences between the TS and MCRW algo-
rithms. The first one is that TS uses a tabu list while MCRW performs random
walks. The second one is that the two algorithms examine the neighborhood
according to two different strategies: TS looks at all the conflicting variables
while MCRW looks only at a single variable. In other words, MCRW examines
much fewer neighbor solutions than TS does at each iteration. Therefore, one
may ask if this second factor is responsible for the difference of performance be-
tween these two algorithms. In order to see if this is the case, we tested a third
algorithm which examines at each iteration all the conflicting variables like in

TS.

This new algorithm, that we called Steepest Descent Random Walk (SDRW),
proceeds as follows. At each iteration, it performs a random walk with probability
p, and a ”Steepest Descent” with probability 1 — p, i.e., it seeks a best possible
move among those which do not increase the cost function.

The SDRW algorithm was tested on the five instances of size n = 100 in the
same conditions as for TS and MCRW. Results are presented in Table 4.

Problem Tabu SDRW Tabu-SDRW
tl| cost value f p |% | cost value f

min avg max min avg max|min| avg
100.15.10.40.0|15| 0O 1.2 2 10.45[(90(1 4.1 7 1 -2.9
100.15.10.45.0|25| 8 9.72 12 |0.45(90| 10 14.24 18 | 2 -4.52
100.15.10.50.0|30| 20 21.62 24 |0.45|89| 22 26.95 30 | 2 -5.33
100.15.30.15.0|10| O 0 0 |0.35(7 0 0.6 2 0 -0.6
100.15.30.20.0|20| 19 20.78 23 |0.40(80| 21 26.22 29 | 2 -5.44

Table 4. Comparative results of TS and SDRW, maximum moves = 100,000

From Table 4, we observe that the results of SDRW are much worse than
those of TS. If we compare these results with those of MCRW (Table 1), it is
easy to see that SDRW gives even worse results than MCRW does. These results
show that the high performance of the TS algorithm is effectively due to the
tabu memory.

Table 5 gives information about the running time on a Sun SPARCstation 5
(32 RAM, 75MHz) of the TS and MCRW algorithms?. The second and third two
columns (tzme) indicate the average running time in seconds of TS and MCRW
for carrying out 100,000 moves.

Problem Tabu|MCRW |[Problem Tabu|MCRW
time| time time| time
50.10.10.60.0 | 64 61 250.25.03.55.0| 190 196
50.10.10.70.0 | 80 70 250.25.07.30.0| 200 78
50.10.30.30.0 | 73 72 250.25.10.21.0| 183 190
50.10.30.35.0 | 89 81 250.25.10.22.0| 206 183
50.10.50.20.0 | 90 86 250.25.10.23.0| 226 193
100.15.10.40.0| 84 96 300.30.03.50.0| 231 226
100.15.10.45.0| 111 111 |(|300.30.05.35.0| 234 239
100.15.10.50.0| 154 127 {(300.30.07.25.0| 205 215
100.15.30.15.0| 124 121 |[|500.30.04.25.0| 255 279
100.15.30.20.0| 142 142

Table 5. Running times of TS and MCRW for 100,000 moves

From Table 5, we observe that the running time for TS is only about 15%
more important than MCRW (more for small size instances, less for large size
instances) even if TS searches more larger neighborhood at each iteration. Taking
into account Tables 4 and 1, we see that TS is much more efficient than MCRW.

2 Both TS and MCRW are implemented in C++.

5 Conclusion

In this paper, we presented a basic TS algorithm for solving the maximal con-
straint satisfaction problem. This algorithm was tested and compared on random
instances of various sizes (ranging from n/d = 50/10 to n/d = 500/30). Empiri-
cal evidence shows that the TS algorithm always finds solutions of better quality,
i.e. solutions having smaller number of violated constraints.

Moreover, the TS algorithm is about 3 to 5 times faster than the MCRW
algorithm to find solutions of the same quality, in terms of number of moves but
also of running time.

This study shows clearly that the TS algorithm is very competitive compared
with one of the best repair methods. More generally, Tabu Search has other
important features such as intensification and diversification which may improve
further the performance of the algorithm. Therefore, TS should be considered
to be very promising for solving the MCSP.

Several points are worthy of further studies. First, we do not know if the
results of this study would remain valid on instances of other classes or models
of MCSP. Moreover, it will be interesting to compare Tabu Search with the most
efficient complete algorithms for solving satisfiable instances of CSP.

Acknowledgments
We would like to thank the referees of this paper for their useful comments.
References

1. P. Cheeseman, B. Kanefsky and W.M. Taylor, “Where the really hard problems
are”, Proc. of the 12th IJCAT’90, pp163-169, 1991.

2. D.A. Clark, J. Frank, I.P. Gent, E. MacIntyre, N. Tomov, T. Walsh, “Local search
and the number of solutions”, Proc. of CP97, pp119-133, 1996.

3. C. Fleurent and J.A. Ferland, “Genetic and hybrid algorithms for graph coloring”,
to appear in G. Laporte, I. H. Osman, and P. L. Hammer (Eds.), Special Issue
Annals of Operations Research, ”Metaheuristics in Combinatorial Optimization”.

4. E.C. Freuder and R.J. Wallace, “Partial constraint satisfaction”, Artificial Intelli-
gence, Vol.58(1-3) pp21-70, 1992.

5. F. Glover and M. Laguna, “Tabu Search”, in C. R. Reeves (Ed.), Modern heuristics
for combinatorial problems, Blackwell Scientific Publishing, Oxford, GB, 1993.

6. J.K. Hao and R. Dorne, “Empirical studies of heuristic local search for constraint
solving”, Proc. of CP-96, LNCS 1118, pp194-208, Cambridge, MA, USA, 1996.

7. P. Hensen and B. Jaumard, “Algorithms for the maximum satisfiability problem”,
Computing Vol.44, pp279-303, 1990.

8. A. Hertz and D. de Werra, “Using Tabu search techniques for graph coloring”.
Computing Vol.39, pp345-351, 1987.

9. T. Hogg, B.A. Huberman and C.P. Williams, Artificial Intelligence, Special Issue
on the Phase Transition and Complexity. Vol 82, 1996.

10. D.S. Johnson, C.H. Papadimitriou and M. Yannakakis, “How easy is local search?”
Journal of Computer and System Sciences, Vol.37(1), pp79-100, Aug. 1988.

11. S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, “Optimization by simulated an-
nealing” Science No.220, pp671-680, 1983.

12. J. Larrosa and P. Meseguer, “Optimization-based heuristics for maximal constraint
satisfaction”, Proc. of CP-95, pp190-194, Cassis, France, 1995.

13. A.K. Mackworth, “Constraint satisfaction”, in S.C. Shapiro (Ed.) Encyclopedia on
Artificial Intelligence, John Wiley & Sons, NY, 1987.

14. S. Minton, M.D. Johnston and P. Laird, “Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems”, Artificial Intelligence,
Vol.58(1-3), pp161-206, 1992.

15. P. Morris, “T’he Breakout method for escaping from local minima”, Proc. of AAAI-
93, ppd0-45, 1993.

16. C.H. Papadimitriou and K. Steiglitz, “Combinatorial optimization - algorithms
and complexity”, Prentice Hall, 1982.

17. B. Selman and H.Kautz, “Domain-independent extensions to GSAT: solving large
structured satisfiability problems”, Proc. of IJCAI-93, Chambery, France, 1993.
18. B.M. Smith, “Phase transition and the mushy region in constraint satisfaction

problems”, Proc. of ECAI94, pp100-104, 1994.

19. E. Tsang, “Foundations of constraint satisfaction”, Academic Press, 1993.

20. R.J. Wallace, “Enhancements of branch and bound methods for the maximal con-
straint satisfaction problem”, Proc. of AAAI-96, pp188-196, Portland, Oregon, USA,
1996.

21. R.J. Wallace, “Analysis of heuristics methods for partial constraint satisfaction
problems”; Proc. of CP-96, LNCS 1118, pp308-322, Cambridge, MA, USA, 1996.
22. N. Yugami, Y. Ohta and H. Hara, “Improving repair-based constraint satisfaction

methods by value propagation”, Proc. of AAAI-94, pp344-349, Seattle, WA, 1994.

This article was processed using the INTRpX macro package with LLNCS style

