Empirical Studies of Heuristic Local Search
for Constraint Solving*

Jin-Kao Hao and Raphaél Dorne

LGI2P
EMA-EERIE
Parc Scientifique Georges Besse
F-30000 Nimes
France
email: {hao, dorne}@eerie.fr

Abstract. The goal of this paper is twofold. First, we introduce a class
of local search procedures for solving optimization and constraint prob-
lems. These procedures are based on various heuristics for choosing vari-
ables and values in order to examine a general neighborhood. Second,
four combinations of heuristics are empirically evaluated by using the
graph-coloring problem and a real world application - the frequency as-
signment problem. The results are also compared with those obtained
with other approaches including simulated annealing, Tabu search, con-
straint programming and heuristic graph coloring algorithms. Empirical
evidence shows the benefits of this class of local search procedures for
solving large and hard instances.

Keywords: Local search, constraint solving, combinatorial optimiza-
tion, graph coloring, frequency assignment.

1 Introduction

Constraint problems embodies a class of general problems which are impor-
tant both in theory and in practice. Well-known examples include constraint
satisfaction problems (CSP), maximal constraint satisfaction problems (MCSP)
[5] and constraint satisfaction optimization problems (CSOP) [18]. Constraint
problems can be considered as search problems, i.e. given a finite search space
composed of a set of configurations, we want to find one or more particular con-
figurations which minimize (or maximize) certain pre-defined criteria. Constraint
problems have many practical applications related to scheduling, transportation,
layout/circuit design, telecommunications and so on. In general, constraint prob-
lems are NP-hard. Consequently, there is little hope of finding any deterministic
polynomial solution for this class of problems. Given their practical importance,
many methods have been devised to tackle these search problems. This paper
looks at one class of methods which are based on surprisingly simple, yet pow-
erful local search techniques.

* Work partially supported by the CNET (French National Research Center for
Telecommunications) under the grant No.940B006-01.

Local search (L.S), also called neighborhood search, constitutes an important
class of general heuristic methods based on the notion of neighborhood [14]. S-
tarting with an initial configuration, a typical LS procedure replaces iteratively
the current configuration by one of its neighbors, which is often of better quality,
until some stop criteria are verified; for example, a fixed number of iterations is
reached or a sufficiently good local optimum is found. Well-known examples of
LS-based methods include simulated annealing (SA) [11], Tabu search [6] and
various forms of hill-climbers [1]. Given that LS uses only a neighborhood func-
tion and possibly some other general notions, it can be applied to a large class of
problems. Traditionally, LS was used with success to tackle well-known NP-hard
combinatorial optimization problems such as TSP [12] and graph partitioning
[10]. More recent applications of LS include the graph coloring problem [8, 9, 3],
CSPs [13], and the satisfiability problem [7, 16].

Local search is essentially based on three components: a configuration struc-
ture (encoding), a neighborhood function defined on the configuration structure,
and a netghborhood erxamination mechanism. The first component defines the
search space S of the application, the second associates a subset of S with
each point of the search space while the third defines the way of going from one
point to another. The configuration structure is often application-dependent and
should be chosen in such a way that it reflects the natural solution space of the
problem and facilitates its exploration and exploitation. For a given neighbor-
hood, the way in which neighbors are examined is certainly the most determinant
part of the performance of a LS procedure.

In this paper, we present a class of LS procedures for solving optimization
and constraint problems. These LS procedures are based on different heuristics
for examining a general neighborhood. Some heuristics are well-known and oth-
ers less so. Computational tests are carried out on two NP-hard problems: graph
coloring and frequency assignment in mobile radio networks. Experimental evi-
dence shows the benefits of these procedures for solving large and hard instances.
The results are compared with those obtained by two other LS procedures: SA
and Tabu search and two other heuristic methods: constraint programming and
heuristic graph coloring algorithms.

2 Constraint Problems and Local Search

2.1 Constraint Problems

In order to apply LS to constraint problems, we will consider constraint problems
as combinatorial optimization problems, i.e., a constraint problem P is defined
by a quadruple < X, D, C, f > where

— X ={V1,V5...V,,} is all the distinct variables in P,

— D ={D;,Ds...D,, } is all the domains of variables,

— C = {C;(Vi,...Vi,)} is the set of constraints, each C; being a relation on
Vi, Vi, € X,

— fis a cost function to be minimized (maximized).

With this definition, several cases are possible. First, if P is a standard CSP,
there will be no associated cost function. Therefore, any assignment of values to
the variables satisfying the constraints of C' will be a solution. Second, if P is a
CSOP, then solving P implies finding assignments such that all the constraints
are satisfied and the cost f minimized (or maximized). Third, if P is a MCSP,
i.e. the underlying C'SP < X, D,C > is not satisfiable, then solving P is to
maximize (minimize) the number of satisfied (unsatisfied) constraints.

Note that in this formulation, the cost function f is not necessarily the eval-
uation function which is required by any LS search procedure to evaluate the
quality of configurations.

2.2 Configuration and Neighborhood

Given a constraint problem P =< X, D,C,f >, the configuration structure
is defined as follows: a configuration s is any complete assignment such that
s={< Vi,uv;>|V; € X and v; € D;}. We use T(s, V;) to note the value of V; in
s, l.e.if < Vi, v; >€ s then T(s,V;) = v;. The search space S of the problem P is
then defined as the set of all the possible configurations. Clearly the cardinality
of S is equal to the product of the size of the domains, i.e. []}_, |D;|.

In general, the configuration structure is application-dependent. However,
some configuration structures are general enough to be applied to many applica-
tions. The above structure is such an example. In fact, it can be used to model
problems such as graph coloring, satisfiability and many CSPs. Another general
configuration structure is “permutation” which can be used to model naturally
the traveling salesman problem.

Given the configuration structure defined above, the neighborhood function
N : S — 2% may be defined in many ways. In this paper, we use the one-
difference or one-move neighborhood?. Formally, let s € S be a configuration,
then s’ € N(s) if and only if there exists one and only one 7 € [l..n] such
that T'(s, Vi) # T(s',V;). In other words, a neighbor of a configuration s can be
obtained by changing the current value of a variable in s. Since a variable V; in
s can take any of its | D;| values, s has exactly ", (|1D;|—1)=>",D;i—n
neighbors. Note that this neighborhood is a reflexive and symmetric relation.

2.3 Neighborhood Examination

We now turn to different ways of examining the neighborhood, i.e., going from
one configuration to another. In this paper, we use a two-step, heuristic-based
examination procedure to perform a move.

1. first choose a variable,
2. and then choose a value for the selected variable.

It is easy to see that many heuristics are possible for both choices. In what fol-
lows, we present various heuristics for choosing variables and values.

2 In general, a k-move neighborhood can be defined.

Heuristics for choosing the variable V;:

— wvar.1 random: pick randomly a variable V; from X;

— wvar.2 conflict-random: pick randomly a variable from the conflict set defined
by {V; | Vi € X is implicated in an unsatisfied constraint};

— wvar.3 most-constrained: pick a most constrained variable, for instance, the
one which occurs in the biggest number of unsatisfied constraints (break ties
randomly).

Heuristics for choosing the value for V;:

— wal.1 random: pick randomly a value from D;;

— wval.2 best-one (min-conflicts[13]): pick a value which gives the greatest im-
provement in the evaluation function (break ties randomly). If no such value
exists, pick randomly a value which does not lead to a deterioration in the
evaluation function (the current value of the variable may be picked);

— wval.3 stochastic-best-one: pick a best, different value which does not lead
to a deterioration in the evaluation function. If no such value exists, with
probability p, take a value which leads to the smallest deterioration;

— wval.j first-improvement: pick the first value which improves the evaluation
function. If no such value exists, take a value which does not lead to a
deterioration or which leads to the smallest deterioration®;

— wval.5 probabilistic-improvement: with probability p, apply the val. 1 random
heuristics; with 1 — p, apply the val 2 best-one heuristic.

Let us note first that val. 2 forbids deteriorative moves. As we will see later,
this property will penalize its performance compared with others.

Both wal 3 and val 5 use a probability in order to accept deteriorative moves.
The purpose of accepting such moves is to prevent the search from being stuck in
local optima by changing the search direction from time to time. This probabili-
ty may be static or dynamic. A static probability will not be changed during the
search while a dynamic one may be modified by using some pre-defined math-
ematic laws or may adapt itself during the search. In any case, this probability
is determined more often empirically than theoretically.

val. 5 is similar to the random-walk heuristic used by GSAT [17], but they are
different since for the satisfiability problem, there is only one explicit choice, i.e.
the choice of the variable to flip. Here the heuristic determines the value for a
chosen variable, not the variable itself. Another interesting point is that varying
the probability p will lead to different heuristics. If p = 1, val.5 becomes val. 1
random. If p = 0, val.5 becomes val.2 best-one. Finally, both the p part and the
1 — p part can be replaced by other heuristics.

Evidently, any combination of a var.z heuristic and a val y heuristic gives a
different strategy for examining the neighborhood. There are 15 possibilities in
our case. One aim of this work is to assess the performance of these combinations.
Note that an extensive study on the val.2 min-conflicts heuristic for solving CSPs
has been carried out and conclusions have been drawn [13]. However, that work

3 As for val.3, a probability can be introduced here to control deteriorative moves.

concerns essentially the value choice for a given conflict variable. In this work,
we study various combinations for choosing both variables and values.

Note finally that in order to efficiently implement the above variable/value
choice heuristics, special data structures are indispensable to be able to recognize
the conflict or the most constrained variables and the appropriate new value for
the chosen variable.

2.4 Heuristic Local Search Template

Using the above variable/value choice heuristics, various heuristic local search
(HLS) procedures can be built. The general HLS template is given below:

Procedure Heuristic Local Search (HLS)

Input:
P =< X,D,C, f >: the problem to be solved;
f & L: objective function and its lower bound to be reached;
MAX: maximum number of iterations allowed;
Output:
s: the best solution found;
begin
generate(s); /* generate an initial configuration */
I — 0; /* iterations counter */
while (f(s)>L)and (1< MAX) do
choose a variable V; € X; /* heuristics var.x */
choose a value v; € D; for V;; /* heuristics val.y */
if T(s,V;) # v; then
| s —s—{< Vi, T(s, Vi) >} +{< Vi, ui >
I —1+1;
output(s);
end

This HLS template uses two parameters L and MAX in the stop condition. L
fixes the (optimization) objective to be reached and MAX the maximum number
of iterations allowed. Therefore, the procedure stops either when an optimal
solution has been found or M A X iterations have been performed. The complexity
of such a procedure depends on M AX, the size of domains | D;| and the way in
which the neighborhood is examined.

3 Experimentation and Results

In this section, we present empirical results of HLS procedures which are based on
some representative combinations of heuristics introduced above for exploiting
the neighborhood structure. Tests are carried out on two NP-complete prob-
lems: the graph-coloring (COL) and the frequency assignment (FAP). For the

COL problem, test instances come essentially from the archives of the sec-
ond DIMACS Tmplementation Challenge®. For the FAP problem, instances (60
in total) are provided by the CNET (French National Research Center for
Telecommunications)®. A limited number of instances for each problem are used
to evaluate four combinations of heuristics for choosing variables/values. More
instances are then solved to compare these HLS procedures with other approach-
es including Tabu search, SA, constraint programming, and heuristic graph col-
oring algorithms.

3.1 Tests and Problem Encoding
Graph Coloring

There are two main reasons to choose the graph-coloring as our test problem.
First, it is a well-known reference for NP-complete problems. Second, there are
standard benchmarks in the public domain.

The basic COL is stated as a decision problem: given k colors and a graph
G =< F,V >,1s 1t possible to color the vertices of £ with the k colors in such a
way that any two adjacent vertices of V' have different colors. In practice, one is
also interested in the optimization version of the problem: given a graph G, find
the smallest & (the chromatic number) with which there is a k-coloring for G.

Many classic methods for graph-coloring are based on either exhaustive
search such as branch-and-bound techniques or successive augmentation heuris-
tics such as Brélaz’s DSATUR algorithm, Leighton’s Recursive Largest First
(RLF) algorithm and the more recent XRLF by Johnson et al. [9]. Recently,
local search procedures such as SA [9] and Tabu search [8, 3] were also applied
to the coloring problem.

In order to apply our HLS procedures to the graph-coloring problem, the
COL must first be encoded. Given a graph G =< E,V >, we transform G into
the following constraint problem < X, D, C, f > where

— X = F 1s the the set of the vertices of G,

— D is the set of the k integers representing the available colors,

— (' is the set of constraints specifying that the colors assigned to u and v
must be different if {u,v} € V,

— f is the number of colors used to obtain a proper (conflict-free) coloring.

With this encoding, a (proper or improper) coloring of G will be a complete
assignment {< u,7 > |u € F,i € D}. Coloring G consists in assigning integers
in D (colors) to the vertices in E in such a way that all the constraints of C' are
satisfied while a minimum number of % colors is used.

In order to minimize k, a HLS procedure solves a series of CSPs (decision
problems). More precisely, it begins with a big & and tries to solve the underlying

* DIMACS benchmarks are available from ftp dimacs.rutgers.edu.
® Another set of FAP instances are available from ftp ftp.cs.city.ac.uk. These tests
correspond to sparse graphs and are consequently much less constrained.

CSP < X,D,C >. If a proper k-coloring is found, the search process proceeds
to color the graph with & — 1 colors and so on. If no coloring can be found with
the current k colors, the search stops and reports on the last proper coloring
found. In other words, it tries to solve a harder problem (CSP) with fewer colors
if it manages to solve the current one. In order to solve each underlying CSP,
our local search procedure needs an ewvaluation function to measure the relative
quality of each configuration (which is usually an improper coloring). Several
possibilities exist to define this function. In this paper, it is defined simply as
the number of unsatisfied constraints.

The DIMACS archives contain more than 50 benchmarks. We have chosen a
subset of them for our experiments. Note that the main objective of this work is
not to improve on the best known results for these instances. In order to achieve
any improvement, local search alone may not be sufficient. It must be combined
with special coloring techniques. In this work, we use these instances to study
the behavior of our HLS procedures. For this purpose, we have chosen some 16
small and medium size (< 500 vertices) instances from different classes.

Frequency Assignment Problem

Our second test problem concerns a real world application: the frequency assign-
ment problem which is a key application in mobile radio networks engineering.
As we will see later, the basic FAP can be easily shown to be NP-complete.

The main goal of the FAP consists in finding frequency assignments which
minimize the number of frequencies (or channels) used in the assignment and the
electro-magnetic interference (due to the re-use of frequencies). The difficulty of
this application comes from the fact that an acceptable solution of the FAP must
satisfy a set of multiple constraints, some of these constraints being orthogonal.
The most severe constraint concerns a very limited radio spectrum consisting
of a small number of frequencies (usually about 60). This constraint imposes
a high degree of frequency re-use, which in turn increases the probability of
frequency interference. In addition to this frequency constraint, two other types
of constraints must be satisfied to ensure communication of a good quality:

1. Traffic constraints: the minimum number of frequencies required by each
station S; to cover the communications of the station, noted by T;.

2. Frequency interference constraints belong to two categories: 1. Co-station
constraints which specify that any pair of frequencies assigned to a sta-
tion must have a certain distance between them in the frequency domain;
2. Adjacent-station constraints which specify that the frequencies assigned
to two adjacent stations must be sufficiently separated. Two stations are
considered as adjacent if they have a common emission area.

About 60 instances were used in our experiments. Some of them are not only
very large in terms of number of stations and in terms of number of interference
constraints, but also very difficult to solve. The FAP instances we used in our
experiments belong to three different sets which are specified below.

— Test-Set-No.1 Traffic constraints: one frequency per station. Consequently,
there is no co-station constraint. Adjacent constraints: frequencies assigned
to two adjacent stations must be different.

— Test-Set-No.2 Traffic constraints: two frequencies per station. Co-station
constraints: frequencies assigned to a station must have a minimum distance
of 3. Adjacent constraints: frequencies assigned to two adjacent stations must
have a minimum distance of 1 or 2 according to the station.

— Test-Set-No.3 Traffic constraints: up to 4 frequencies per station. Co-
station and adjacent constraints: the separation distance between frequencies
assigned to the same station or adjacent stations varies from 2 to 4.

In fact, Test-Set-No.l corresponds to the graph-coloring problem. To see
this, frequencies should be replaced by colors, stations by vertices and adjacent
constraints by edges. Finding an optimal, i.e., an interference-free, frequency
assignment using a minimum number of distinct frequencies i1s equivalent to
coloring a graph with a minimum number of colors.

In order to apply our HLS procedures, the FAP will be encoded as a con-
straint (optimization) problem < X, D, f > such that

— X ={Ly,Ls,...,Lns} where each L; represents a list of T; frequencies re-
quired by the i** station and NS is the number of stations in the network,

— D is the set of the N F' integers representing the N F' available frequencies,

— (' is the set of co-station and adjacent-station interference constraints,

— f is the number of frequencies used to obtain conflict-free assignments.

It is easy to see that with this encoding, a frequency assignment has the
length of Zf\f’l T;. Fig.1 gives an example where the traffic of the three stations
is respectively 2, 1 and 4 frequencies and f; ; represents the 7P frequency value
of the i*? station S;.

C1 c2 C3

TN

[f1afri2 12,1131 13.2[f3.3]f3.4

Fig. 1. FAP encoding

Solving the FAP consists in finding assignments which satisfy all the inter-
ference constraints in C' and minimize N F', the number of frequencies used. To
minimize N F', we use the same technique as that explained in the last section.

3.2 Comparison of Strategies for Neighborhood Examination

We have chosen to compare four combinations of heuristics: var.1 random/val.2
conflict-random, var.2 conflict-random/val.2 min-conflicts, var.2 conflict-random/
val 8 stochastic-best-one, var.2 conflict-random/val.5 probabilistic-improvement.
The main reason for choosing these strategies is to have a good sample which
combines two important aspects of a search strategy: randomness and guideness.

The var.1 random/val. 1 random combination, which represents a random search
strategy, was also tested. The results of this strategy were so bad that we have
decided to omit them from the comparison. The probability p used in var.2/val. 3
is respectively fixed at 0.1 for the COL and 0.2 for the FAP. The probability p
used in var.2/val .5 is fixed at 0.05 for both problems.

Table 1 shows the comparative results of these four strategies for 6 COL
instances (3 structured graphs le450_15[c — d].col, flat_28_0.col and 3 random
graphs). For each instance and each strategy, we give the mean number of colors
(Colors) over 5 runs and the mean number of evaluations (Eval.) in thousands,
needed to find a coloring. These two criteria reflect respectively the quality of a
solution and the efficiency of a strategy.

Table 1. Comparison of heuristics for COL

Problems Runs|| varl/val2 var2/val2 var2/val3 | var2/val5
Colors| Eval. ||Colors| Eval. ||Colors|Eval.||Colors|Eval.
46.00 | 1141 || 47.80 | 2939 || 47.60 | 128 || 46.00 | 653
72.60 | 9800 (| 70.60 | 8500 || 70.00 {5600 | 70.80 |1420
33.20 | 2000 || 34.80 | 2100 || 31.60 {1240 32.00 | 1280
22.60 | 6173 || >25 |>5100(| 21.60 {2574 || 21.80 |2907
22.60 | 3789 || >25 |>5100(| 21.40 {3094 || 21.20 |3906
35.00 |20368|| >38 |>T100(| 34.00 {2832 || 34.80 |4486

R125.1c.col
R250.5.col
DJSC250.5.col
le450_15c.col
le450_15d.col
flat300_28_0.col

Ot Ut Ut Ut Ut Ut

From Table 1, we observe that compared with the other strategies, var.2
conflict-random/val.2 min-conflicts gives the worst results. In fact, for 5 out of
6 instances, it requires more colors and more evaluations than the others to
find colorings. In particular, it has serious problems coloring the 3 structured
graphs even with up to 10 colors more than the minimum. var.1 random/val.2
conflict-random is a little better than var.2/val. 2 for 5 instances, but worse than
var.2 conflict-random/val.3 stochastic-best-one and var.2 conflict-random/val.5
probabilistic-improvement. Finally, the results of var.2/val.3 and var.2/val 5 are
similar with a slightly better performance for the first: var.2/val.3 performs a
little better than war.2/val.5 for 4 instances. Therefore, for the coloring prob-
lem, it seems that the following relation holds: (var.2/val.3 = var.2/val.5) >
var.1/val.2 > var.2/val.2, where &~ and > mean respectively “comparable” and
“better than” in terms of the solution-quality/efficiency. This relation was con-
firmed when we tried to solve other COL instances.

Table 2 shows the comparative results of these four strategies for 5 FAP in-
stances. Each instance is specified by three numbers nf.tr.nc which are respec-
tively the lower bound of the number of distinct frequencies necessary to have
an interference-free assignment, the sum total of the traffic (the number of inte-
ger variables) of all stations, and the number of co-station and adjacent-station
interference constraints. For example, 16.300.12370 means that this instance has
a total traffic of 300 and 12,370 interference constraints, and requires at least 16
frequencies to have an interference-free assignment. The same criteria as for the
COL are used except that “Colors” criterion is replaced by the mean number of

the frequencies (NF) for having interference-free assignments.

From Table 2, we see once again that var.2 conflict-random/val.2 min-conflicts
is the worst strategy. With even 10 frequencies more than the lower bound (16), it
cannot find a conflict-free assignment for 16.300.12370. For the other instances,
it requires at least 3 to 6 frequencies more than the lower bound. At the other
extreme, we notice that wvar.2 conflict-random/val.3 stochastic-best-one domi-
nates the others for the 5 instances. Finally, the performance of var.2 conflict-
random/val.5 probabilistic-improvement is between that of var.1 random/val 2
conflict-random and var.2/val.3. Therefore, for the FAP, it seems that the fol-
lowing relation holds: var.2/val.3 > var.2/val.5 > var.1/val.2 > var.2/val.2.
This relation was confirmed when we tried to solve other FAP instances.

Table 2. Comparison of heuristics for FAP

Problems ||Runs|| varl/val2 || var2/val2 || var2/val3 | var2/val5
NF |Eval.|| NF | Eval. || NF |Eval. || NF |Eval.

8.150.3308 8.0 | 916 ||14.00| 1229 (| 8.00| 47 | 8.00| 50
15.300.8940 16.00|1769 ||18.00 741 |{15.00| 1804 ||15.40(2016
16.150.3203 17.80|1246||21.80| 6731 |[16.75{10236(|17.60(2638

16.300.12370
30.600.45872

18.75|5978 || >26 [>1350({17.00| 2535 ||19.20(3120
30.00(651333.20{ 11080 {|30.00| 570 |{30.00{1700

Ut Ut Ot Ut Ut

Based on the data in Tables 1 and 2, we can make several remarks. First,
we notice that var.2 conflict-random/val.3 stochastic-best-one and var.2 conflict-
random/val.5 probabilistic-improvement turn out to be winners for both problem-
s compared with var.1 random/val. 2 min-conflicts and var.2 conflict-random/val. 2
min-conflicts. As for most procedures of heuristic search, there is no theoreti-
cal justification for this. However, intuitive explanations help to understand the
result. The tested instances represent hard problems and may contain many
deep local optima. For a search procedure to have a chance of finding a solu-
tion, it must be not only able to converge efficiently towards optima, but also
able to escape from local optima. Both var.2/val.3 and wvar.2/val.5 have this
capacity thanks to deteriorative moves authorized by war.2/val.3 and random
moves in var.2/val.5. On the contrary, var.! random/val.2 min-conflicts and
var.2 conflict-random/val.2 min-conflicts, once they have reached a local opti-
mum, is trapped since deteriorative moves are forbidden. Although they both
allow side-walk moves by taking values that do not change the value of the
evaluation function, this is not sufficient to escape from local optima.

If we trace the evolution of the evaluation function, i.e. the number of un-
satisfied constraints as a function of the number of iterations, we observe that
all four strategies are able to reduce rapidly the number of unsatisfied con-
straints after a relatively small number of iterations (descending phase). The
difference between these strategies appears during the following phase. In fact,
for var.2/val.3 and var.2/val.5, the search, after the descending phase, goes in-
to an oscillation phase composed of a long series of up-down moves, while for
var.1/val 2 and var.2/val 2, the search stagnates at plateaus.

In principle, any search strategy must conciliate two complementary aspects:

10

exploitation and exploration. Exploitation emphasizes careful examinations of
a given area while exploration encourages the search to investigate new areas.
From this point of view, we can say that var.2/val.3 and var.2/val.5 manage
to exploit and explore correctly the search space by balancing randomness and
guideness. On the contrary, due to the deterministic nature of the min-conflicts
heuristic, var.1/val.2 and var.2/val. 2 focus only on the aspect of exploitation.

3.3 Comparisons with Other Methods

This section lists the best results of the HLS procedures with var.2/val.3 and
var.2/val.5 for the COL and the FAP. The controlling probability p used by
var.2/val. 3 varied between 0.1 and 0.2. The probability used by var.2/val.5 was
around 0.05. Whenever possible, the results are compared with those obtained
by other methods: Tabu search for the COL, SA, constraint programming (CP)
and heuristic coloring algorithms (HCA) for the FAP.

Results are based on 1 to 10 independent runs according to the difficulty of
the instance. For each run, a HLS procedure begins with k colors/frequencies
(usually 10 colors/frequencies more than the best known value) and tries to find
a conflict-free solution for the underlying CSP. For each given color/frequency,
t = 1,2, 3 tries are authorized, i.e. if the search cannot find a conflict-free solution
within ¢ tries, the current run is terminated. If a conflict-free solution is found
(within ¢ tries), the number of colors/frequencies is decreased and the search
continues. The maximum number of iterations (moves) is fixed at 50,000 to
500,000 for each try in each run.

Three criteria are used for reporting results: the minimum and the mean
number of colors/frequencies (NC/NF), and the mean time for finding a conflict-
free solution. The first two criteria reflect the quality of solutions while the third
reflects solving efficiency. In order to better assess the robustness of HLS, we
also give in brackets how many times a solution with the minimum number of
colors/frequencies has been found. The time (on a SPARCstation 10) is the total
user time for solving an instance, including the time for solving the intermediate
CSPs and the time for failed tries (up to 3 tries for each run). Note that timing
is given here only as a rough indication.

Table 3 shows the results of the HLS procedures for some DIMACS bench-
marks and two classes (g100.5.col and ¢300.5.col) of 25 random graphs taken
from [4]. The instances are specified as follows. For random graphs gzzz.y.col
and Rzxzz.y.col, zzx and y indicate respectively the number of vertices and the
density of the graph. For Leighton’s graphs lezzz_yy[a — d].col and structured
graphs flat300_yy_0.col, yy is the chromatic number. DS.JC.1000.5.col(res) is
the residual graph (200 vertices and 9,633 edges) of DSJC.1000.5.col (1,000 ver-
tices and about 500,000 edges). This residual graph was obtained by eliminating
61 independent sets and all the related edges [4]. Table 3 also shows the results
of Tabu search (using a faster SuperSPARC 50 machine) [3].

The top part of Table 1 presents results for graphs having up to 300 vertices.
From the data in Table 1, we notice that for the 20 ¢100.5.col instances, HLS
finds the same result as that of Tabu search while for the 5 g300.5.col instances,

11

it needs en average 1.3 more colors. For the Rzzz.y.col family, HLS manages
to find a best known coloring for 5 out of 6 instances, but has difficulty to
color R125.5.col for which it requires 2 colors more than Tabu. For the three
flat300_yy_0.col instances, HLS obtains the same results as Tabu search for 2
out of 3 instances. For flat300.26_0.col, HLS finds an optimal coloring for one
out of 5 runs. For DSJC.1000.5.col(res), HLS manages to color the graph with
24 colors in about half an hour (instead of the best known value of 23 obtained
with Tabu after about 20 hours of computing). With 23 colors, HLS usually
leaves 1 or 2 unsatisfied constraints at the end of its search.

Table 3. HLS performance for COL

Problems Edges HLS Tabu
NC NC
Runs|{Min.(nb)| Ave. | T[sec.]|| Runs{Min.| Ave. | T[sec.]
g100.5.col (20 inst.) | ~ 2500 1 14(1) |14.95| 275.3 1 - [14.95| ~ 9.5
g300.5.col (5 inst.) |~ 22000 1 34(1) |34.80| 4793 1 - 133.50|~ 353
R125.1.col 209 10 5(10) |5.00| 0.5 10 5 |5.00 0
R125.1c.col 7501 10 | 46(10) |46.00| 129 10 | 46 [46.00 4.1
R125.5.col 3838 10 37(1) |38.00| 187 5 35 135.60| 1380
R250.1.col 867 10 8(10) |8.00 2 10 8 |8.00 0
R250.1c.col 30227 10 64(8) |64.20| 2946 10 | 64 (64.00| 108
R250.5.col 14849 3 69(1) |69.75| 6763 5 69 169.00| 1664
flat300-20_0.col 21375 5 20(5) |20.00| 1997 10 | 20 (20.00| 40
flat300-26_0.col 21633 5 26(1) |31.40| 6710 3 26 |26.00| 8100
flat300-28_0.col 21695 5 33(5) |33.00| 2402 3 33 |33.00| 4080
DSJC.1000.5.col(res)| 9633 5 24(5) |24.00| 1531 5 23 |23.00| 68400
le450_15a.col 8168 5 16(5) |16.00| 354 10 | 15 (15.00| 248
le450_15b.col 8169 5 16(5) |16.00| 273 10 | 15 (15.00| 248
le450_15c.col 16680 5 15(1) |16.00| 4376 10 | 16 [16.00| 268
le450_15d.col 16750 5 15(2) |15.60] 3990 10 | 16 [16.00f 791
le450_25a.col 8260 5 25(5) |26.00{ 61 5 25 |25.00] 4.0
le450_25b.col 8263 5 25(4) |25.60| 27 5 25 |25.00] 3.9

The lower part of Table 1 presents the results for 6 Leighton graphs. We see
that HLS finds an optimal coloring for 4 out of 6 instances. For le450_15¢.col
and le450_15d.col, HLS requires one less color than Tabu. For le450_15a.col and
le450_15b.col, the reverse 1s true. It should be mentioned that, in order to color
these graphs and more generally any graph having more than 300 vertices, Tabu
uses the technique of independent sets mentioned above to produce first a much
smaller residual graph which is then colored.

Finally, we make a general remark about the HLS procedures used to obtain
the above results. The main goal of this work is to study the behavior of various
heuristics, but not to improve on the best results for the coloring problem (In
fact, this second point constitutes another ongoing work). Consequently, the HLS
procedures used are voluntarily general and do not incorporate any specialized
technique for the COL. With this fact in mind, the results of the HLS procedures
may be considered to be very encouraging.

12

Table 4 shows the best results for 12 FAP instances obtained with HLS
procedures combined with a technique for handling co-station constraints [2].
These instances are taken from a series of 60 instances and represent some of
the hardest problems. It should be remembered that each instance nf.tr.nc is
specified by the lower bound for the number of frequencies, the sum total of the
traffic, and the number of interference constraints. As we can see from the table,
some instances are very large and have a high density of constraints. Table 4
also shows the best results of SA, CP (ILOG-Solver) and HCA, all reported in
[15]. These procedures have been run on HP Stations which are considered to
be at least three times faster than the SPARCstation 10 we used. A minus “-”
in the table means that the result is not available.

Table 4. HLS performance for FAP

Problems HLS HCA CP SA
NF
Runs|{Min.(nb)| Ave. | Eval. | T[sec.]|| NF |INF|T[sec.]|NF|T[sec.]
8.150.2200 10 8(10) |8.00| 812 639 8 8 | 7200 || 8 | 509
15.300.8940 10 | 15(10) |15.00| 1326 | 1606 20 || 17| 3600 ||15| 4788
15.300.13400 10 | 15(10) |15.00| 2557 | 3600 27 ||25] 1560 |[15| 2053
16.150.3203 10 16(1) |16.9|1070| 658 19 || 1814400 (|17 | 1744
16.150.3323 10 17(8) |17.2| 3246 | 2283 19 (| 19| 7200 ([17| 1383
30.300.13638 10 | 30(10) |30.00{ 18 25 30 |30 1 30| 1558
30.600.47852 2 30(1) [30.50|46666(122734|| 47 |46 | 4800 ||36| 5309
40.335.11058 2 43(2) |43.00| 9434 | 17823 - - - - -
40.966.35104 10 | 45(10) |45.00| 707 | 1341 - - - - -
60.600.47688 10 | 60(10) |60.00| 4234 | 9288 60 - - 60| 858
60.600.45784 10 | 60(10) |60.00| 2039 | 3981 60 - - 60| 516

In Table 4, we notice first that HCA gives the worst results for all the solved
instances; it requires up to 17 frequencies more than the lower bound. The results
of CP are a little better than HCA for 6 out of 7 problems. It is interesting to
see that instances which are difficult for HCA remain difficult for CP. On the
contrary, the results of HLS and SA are much better than those of HCA and
CP: HLS (SA) finds an optimal assignment for 8 (6) instances. In general, the
harder the problem to be solved, the bigger the difference: for 15.300.13400 and
30.600.47852, there is a difference of more than 10 frequencies. Note finally that
HLS improves on the result of SA for two instances (in bold). In particular, for
30.600.47852, HLS finds a conflict-free assignment with only 30 frequencies (36
for SA). This is rather surprising given the similar results of these two approaches
for the other instances. The computing time for HLS and SA is generally similar
to obtain solutions of the same quality. It is difficult to compare the computing
time with CP since they give solutions which are too different.

To sum up, HLS gives the best result for the 12 hardest FAP instances. This
remains true for 48 other instances which have been solved, but not report-
ed here. However, we notice that for easier instances, all the methods behave
similarly. Moreover, CP and HCA may be faster for some easy instances.

13

4 Conclusions & Future Work

In this paper, we have presented a class of local search procedures based on
heuristics for choosing variables/values. The combinations of these heuristics give
different strategies for examining a very general neighborhood. These heuristics
can be applied to a wide range of problems.

Four representative combinations of these heuristics out of fifty possibili-
ties have been empirically evaluated and compared using the graph-coloring
problem and the frequency assignment problem. Two strategies turn out to be
more efficient: var.2 conflict-random/val.3 stochastic-best-one and var.2 conflict-
random/val.§ probabilistic-improvement. In essence, these two strategies are able
to find a good balance between randomness and guideness, which allows them
to explore and exploit correctly the search space. The controlling probability p
used by these two strategies plays an important role in their performance and
should be empirically determined. In our experiments, we have used values rang-
ing from 0.1 to 0.2 for var.2/val.3 and values around 0.05 for var.2/val.5. More
work is needed to better determine these values. Moreover, the possibility of a
self-adaptive p is also worth studying.

We also found that wvar.1 random/val.2 min-conflicts, and especially var.2
conflict-random/val. 2 min-conflicis are rather poor strategies for both COL and
FAP. In fact, these two strategies are too deterministic to be able to escape from
local optima. It is interesting to contrast this finding with the work concerning
the min-conflicts heuristic [13].

To further evaluate the performance of these heuristic LS procedures, they
were tested on more than 40 COL benchmarks and 12 hard FAP instances.
Although they are not especially tuned for the coloring problem, the HLS pro-
cedures give results which are comparable with those of Tabu search for many
instances. At the same time, we noticed that HLS alone, like many other pure
LS procedures, has difficulty coloring very large and hard graphs. For the FAP
problem, the results of HLS on the tested instances are at least as good as those
of simulated annealing, and much better than those obtained with constraint
programming and heuristic coloring algorithms.

Currently, we are working on several related issues. At a practical level, we
want to evaluate other combinations not covered in this paper. Secondly, we are
developing specialized coloring algorithms combining the general heuristics of
this paper and well-known coloring techniques. Indeed, in order to color hard
graphs, all efficient algorithms use specialized techniques. It will be very inter-
esting to see if the combination of our heuristics with these kinds of techniques
can lead to better results.

At a more fundamental level, we try to identify the characteristics of prob-
lems which may be efficiently exploited by a given heuristic. This is based on
the belief that a heuristic has a certain capacity to exploit special structures or
characteristics of a problem. Thus, the heuristic may have thus some “favorite”
problems. A long-term goal of the work is to look for a better understanding
of the behavior of LS heuristics for solving problems and answering such funda-
mental questions as when and why a heuristic works or does not.

14

Acknowledgments

We would like to thank A. Caminada from the CNET for his assistance, P.
Galinier for useful discussions and the referees for their comments on the paper.

References

1. D.H. Ackley, A connectionist machine for genetic hillclimbing. Kluwer Academic
Publishers, 1987.

2. R. Dorne and J.K. Hao, “Constraint handling in evolutionary search: a case study
about the frequency assignment”, Submitted to the 4th Intl. Conf. on Parallel Prob-
lem Solving from Nature (PPSN’96), Berlin, Germany, Sept. 1996.

3. C. Fleurent and J.A. Ferland, “Object-oriented implementation of heuristic search
methods for graph coloring, maximum clique, and satisfiability”. in D.S. Johnson
and M.A. Trick (eds.) “2nd DIMACS Implementation Challenge” (to appear).

4. C. Fleurent and J.A. Ferland, “Genetic and hybrid algorithms for graph coloring”,
to appear in G. Laporte, I. H. Osman, and P. L. Hammer (eds.), Special Issue
Annals of Operations Research on Meta-heuristics in Combinatorial Optimization.

5. E.C. Freuder and R.J. Wallace, “Partial constraint satisfaction”, Artificial Intelli-
gence, Vol.58(1-3), pp21-70, 1992.

6. F. Glover and M. Laguna, “Tabu Search”, in C. R. Reeves (eds.) Modern Heuristics
for Combinatorial Problems, Blackwell Scientific Publishing, Oxford, Great Britain.

7. P. Hensen and B. Jaumard, Algorithms for the maximum satisfiability problem,
Computing Vol.44, pp279-303, 1990.

8. A. Hertz and D. de Werra, “Using Tabu search techniques for graph coloring”.
Computing Vol.39, pp345-351, 1987.

9. D.S. Johnson, C.R. Aragon L.A. McGeoch and C. Schevon, “Optimization by sim-
ulated annealing: an experimental evaluation; part II, graph coloring and number
partitioning”. Operations Research, Vol.39(3), 378-406, 1991.

10. B.W. Kernighan and S. Lin, “An efficient heuristic for partitioning graphs”, Bell
System Technology Journal, Vol.49, 1970.

11. S. Kirkpatrick, C.D. Gelatt Jr. and M.P. Vecchi, “Optimization by simulated an-
nealing”, Science No.220, 671-680, 1983.

12. S. Lin and B.W. Kernighan, “An efficient heuristic for the traveling-salesman prob-
lem”, Operations Research, Vol.21, pp498-516, 1973.

13. S. Minton, M.D. Johnston and P. Laird, “Minimizing conflicts: a heuristic repair
method for constraint satisfaction and scheduling problems”, Artificial Intelligence,
Vol.58(1-3), pp161-206, 1992.

14. C.H. Papadimitriou and K. Steiglitz, “Combinatorial optimization - algorithms
and complexity”. Prentice Hall, 1982.

15. A. Ortega, J.M. Raibaud, M.Karray, M.Marzoug, and A.Caminada, “Algo-
rithmes de coloration des graphes et d’affectation des fréquences”. TR CNET, N-
T/PAB/SRM/RRM /4353, August 1995.

16. B. Selman, H.J. Levesque and M. Mitchell, “A new method for solving hard satis-
fiability problems”. Proc. of AAAI-92, San Jose, CA, pp.440-446, 1992.

17. B. Selman and H.Kautz, “Domain-independent extensions to GSAT: solving large
structured satisfiability problems”. Proc. of IJCAI-93, Chambery, France, 1993.

18. E. Tsang, “Foundations of constraint satisfaction”, Academic Press, 1993.

This article was processed using the INTRpX macro package with LLNCS style

15

