An Effective Heuristic Algorithm for Sum
Coloring of Graphs

Qinghua Wu and Jin-Kao Hao *

LERIA, Université d’Angers
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

Computers and Operations Research
(DDI10.1016/j.cor.2011.09.010)

Abstract

Given an undirected graph G = (V| E), the minimum sum coloring problem
(MSCP) is to find a legal vertex coloring of G, using colors represented by natural
numbers (1,2,...) such that the total sum of the colors assigned to the vertices
is minimized. In this paper, we present EXSCOL, a heuristic algorithm based on
independent set extraction for this NP-hard problem. EXSCOL identifies iteratively
collections of disjoint independent sets of equal size and assign to each independent
set the smallest available color. For the purpose of computing large independent
sets, EXSCOL employs a tabu search based heuristic. Experimental evaluations on
a collection of 52 DIMACS and COLOR2 benchmark graphs show that the proposed
approach achieves highly competitive results. For more than half of the graphs used
in the literature, our approach improves the current best known upper bounds.

Keywords: sum coloring, vertex coloring, independent set, heuristics.

1 Introduction

Given an undirected graph G = (V, E) with vertex set V' and edge set F, an
independent set I of GG is a subset of V' such that no two vertices in I are
joined by an edge in E. A legal k-coloring of G is a partition of V' into k
disjoint independent sets Iy, I5 ..., I;. The smallest integer k such that a legal
k-coloring exists for G is the chromatic number of G (denoted by x(G)). The

* Corresponding author.
Email addresses: wu@info.univ-angers.fr (Qinghua Wu),
hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 15 September 2011

well-known NP-hard graph vertex coloring problem is to find the chromatic
number of a graph [7]. In this paper, we are interested in a related problem
known as the minimum sum coloring problem (MSCP for short).

The MSCP is to find a vertex coloring ¢ = {Iy,..., I} of G such that the
following total sum of the colors is minimized:

k

Sum(c) =) i (1)

=1 ’UEIZ‘

The optimal (smallest) value of this sum is called the chromatic sum of G and
denoted by >(G). The number k of the k-coloring leading to the chromatic
sum is called the strength of the graph and denoted by s(G). It is clear that
s(@) is lower bounded by x(G), i.e. s(G) > x(G).

The minimum sum coloring problem is known to be NP-hard in the general
case [14]. In addition to its theoretical significance as a difficult combinatorial
problem, the MSCP is notable for its ability to formulate a number of im-
portant problems, including those from VLSI design, scheduling and resource
allocation [1,19].

During the past two decades, the MSCP has been studied essentially from
a theoretical point of view and special cases (e.g. tree, interval graphs, line
graphs etc) have been identified which admit efficient approximation algo-
rithms or polynomial algorithms [1-3,8,9,12,19,23]. For the purpose of prac-
tical solving of the general MSCP, several heuristic algorithms have recently
been proposed to find suboptimal solutions. Notice that this heuristic based
approach is expected to find good approximate solutions within reasonable
computing time, but without provable solution quality.

For instance, Kokosinski and Kawarciany proposed a parallel genetic algorithm
[13]. In [17], Y. Li et al. presented MRLF, an effective greedy algorithm based
on the well-known RLF graph coloring heuristic [16]. Moukrim et al. showed
a technique for computing the lower bound for the MSCP based on extraction
of specific partial graphs [21]. Bouziri and Jouini adapted a tabu coloring
algorithm to sum coloring [4]. Douiri and Elbernoussi illustrated a hybrid
algorithm which combines a genetic algorithm with a local search heuristic
[5]. Finally, in [1] Bar-Noy et al. presented a theoretical study of a heuristic
algorithm based on finding iteratively maximum independent sets (MaxIS)
and showed that the MaxIS is a 4-approximation to the MCSP, which is a
tight bound to within a factor of 2. Nevertheless, the practical performance of
this heuristic was not verified with computational experiments.

In this paper, we present a heuristic algorithm called EXSCOL for the MSCP
based on the idea of independent set extraction. The similar approach was

initially applied to the vertex coloring problem [25]. Basically, EXSCOL it-
eratively extracts from the graph as many large disjoint independent sets of
equal size as possible. For each extracted independent set, we assign to it the
smallest available color (colors are represented by natural numbers 1, 2...).
This process is repeated until the graph becomes empty. The rationale behind
this approach is that by extracting many large disjoint independent sets, we
naturally favor the construction of large color classes and reduce the number
of needed color classes, leading to a reduced total sum of colors. Since com-
puting a maximum independent set of a graph is NP-hard [7], we employ the
tabu search based heuristic introduced in [26] to find large independent sets.

We present experimental results on a set of 52 benchmark graphs in the liter-
ature, showing that the proposed algorithm achieves very competitive results
with respect to the existing sum coloring heuristics. Indeed, for more than half
of the instances used in the literature, the proposed approach improves the
current best known results. Furthermore, we assess the relative performance
of two other solution methods using respectively the conventional independent
set extraction strategy and graph vertex coloring algorithms.

The rest of this paper is organized as follows. In the next section we give
a formal description of the proposed EXSCOL algorithm. In section 3, com-
putational results are presented and compared with several state-of-the-art
algorithms from the literature. In section 4, we show additional studies and
comparisons with respect to two other solutions methods, followed by conclu-
sions in section 5.

2 EXSCOL: an algorithm for the MSCP
2.1 Rationale and general procedure

Let ¢ ={I4,..., I} be alegal coloring of graph G = (V, E), each independent
set I; is a color class of ¢ such that all the vertices v € I; receive color i. Given
the coloring ¢, its sum of colors Sum(c) according to Eq. (1) counts the total
sum of the colors induced by c¢. Suppose |I;| > |Io| > ... > |[1], Eq. (1) can
be rewritten as follows.

k
Sum(c)=1-|L| 42 |L]+...+k-|[L]=> i | (2)
i=1

It is clear that the sum depends on both the number k of the used colors and
the size of the color classes. To minimize this sum, one can try to construct
large color classes and assign to them small colors. For this purpose, one

can remove iteratively the maximum number of disjoint independent sets of
the maximum size from the graph until the graph becomes empty. However,
both computing a maximum independent set of a graph and a maximum set
of disjoint sets (which is the maximum set packing problem) are NP-hard
problems [7]. Consequently, heuristics are needed in the general case to find
approximate solutions, in particular for large graphs.

The proposed EXSCOL algorithms follows this basic idea and can be summa-
rized by the following procedure.

(1) Identify an independent set of the largest size possible from the graph;

(2) Identify as many pairwise disjoint independent sets of that size as possible
and extract them from the graph;

(3) Assign to each extracted independent set the smallest available color (the
first color used is 1);

(4) Stop if the graph becomes empty, goto Step 1 otherwise.

Fig. 1. An illustration of the proposed EXSCOL algorithm

Fig. 1 illustrates how this approach works on a graph with 9 vertices. At the
first step, we find a maximum independent set of size 3 (e.g. {4, D, H}). Then
we try to identify as many disjoint independent sets of size 3 as possible from
the graph, leading to 3 disjoint independent sets {A, B, F'},{C, E, H},{D, G, I}.
We assign colors 1,2,3 to these independent sets. Since the graph becomes
empty after removing these independent sets, the procedure stops. We obtain
a coloring ¢ = {{A, B, F},{C,E,H},{D,G,I}} with Sum(c) = 18 for the
graph.

2.2 The EXSCOL algorithm

The proposed EXSCOL algorithm (Alg. 1) implements the general procedure
given in section 2.1. EXSCOL starts by identifying a first largest possible
independent set), (line 4) whose size |I)| is used later to build a pool M of
independent sets of that size (lines 5-15). The search for a new independent
set of size |I)/| stops when the number of independent sets contained in M

reaches a desired threshold (M,,,,) or when no new independent set of that
size is found after p,,,, consecutive tries.

From M, EXSCOL tries to determine a maximum number of disjoint indepen-
dent sets (line 16). This task corresponds in fact to the maximum set packing
problem, which is equivalent to the maximum clique (thus the maximum in-
dependent set) problem [7]. Given M = {I3, ..., I,}, we construct an instance
of the independent set problem as follows.

Algorithm 1 Pseudo-code of the EXSCOL algorithm
Require: Graph G = (V, E)
Ensure: A coloring of G

1: Begin

2: k1

3: while (|]V] > 0) do

4: Ip — ATS(G) {Apply ATS to find an independent set as large as possible,

Sect. 2.3}
9: M — {1y}
6: r«20
7. while (r < ppar & | M| < Mppg,) do
8: I — ATS(G,|In|) {Apply ATS to find an independent set of size |I], Sect.
2.3}
9: if I € M then
10: r—r+1
11: else
12: M — M{I}
13: r«— 0
14: end if

15: end while

16: Find in M as many pairwise disjoint independent sets as possible:
(I, ...,) < arg mazx{|A| : A C M,YI* I* € A, I°NI’* = ¢} (Break ties
by taking (11, ..., ;) such that the removal of (I, ..., [;) reduces the most G)

17: Remove (I1,...,1;) from G

18: fori=1tol do

19: Assign color k to I;

20: k=k+1

21: end for

22: end while

23: End

We define a new graph G' = (V', E’) where V' = {1,...,n} and {i,j} €
E’ (i,j € V') if I; and I; share at least one element, i.e. I; N I; # (. Now it is
clear that there is strict equivalence between an independent set in G’ and a
set of disjoint independent sets in M. Consequently, to obtain a maximum set
of disjoint independent sets in M, we can search for a maximum independent
set in G’. Given that the maximum independent set problem is NP-hard in
general, we approximate it with the so-called ATS heuristic [26].

To illustrate the idea, consider again Fig. 1 which contains 8 independent sets
of size 3: Il = {A,B,F},]2 = {A,D,G}, I3 = {A, D,H}, I4 = {O, .E'7 G},
Iy = {C,E.HY, Iy = {C,F,I}, I = {C,G.I}, Iy = {D,G,I}. Let M =
{1, I, ..., I}, the associated graph G’ = (V' E') is shown in Fig. 2. It is clear
that the maximum independent set {1,5,8} in Fig. 2 leads to the maximum
set of disjoint independent sets {1, I5, Is} in M.

If more than one solutions exist for the maximum independent set problem,
we prefer the solution IS such that the removal of the independent sets of 1.5
will reduce the graph the most in terms of the number of edges. The rationale
behind this choice is that a graph with fewer edges has more chance to contain
larger independent sets.

2.3 Adaptive Tabu Search for independent set identification

The Adaptive Tabu Search (ATS) heuristic described in [26] is designed to de-
termine an independent set of size k where k is a fixed integer. To approximate
the maximum independent set problem, it suffices to search for independent
sets of increasing k.

To find an independent set of size k in graph G = (V, E), ATS explores a
search space €2 composed of subsets of V' of size k which are formally identified
by: Q@ = {S C V : |S| = k}. To assess the quality of a candidate solution
S € Q, ATS uses an evaluation function f(S) that counts the number of edges
in the subgraph Gg induced by S. In other words, let Gg = (S, Es) such
that Es = {{u,v} : {u,v} € E,u,v € S}, then f(S) = |Es|. Obviously, if
f(S) = 0, no two vertices in S are joined by an edge, implying that S is an
independent set. Otherwise, S is not an independent set of G. The goal of ATS
is to find a solution S* such that f(S*) reaches its minimum value f(S*) = 0.

To this end, ATS starts with a solution S € €2 and then replaces iteratively the
current solution S by a neighboring solution S’ according to a neighborhood.
Basically a neighboring solution is generated by exchanging a vertex z of .S
against a vertex y of V' \ S. For the purpose of minimizing the function f

Fig. 2. A transformed maximum independent set instance G' = (V', E’)

above, we constraint x and y to belong to some specific subsets X C S and
Y € V'\ S. More precisely, we define X as the set of vertices of S having the
maximum number of adjacent vertices in S, and Y as the set of vertices of
V'\ S having the minimum number of adjacent vertices in S.

>
S={AC, E}
A has 1 adj. vertex in S

C has 0 adj. vertex in S

V—-S={B,D,F,G}
B has 2 adj. vertices in"S
D has 2 adj. vertices in S

E has 1 adj. vertex in S F has 2 adj. vertices in S
S set X={A, E} G has 0 adj. vertex in S
set Y={G}

Fig. 3. An example for the neighborhood defined by swap move. The solution S has
two neighboring solutions S' = {C, E,G} or S’ = {A, C, G}.

Now, to obtain a neighboring solution S’ from S, we swap one vertex x € X
with another vertex y € Y. All possible swap moves induced by X and Y
define our constrained neighborhood N(95), i.e.

N(S)={S"| S =S\{a}U{y}, v € X,y e Y}.

Fig. 3 shows an illustrative example where S has two possible neighboring
solutions.

ATS explores the search space by following this neighborhood. At each step,
ATS selects the best non-tabu neighboring solution S" € N(S) with a mini-
mum f(S") value to replace S.

To prevent the search from short-term cycling, once a swap move is performed,
the swapped vertices x and y are marked tabu for the next 7}, and 7}, iterations
respectively. The tabu tenures 7, and 7} are dynamically and adaptively ad-
justed as follows: T, = f(S5)+ Random(4) and T, = 0.6« T, where Random(4)
is a random number in {1,..., 4}.

Notice that with the use of tabu lists, it may happen that no move is possible
(i.e., all moves are forbidden). In this case, we simply select the most favorable
tabu move, i.e., the move with the largest move gain. As experimentally shown
in [26], this tabu search using the swap neighborhood combined with this tabu
mechanism performs quite well on a large set of benchmark graphs.

3 Experimental results

To assess the practical efficiency of our proposed EXSCOL algorithm, we carry
out experiments on a total of 52 graphs in the literature and compare EXSCOL
with 4 state-of-the-art existing algorithms. We also assess the interest of the
conventional strategy of extracting independent set extractions one by one and
the pertinence of using graph coloring algorithms to solve the sum coloring
problem.

3.1 Problem instances and experimental protocol

Two sets of benchmark graphs from the literature are considered in the ex-
periments. The first set (Table 1) is composed of 29 well-known DIMACS
graphs®. These graphs are very popular for testing graph coloring algorithms
(6,11,18,20,22]. However only the 12 DSJC random graphs have been recently
used for sum coloring [4,17].

The second set of benchmarks (see Table 2) is composed of 23 graphs from the
COLORO02 website ?. Like the first set, these graphs are initially collected for
the purpose of the COLOR02 competition. Among these graphs, sum coloring
results have been reported in the literature for 16 graphs [5,13,21].

Our EXSCOL algorithm is programmed in C and compiled using GNU GCC
on a PC with 2.8 GHz CPU and 2G RAM. To report computational statistics,
we run our EXSCOL algorithm on each graph 20 times (5 times for the two
huge Cxxxx.5 instances) and reports the following information: the minimum
sum of colors, the number of used colors, the average sum of colors over the
multiple runs, the average CPU time.

A desirable feature of EXSCOL is that it does not need any external stop
condition to terminate. In fact, it stops when the graph under consideration
becomes empty. Nevertheless, EXSCOL has three parameters to be fixed (see
Alg. 1): Pmaz, Momae and Iter (required by the ATS algorithm [26]). As ex-
plained in Section 2.2, large values for p,,.. and M,,,, could lead to more
independent sets collected in M and thus increase the chance of finding more
disjoint independent sets. On the other hand, large values for p,a. or Mq.
also imply long computing times. Based on preliminary experiments we have
fixed Pper = 100 and M,,,, = 2000 for all our experiments, although fine-
tuning these parameters would lead to better results. Finally, Iter is the max-
imum number of iterations before ATS stops its search if no independent set

! ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2 http://mat.gsia.cmu.edu/COLOR02/

of the desired size is found. We have set Iter = 10% according to [26].

3.2 Computational results

Table 1 and Table 2 summarize respectively the computational statistics of
our EXSCOL algorithm obtained on the two sets of benchmark instances?.
Columns 2-4 give the features of the tested instances: the number of vertices
(|V]), the number of edges (| E|) and the density of the graph (Den). Column 5
indicates the current best known sum values (Sum*) from the literature along
with the references reporting these values in brackets. Column 6 presents the
smallest number of colors (k*) for which a solution (k-coloring) has ever been
found by a graph vertex coloring algorithm. In columns 7-9, the computa-
tional statistics of our EXSCOL algorithm are given, including the smallest
sum of colors (Sum) with the number of required colors in parentheses (k),
the average sum of colors (Avg.) with the standard deviation in parentheses,
the average CPU time in minutes (7'[min.]). The last column indicates the
difference (gain) in sum of colors between our best results (column Sum) and
the current best known results (column Sum?*).

Concerning the 29 DIMCAS graphs, one observes from Table 1 that our EXS-
COL algorithm obtains excellent results (columns 7) with respect to the cur-
rent best known results reported in the literature (column 5). Indeed, for the
12 random DSJC graphs used in the literature, our EXSCOL algorithm sig-
nificantly improves the best known results by reducing largely the sum values
(column 10). Even our averaged results are better than the current best ones.
For the remaining 17 graphs, we report for the first time computational re-
sults for the sum coloring problem. EXSCOL needs from 1 to 27 minutes to
achieve these results except for the two huge Cxxxx.5 graphs for which much
larger computing times are required. Finally Table 1 discloses that for this set
of instances, the results may vary with large standard deviation for several
graphs.

Concerning the 23 COLORO02 graphs, one notices from Table 2 that EXSCOL
improves the current best known results for 5 graphs while equaling the best
ones for 9 graphs. Only for 2 graphs, EXSCOL obtains a worse result. For the
16 graphs used in the literature, EXSCOL achieves its results within less than
2 minutes and with small standard deviations. For the 7 additional (large)
graphs, EXSCOL requires a computing time ranging from 21 to 127 minutes.

3 The results of EXSCOL are available at http://www.info.univ-angers.fr/
pub/hao/exscol.html

Table 1

Computational results of EXSCOL on 29 DIMACS challenge benchmarks. The sym-

bol -’ means that the information is not available.

Instance V| |E| Den Sum?* k* EXSCOL
Sum/(k) Avg.(Std.) T'[min.] Diff
DSJC125.1 | 125 736 0.09 344[4] 5 326(7) 326.7(0.8) 1 —18
DSJC125.5 | 125 3891 050 1103[4] 17 1017(20) 1019.7(8.7) 1 86
DSJC125.9 | 125 6961 0.89 2631[4] 44 2512(44) 2512.0(0.0) 1 —119
DSJC250.1 | 250 3218 0.10 1046[4] 8 985(10) 985.0(0.0) 4 —61
DSJC250.5 | 250 15668 0.50 3658[17] 28 3246(31) 3253.9(6.7) 6 —412
DSJC250.9 | 250 27897 0.90 8942[17] 72 8286(75) 8288.8(6.8) 7 656
DSJC500.1 | 500 12458 0.10 3205[4] 12 2850(14) 2857.4(141.0) 9 —355
DSJC500.5 | 500 62624 0.50 12717[17] 48 10910(51) 10918.2(54.1) 11 —1807
DSJC500.9 | 500 112437 0.90 32703[17] 126 29912(132) 29936.2(630.4) 15 —2791
DSJC1000.1 | 1000 49629 0.10 10276[17] 20 9003(22) 9017.9(91.1) 28 —1273
DSJC1000.5 | 1000 249826 0.50 45408[17] 83 37598(87) 37673.8(2288.0) 24 —7810
DSJC1000.9 | 1000 449449 0.90 119111[17] 223 103464(231) 103531(5070) 27 —15647
flat300_20_.0 | 300 21375 0.48 - 20 3150(20) 3150.0(0.0) 3 -
flat300_26_.0 | 300 21633 0.48 - 26 3966(26) 3966.0(0.0) 3 -
flat300.28 .0 | 300 21695 0.48 - 28 4282(34) 4286.1(30.0) 3 -
flat1000_50_0| 1000 245000 0.49 - 50 25500(50) 25500.0(0.0) 9 -
flat1000_60_0| 1000 245830 0.49 - 60 30100(60) 30100.0(0.0) 11 -
flat1000_76_0| 1000 246708 0.49 - 82 37167(86) 37213.2(575.0) 19 -
led50_15a | 450 8168 0.08 - 15 2632(18) 2641.9(29.0) 5 -
1e450_15b | 450 8169 0.08 - 15 2642(19) 2643.4(7.2) 7 ;
le450_15¢ 450 16680 0.17 - 15 3866(24) 3868.9(9.8) 6 -
le450_15d | 450 16750 0.17 - 15 3921(26) 3928.5(36.5) 5 -
led50 25a | 450 8260 0.08 - 25 3153(26) 3159.4(12.4) 7 -
le450_25b 450 8263 0.08 - 25 3366(26) 3371.9(18.0) 6 -
le450_25¢ 450 17343 0.17 - 25 4515(31) 4525.4(161.8) 8 -
1e450_25d | 450 17425 0.17 . 25 4544(31) 4550.0(24.0) 7 ;
latin_sqr_10 | 900 307350 0.76 - 98 42223(109) 42392.7(4445) 4 -
C2000.5 2000 999836 0.50 - 148 132515(150) 132682(7342) 656 -
C4000.5 4000 4000268 0.50 - 271 473234(266) 473211(1027) 2588 -

3.8 Comparison with other algorithms

In this section, we compare our EXSCOL algorithm with 4 recent reference
algorithms in the literature: Hybrid Local Search (HLS) [5], MRLF [17], Par-
allel Genetic Algorithm (PGA) [13], Tabu Search (TS) [4]. The comparisons
are based on the criterion of quality, i.e., the smallest sum of colors reached
by a given algorithm. Notice that information like computing time are not

available for the reference algorithms.

Table 3 and Table 4 show the best results of our EXSCOL algorithm compared

10

Table 2
Computational results of EXSCOL on 23 COLORO02 benchmarks. The symbol ’-’

means that the information is not available.

Instance \4 le] Den Sum* k* EXSCOL
Sum/(k) Avg.(Std.) T'[min.] Diff
myciel3 | 11 20 040 21[5,21,13] 4 21(4) 21.0(0.0) 1 0
mycield | 23 71 0.28 45[5,21,13] 5 45(5) 45.0(0.0) 1 0
myciel5 | 47 236 0.22 93521,13] 6 93(6) 93.0(0.0) 1 0
myciel6 95 755 0.17 189[5,21,13] 7 189(7) 189.0(0.0) 2 0
myciel7 | 191 2360 0.13 381[5,21] 8 381(8) 381.0(0.0) 2 0
anna | 138 493 0.05 277[21] 11 283(11) 283.2(0.2) 2 6
david | 87 406 0.1 241[21] 11 237(11) 238.1(1.0) -
huck 74 301 011 243[5,13] 11 243(11) 243.8(1.0) 1 0
jean 80 254 0.08 217[21] 10 217(10) 217.3(0.2) 1 0
queen5.5 | 25 160 0.53 75[21,13] 5 75(5) 75.0(0.0) 1 0
queen6.6 36 290 0.46 138[5,21,13] 7 150(10) 150.0(0.0) 1 12
queen?.7 49 476 0.40 196[21,13] 7 196(7) 196.0(0.0) 1 0
queens.8 | 64 728 0.36 302[13] 9 291(9) 201.0(0.0) 1 11
games120 | 120 638 0.09 446[5 21] 9 443(9) 447.9(3.2) 2 -3
miles250 128 387 0.05 4[2] 8 328(9) 333.0(7.6) 2 —6
miles500 | 128 1170 0.14 715[21] 20 709(20) 714.5(26.8) 2 =6
wap05 | 905 43081 0.10 50 13680(51) 13718.4(1047.1) 21 .
wap06 947 43571 0.10 - 46 13778(48) 13830.9(905.4) 27 -
wap07 1809 103368 0.06 - 46 28629(51) 28663.8(721.8) 112 -
wap08 1870 104176 0.06 - 45 28896(51) 28946.0(1361.2) 127 -
qg.order30 | 900 26100 0.06 - 30 13950(30) 13950.0(0.0) 28 -
qg.order40 | 1600 62400 0.05 - 40 32800(40) 32800.0(0.0) 35 -
qg.order60 | 3600 212400 0.03 - 60 110925(74)110993.0(7054.9) 87 -

with these reference algorithms. Column 2 recall the current best known Sum*
with the references reporting these values (indicated in brackets). Columns 3-6
present the best results obtained by these reference algorithms. For indicative
purposes, the number of colors k required by the best sum coloring is given in
parentheses.

From Table 3, one observes that, for the 12 DIMACS random graphs, EXS-
COL dominates the TS and MRLF algorithms. For each of these graphs, our
EXSCOL algorithm obtains a better sum coloring compared with the refer-
ence algorithms. One notices that in most cases, the colorings of EXSCOL
require a smaller number of colors.

Table 4 discloses that EXSCOL competes favorably with HLS, MRLF and
PGA on the set of 16 COLORO2 instances. Indeed, our EXSCOL algorithm
finds a better sum coloring for 5 graphs while equaling the best known results
for 9 graphs. Only for 2 cases (anna and queen6.6), it fails to attain the best
known results.

11

Table 3

Comparison on 12 graphs of the DIMACS challenge benchmarks. The symbol *-’
means that the related statistics are not available. The best sum values are high-

lighted in bold.

Instance Sum* sum coloring algorithms
EXSCOL MRLF[17] TS[4]
(2009) (2010)
DSJC125.1 344 [4] 326(7) 352(6) 344(6)
DSJC125.5 1103 [4] 1017(20) 1141(21) 1103(18)
DSJC125.9 2631 [4] 2512(44) 2653(50) 2631(49)
DSJC250.1 1046 [4] 985(10) 1068(10) 1046(10)
DSJC250.5 3658 [17] 3246(31) 3658 (34) 3779(33)
DSJC250.9 8942 [17] 8286(75) 8942(83) 9198(82)
DSJC500.1 3205 [4] 2850(14) 3229(15) 3205(15)
DSJC500.5 12717 [17] 10910(51) 12717(60) -
DSJC500.9 32703 [17] 29912(132) 32703(148) -
DSJC1000.1 10276 [17] 9003(22) 10276(25) -
DSJC1000.5 45408 [17] 37598(87) 45408(104) -
DSJC1000.9 119111 [17] 103464(231) 119111(265) -
Table 4

Comparison on 16 graphs of the COLORO02 benchmarks. The symbol -’ means that
the related statistics are not available. The best sum values are highlighted in bold.

Instance Sum* sum coloring algorithms

EXSCOL HLS[5] MRLF[21] PGA[13]

(2011) (2010) (2007)

myciel3 21 [5,21,13] 21(4) 21(4) 21(-) 21(4)
myciel4 45 [5,21,13] 45(5) 45(5) 45(-) 45(5)
mycielb 93 [5,21,13] 93(6) 93(6) 93(-) 93(6)
myciel6 189 [5,21,13] 189(7) 189(7) 189(-) 189(7)
myciel7 381 [5,21] 381(8) 381(8) 381(-) 382(8)
anna 277 [21] 283(11) -(-) 277(-) 281(11)
david 241 [21] 237(11) -(-) 241(-) 243(11)
huck 243 [5,13] 243(11) 243(11) 244(-) 243(11)
jean 217 [21] 217(10) -(-) 217(-) 218(10)
queenb.h 75 [21,13] 75(5) -(-) 75(-) 75(5)
queen6.6 138 [5,21,13] 150(10) 138(8) 138(-) 138(8)
queen?.7 196 [21,13] 196(7) -(-) 196(-) 196(7)
queen8.8 302 [13] 291(9) -(-) 303(-) 302(10)
games120 446 [5,21] 443(9) 446(9) 446(-) 460(9)
miles250 334 [21] 328(9) 343(10) 334(-) 347(8)
miles500 715 [21] 709(20) 755(22) 715(-) 762(20)

12

4 Discussion and analysis

4.1 Influence of the method to extract independent sets

Our EXSCOL algorithm uses a heuristic method to extract at each iteration as
many disjoint independent sets as possible. A conventional method like MaxIS
[1] extracts at each iteration exactly one independent set. The MaxIS method
can be considered as a simplified version of our EXSCOL algorithm where
lines 6-15 of Algorithm 1 (see Section 2.2) are disabled. Thus for MaxIS, each
time a (large) independent set is found in the graph, it is assigned the smallest
available color and its vertices are removed from the graph. This process is
repeated until the graph becomes empty.

In order to highlight the difference between these two methods, we carry out
additional experiments on the 12 DIMACS random DSJC graphs and show a
comparison between EXSCOL and MaxIS. We run both methods 20 times and
report in Table 5 the best sum values together with the number of used colors
in brackets. The results show a clear dominance of EXSCOL over MaxIS.
Indeed, EXSCOL finds a better sum coloring than MaxIS for each graph.
Now it is interesting to observe that even if MaxIS cannot compete with
EXSCOL, MaxIS does compete favorably with any of the existing sum coloring
algorithms in the literature (compare column 2 of Table 3 and column 4 of
Table 5). This observation highlights the interest of the general independent
set extraction approach for the sum coloring problem.

Finally, if one checks the number k of colors used in the solutions, one no-
tices that the solutions of EXSCOL need in general fewer colors compared
to the solutions obtained by MaxIS. This can be explained by the fact that
by extracting at each iteration as many disjoint independent sets as possi-
ble, EXSCOL is able to pack more vertices in the extracted independent sets,
reducing thus the needed color classes to pack the vertices of the graph.

4.2 Sum coloring v.s. graph coloring

Given the relation between sum coloring and vertex coloring, one would won-
der whether an effective vertex coloring algorithm could remain effective to
approximate the sum coloring problem. Indeed, one can use a graph vertex
coloring algorithm to find k-colorings with k as small as possible. Since the
sum value depends partially on k, this coloring approach could help to solve
the sum coloring problem. Yet, this approach does not necessarily lead to a
good sum coloring as shown in the example of Fig. 4. Indeed, while the chro-
matic number x(G) for this graph is 3, a 4-coloring is needed to obtain the

13

Table 5
Comparisons between EXSCOL and MaxIS. EXSCOL dominates the conventional

independent set approach (extraction of one independent set each time).

Instance Sum* sum coloring algorithms

EXSCOL MaxIS EXSCOL—MaxIS
DSJC125.1 344 326(7) 335(7) -9(0)
DSJC125.5 | 1103 1017(20) 1047(21) -30(-1)
DSJC125.9 | 2631 2512(44) 2599(50) -87(-6)
DSJC250.1 | 1046 985(10) 1001(11) -16(-1)
DSJC250.5 | 3658 3246(31) 3377 (34) -131(-3)
DSJC250.9 | 8942 8286(75) 8548(83) -262(-8)
DSJC500.1 | 3205 2850(14) 2932(16) -82(-2)
DSJC500.5 | 12717 10910(51) 11163(56) -253(-5)
DSJC500.9 | 32703 29912(132) 30957(145) -1045(-13)
DSJC1000.1 | 10276 9003(22) 9161(24) -158(-2)
DSJC1000.5 | 45408 37598(87) 38452(93) -854(-6)
DSJC1000.9 | 119111 103464(231) 108487(254) -5023(-23)

chromatic sum Y_(G) = 15, i.e., the strength s(G) = 4.

In this section we provide computational evidence to show the limit of this
graph coloring based method with respect to the proposed EXSCOL method.
For this purpose, we adopt the Memetic Coloring Algorithm (MACOL) [18§]
which is a recent and competitive graph coloring algorithm. For this experi-
ment, we consider again the set of 12 DSJC random instances. For each graph,
we apply MACOL to obtain a legal coloring with k* colors where k* is the
smallest number of colors for which a k*-coloring has ever been found by a
graph coloring algorithm. For such a k*-coloring, we assign color 1 to the
largest color class, color 2 to the next largest color class and so on. Table 6
shows the comparative results between EXSCOL and MACOL for the chosen
graphs. The differences of sum values obtained by the two methods are given
in the last column.

Fig. 4. A coloring with a sum of colors equal to 18 using 3 colors (Left), and a
coloring with a sum of colors equal to 15 using 4 colors (Right).

Table 6 shows clearly that EXSCOL reaches smaller sum values than MACOL

14

Table 6
Comparisons between EXSCOL and MACOL. EXSCOL performs always better
than the graph coloring approach.

Instance Sum* sum coloring algorithms
EXSCOL MACOL[18] EXSCOL-MACOL
DSJC125.1 344 326(7) 355(5) -29(2)
DSJC125.5 | 1103 1017(20) 1058(17) -41(3)
DSJC125.9 | 2631 2512(44) 2581(44) -69(0)
DSJC250.1 | 1046 985(10) 1071(8) -86(2)
DSJC250.5 | 3658 3246(31) 3344(28) -97(3)
DSJC250.9 | 8942 8286(75) 8372(72) -86(3)
DSJC500.1 | 3205 2850(14) 3127(12) -277(2)
DSJC500.5 | 12717 10910(51) 11176(48) -266(3)
DSJC500.9 | 32703 29912(132) 30073(126) -161(6)
DSJC1000.1 | 10276 9003(22) 9767(20) -764(2)
DSJC1000.5 | 45408 37598(87) 38636(83) -2038(4)
DSJC1000.9 | 119111 103464(231) 104203(223) -739(8)
Table 7

Detailed computational results on DSJC1000.5, including the size of the independent
set (size |I|) and the number of independent sets of size |I| (No. of IS of |I|) contained
in the best solutions found by EXSCOL and MACOL.

EXSCOL MACOL
size |I| No. of IS of |I] size |I| No. of IS of |1
15 6 15 1
14 28 14 16
13 9 13 27

—_
[\]
—_
w
—_
[\)
—_
=~

— N W ot oo D D
= o= = R O R Wk Ot
— N W Ut o DD
el e e N N = N R)

for the tested graphs though EXSCOL may require more colors. In order to get
some insights about this difference, we show in Table 7 additional information
about the computational results for DSJC1000.5 reached by EXSCOL and
MACOL.

Table 7 indicates the size of each independent set (column ’size |I|”) and the
number of extracted independent sets of size |I| (column 'No. of IS of |I]|")

15

contained in the best solutions found by EXSCOL and MACOL. From Table
7, one notices that compared to the solution obtained by MACOL (a 83-
coloring), the solution obtained by EXSCOL (a 87-coloring) contains much
more independent sets of sizes 15 and 14 (which are the largest and second
largest sizes). These independent sets cover a larger number of vertices and
receive smaller colors, reducing thus the sum of colors.

Finally, even if MACOL performs worse than EXSCOL, its results remain
competitive with other existing algorithms. This is the case because MACOL
is able to find k-colorings with k equaling or being close to x(G).

5 Conclusion

In this paper, we have presented EXSCOL, a heuristic algorithm based on
independent set extraction for the minimum sum coloring problem. Instead of
extracting independent sets one by one, the proposed algorithm tries to extract
as many disjoint independent sets as possible at each iteration. This strategy
helps create more and large independent sets in the solution such that a larger
number of vertices can be colored with small colors, thus leading to a smaller
sum of colors. Another important element contributing to the effectiveness
of EXSCOL is the ATS algorithm which is able to identify efficiently large
independent sets.

We have shown that with respect to the existing sum coloring heuristics, the
proposed EXSCOL algorithm obtains highly competitive results on a set of
52 DIMACS and COLORO02 benchmark graphs. Indeed, among the 28 graphs
used in the literature, EXSCOL improves the best known upper bounds for
17 graphs and equals the best known results for 9 graphs. Only in two cases,
EXSCOL fails to attain the best known sum values. The bounds obtained by
EXSCOL on the set of 52 graphs are made available online and are useful
to assess the performance of both exact and heuristic algorithms for the sum
coloring problem.

Finally, this study has verified the (good) performance of the basic extraction
method which extracts maximum independent sets one by one and the interest
of the method based on applying directly powerful graph vertex coloring al-
gorithms, even though these two methods cannot compete with the proposed
EXSCOL algorithm.

16

Acknowledgment

We are grateful to the referees for their comments and questions which helped
us to improve the paper. This work was partially supported by the Region of
“Pays de la Loire” (France) within the Radapop and LigeRO Projects.

References

[1] A. Bar-Noy, M. Bellareb, M. M. Halldérsson, H. Shachnai, T. Tamir.
On Chromatic sums and distributed resource allocation. Information and
Computation 140(2): 183-202, 1998.

[2] A. Bar-Noy and G. Kortsarz. Minimum color sum of bipartite graphs. Journal
of Algorithms 28(2): 3397-365, 1998.

[3] F. Bonomo, G. Durdn, J. Marenco, M. Valencia-Pabon. Minimum sum set
coloring of trees and line graphs of trees. Discrete Applied Mathematics 159(5):
288-294, 2011.

[4] H. Bouziri and M. Jouini. A tabu search approach for the sum coloring problem.
Electronic Notes in Discrete Mathematics 36(1): 915-922, 2010.

[5] S.M. Douiri and S. Elbernoussi. New algorithm for the sum coloring problem.
International Journal of Contemporary Mathematical Sciences 6(10): 453-463,
2011.

[6] P. Galinier, A. Hertz. A survey of local search methods for graph coloring.
Computers and Operations Research 33(9): 2547-2562, 2006.

[7] M.R Garey and D.S. Johnson. Computers and intractability: A guide to the
theory of NP-completeness. W.H. Freeman and Company, San Francisco, 1979.

[8] H. Hajiabolhassan, M.L. Mehrabadi, R. Tusserkani. Minimal coloring and
strength of graphs. Discrete Mathematics 215(1-3): 265-270, 2000.

[9] K. Jansen. Approximation results for the optimum cost chromatic partition
problem. Journal of Algorithms 34(1): 54-89, 2000.

[10] T. Jiang and D. West. Coloring of trees with minimum sum of colors. Journal
of Graph Theory 32(4): 354-358, 1999.

[11] D.S. Johnson and M.A.Trick (Eds). Cliques, Coloring, and Satisfiability: Second
DIMACS Implementation Challenge. DIMACS Series in Discrete Mathematics
and Theoretical Computer Science. vol 26, The American Mathematical Society,
Providence, RI, 1996.

[12] L. G. Kroon, A. Sen, H. Deng, A. Roy. The optimal cost chromatic partition
problem for trees and interval graphs. Lecture Notes in Computer Science 1197:
279-292, 1996.

17

[13] Z. Kokosinski and K. Kawarciany. On sum coloring of graphs with parallel
genetic algorithms. Lecture Notes In Computer Science 4431: 211-219, 2007.

[14] E. Kubicka and A. J. Schwenk. An introduction to chromatic sums. Proceedings
of the 17th Annual ACM Computer Science Conference, pp 39-45, 1989.

[15] E. Kubicka, G. Kubicki, D. Kountanis. Approximation algorithms for the
chromatic sum. Proceedings of the First Great Lakes Computer Science
Conference. Lecture Notes in Computer Science 507: 15-21, 1991.

[16] F. T. Leighton. A Graph Coloring Algorithm for Large Scheduling Problems.
Journal of Research of the National Bureau of Standards. 84(6): 489-506, 1979.

[17] Y. Li, C. Lucet, A. Moukrim, K. Sghiouer. Greedy algorithms for minimum
sum coloring algorithm. Proceedings L'T2009 Conference, Tunisia, March 2009.

[18] Z. Lii and J.K. Hao. A memetic algorithm for graph coloring. European Journal
of Operational Research 200(1): 235-244, 2010.

[19] M. Malafiejski. Sum coloring of graphs. Graph Colorings, Contemporary
Mathematics 352, AMS, 5565, 2004.

[20] E. Malaguti, M. Monaci, P. Toth. A metaheuristic approach for the vertex
coloring problem. INFORMS Journal on Computing 20(2): 302-316, 2008.

[21] A. Moukrim, K. Sghiouer, C. Lucet, Y. Li. Lower bounds for the minimal sum
coloring problem. Electronic Notes in Discrete Mathematics 36: 663—670, 2010.

[22] D.C. Porumbel, J.K. Hao, P. Kuntz, An evolutionary approach with diversity
guarantee and well-informed grouping recombination for graph coloring.
Computers and Operations Research 37(10) (2010) 1822-1832.

[23] M. R. Salavatipour. On sum coloring of graphs. Discrete Applied Mathematics
127(3): 477-488, 2003.

[24] C. Thomassen, P. Erdos, Y. Alavi, P.J. Malde, A.J. Schwenk. Tight bounds on
the chromatic sum of a connected graph. Journal of Graph Theory 13: 353357,
1989.

[25] Q. Wu and J.K. Hao. Coloring large graphs based on independent set extraction.
Computers and Operations Research 39(2): 283-290, 2012.

[26] Q. Wu and J.K. Hao. Adaptive multistart tabu search for the maximum clique
problem. Technical Report, University of Angers. June 2010.

18

