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Abstract

Given an undirected graph G = (V,E) with weights on the edges, the max-
bisection problem (MBP) is to find a partition of the vertex set V into two subsets
V1 and V2 of equal cardinality such that the sum of the weights of the edges crossing
V1 and V2 is maximized. Relaxing the equal cardinality constraint leads to the max-
cut problem (MCP). In this work, we present a memetic algorithm for MBP which
integrates a grouping crossover operator and a tabu search optimization procedure.
The proposed crossover operator preserves the largest common vertex groupings
with respect to the parent solutions while controlling the distance between the
offspring solution and its parents. Extensive experimental studies on 71 well-known
G-set benchmark instances demonstrate that our memetic algorithm improves, in
many cases, the current best known solutions for both MBP and MCP.

Keywords : Max-bisection, max-cut, memetic search, evolutionary computing, tabu
search, optimization.

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V = {1, ..., n} and edge
set E ⊂ V × V , each edge {i, j} ∈ E being associated with a weight wij ∈ Z.
The well-known max-cut problem (MCP) is to partition the vertex set V into
two disjoint subsets V1 ⊂ V and V2 = V \V1 such that the sum of the weights
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of the edges from E that have one endpoint in each subset is maximized, i.e.,
max

∑
i∈V1,j∈V2

wij. MCP is one of the first 21 NP-complete problems studied in
[21]. When the two subsets V1 and V2 are required to have the same cardinality
(assuming that n is even), the max-cut problem becomes the max-bisection

problem (MBP) which remains NP-complete in the general case [13]. Both the
max-bisection and max-cut problems has many applications such as statistical
physics, classification, social network analysis, and VLSI design [6].

In this work, we are basically interested in the max-bisection problem. Given
max-cut is a relaxed max-bisection problem, advances in solving max-bisection
can benefit directly the solving of the max-cut problem.

There are two related ‘dual’ partition problems known as minimum cut and
minimum bisection that aim to determine a two-way partition of a graph while
minimizing the sum of the weights of the cutting edges (equal cardinality
constraint is required for minimum bisection). Notice that in the general case,
these minimization problems are different from the max-bisection and max-
cut problems considered in this work which concern the two-way partition
problems with the maximization criterion. Finally, graph partition problems
with the minimization criterion have received much attention in the literature,
leading to several well-known public-domain software packages like Chaco [18],
Jostle [37], and Metis [22] (see [4] for a recent review).

The computational challenge of the general max-cut and max-bisection prob-
lems has motivated a variety of solution approaches including exact meth-
ods, approximation algorithms and metaheuristic methods. Examples of ap-
proximation algorithms based on semidefinite programming are described in
[10,15,16,20,39]. These approaches provide a performance guarantee, but do
not compete well with other methods in computational testing. Two recent
examples of exact methods are described in [24,34] which are based on the cut
and price approach and the branch and bound approach respectively. While
these methods have the theoretical advantage of finding optimal solutions to
a given problem, their applications are generally limited to problems with no
more than a few hundred vertices.

For larger problem instances, a number of heuristics and metaheuristics are
often used to find approximate solutions of good quality with a reasonable
computing time. This includes for the max-bisection problem deterministic an-
nealing [7], Lagrangian net [38] and variable neighborhood search [25]. There
are many heuristics and metaheuristics for the max-cut problem including
simulated annealing [1], rank-2 relaxation heuristic [5], GRASP [9], diversifi-
cation driven tabu search [23], advanced scatter search [28], global equilibrium
search [35], and probabilistic tabu search [36].

In this paper, we present a memetic algorithm for the max-bisection problem
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(denoted by MAMBP). The proposed algorithm integrates three complemen-
tary key components which jointly ensure the high efficiency of the search
process. First, to generate promising new solutions, we introduce a dedicated
crossover operator which tries to preserve groups of vertices that are shared
by parent solutions. The design of this crossover operator relies on the obser-
vation that, given a set of high quality bisections of a graph, there is always a
large number of vertices grouped together throughout these bisections. Second,
we devise a tabu search optimization procedure for the purpose of intensified
search around a given solution. The tabu search procedure uses a vertex move
neighborhood and incremental evaluation techniques for a fast neighborhood
examination. Finally, to maintain a healthy diversity of the population, we
employ a pool updating strategy which takes into account both the solution
quality and the distance between solutions.

We show extensive experimental results on 71 well-known G-set benchmark
graphs (with 800 to 20000 vertices) in the literature, showing that the pro-
posed algorithm achieves highly competitive results with respect to the exist-
ing max-bisection heuristics. Moreover, when considering the relaxed max-cut
problem, the results produced by our MAMBP algorithm remain highly com-
petitive even when they are compared to those obtained by dedicated max-
cut algorithms; for 31 max-cut instances, MAMBP improves the previous best
known max-cut solutions of the literature.

In the next section, the components of our memetic algorithm are described,
including the tabu search procedure, the crossover operator and the pool re-
placement strategy. Section 3 is dedicated to computational results and de-
tailed comparisons with other state-of-the-art algorithms in the literature.
Section 4 investigates several essential parts of the proposed memetic algo-
rithm, followed by concluding remarks given in Section 5.

2 Memetic Algorithm

Memetic algorithms are known to be an effective approach in solving a number
of hard combinatorial optimization problems [29,30,17]. Typically, a memetic
approach repeatedly alternates between a recombination (or crossover) opera-
tor to generate solutions located in promising regions in the search space and a
local optimization procedure to search around the newly generated solutions.
It is commonly admitted that the success of this approach depends critically
on the recombination operator. In order to be effective, the recombination
operator must be adapted to the problem being solved and should be able to
transmit meaningful features from parents to offspring.

The general scheme of our memetic approach for MBP is summarized in Algo-
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rithm 1. Basically, our memetic algorithm begins with an initial population of
solutions which are first improved by the local optimization procedure based
on tabu search [14] (lines 1–5, Sections 2.2 and 2.3) and then repeats an iter-
ative process for a fixed number of times (generations) (lines 6–13). At each
generation, two solutions are selected to serve as parents (Section 2.4). The
crossover operator is applied to the parents to generate a new offspring solu-
tion (Section 2.5) which is further improved by the tabu search optimization
procedure (Section 2.3). Finally, we apply a quality-and-diversity based rule
to decide whether the improved offspring solution can be inserted into the
population (Section 2.6). In the following subsections, we give more details on
the components of our memetic algorithm.

2.1 Search space and cost function

Recall that MBP consists in partitioning the vertex set V into two subsets of
equal cardinality such that the weights on the edges between the two subsets
is maximized. As such, we define the search space explored by our memetic
algorithm as the set of all possible partitions of V into 2 disjoint subsets of
equal cardinality (also called bisections), i.e., Ω = {{V1, V2} : |V1| = |V2| =
|V |
2
, V1

⋂
V2 = ∅}. Clearly, the size of Ω is given by C(|V |, |V |/2).

Given a bisection I = {V1, V2} ∈ Ω, the cost function (also called the fitness
function) f(I) sums up the weights of the edges between the two subsets V1

and V2 such that:

f(I) =
∑

i∈V1,j∈V2

wij (1)

Algorithm 1 Memetic algorithm for the max-bisection problem
Require: A weighted graph G = (V,E, ω), population size p

Ensure: The best solution I∗ found
1: Pop = {I1, ..., Ip} ← Initial Population()
2: I∗ ← Best(Pop)
3: for i = 1 to p do

4: Ii ← Tabu Search(Ii) /* Section 2.3 */
5: end for

6: while the stop criterion is not met do
7: Select randomly two solutions (parents) Ii and Ij from Pop /* Section 2.4 */
8: I0 = Cross Over(Ii, Ij) /* Section 2.5 */
9: I0 ← Tabu Search(I0) /* Section 2.3 */
10: if f(I0) > f(I∗) then
11: I∗ ← I0 /* Update the best solution found so far */
12: end if

13: Pop← Pool Updating(I0, Pop) /* Section 2.6 */
14: end while
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Then, for two bisections IA ∈ Ω and IB ∈ Ω, IA is better than IB if and only
if f(IA) > f(IB). The goal of the max-bisection problem is to find:

argmax
I∈Ω

f(I)

Given the size of the search space Ω, it is particularly challenging to find an
exact solution or an approximate solution of high quality.

2.2 Initial population

The solutions (individuals) of the initial population are created as follows.
For each individual, an equal sized partition is first created at random and
then improved by the tabu search procedure (see Section 2.3). The improved
solution is added into the population if this solution is not already present
in it. Otherwise, this solution is discarded and a new random (equal sized)
partition is created. This procedure is iterated until the population is filled
with p solutions (p is the population size). This simple procedure provides an
initial population of diverse solutions of good quality.

2.3 The Perturbation-based Tabu Search Procedure

Our tabu search (TS) procedure aims to improve a given solution I and plays
the key role of local optimization within our memetic algorithm. Basically,
our tabu search procedure repeatedly alternates between an intensification
phase ensured by the basic tabu search and a diversification phase controlled
by a perturbation mechanism [14]. Algorithm 2 describes this perturbation-
based tabu search procedure, whose components are detailed in the following
subsections.

2.3.1 Neighborhood and move

Given a bisection I = {V1, V2} with |V1| = |V2|, the basic idea of the neigh-
borhood explored by our tabu search consists in moving first a vertex from
subset V1 to V2, accompanied by moving another vertex from V2 to V1. Note
that in such a way, the balance between the two parts of the bisection is always
maintained (i.e., |V1| = |V2|).

The key concept related to our neighborhood is the move gain, which indicates
how much a solution (bisection) is improved according to the optimization
objective f (Eq. 1, Section 2.1) if a vertex is moved from its subset to the
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other subset. For large problem instances, it is imperative to be able to rapidly
determine the move gain of a move. In our implementation, we use a fast
incremental evaluation technique which is based on a streamlined calculation
for updating the move gain after each move. More formally, let ∆v be the
move gain of moving vertex v to the other subset. Then initially, each move
value can be calculated in linear time using the formula :

∆v =





∑
x∈V1,x 6=v

wvx −
∑

y∈V2

wvy, if v ∈ V1

∑
y∈V2,y 6=v

wvy −
∑

x∈V1

wvx, otherwise.
(2)

Once a move is performed, one just needs to update a subset of move gains

Algorithm 2 Perturbation-based tabu search for the max-bisection problem
Require: A weighted graph G = (V,E, ω), initial bisection I = {V1, V2}, number lr

of tabu search iterations, number cr of consecutive iterations before triggering
a perturbation

Ensure: The best bisection I∗

1: Iter ← 0 /* Iteration counter */
2: I∗ ← I /* I∗ records the best bisection found so far */
3: Initiate the tabu list and tabu tenure /* See Section 2.3.2 */
4: for each vertex v ∈ V do

5: Compute the move gain ∆v according to Eq. 2.
6: end for

7: while Iter < lr do

8: Choose a best allowed (i.e., not forbidden by the tabu list) vertex v1 ∈ V1

according to max-move gain criterion (ties are broken randomly) /* See this
section */

9: Generate intermediate solution I by moving v1 from V1 to V2 (i.e., V1 =
V1 \ {v1} and V2 = V2 ∪ {v1})

10: Add v1 in the tabu list and update the move gain ∆v for each v ∈ V

11: Choose a best allowed vertex v2 ∈ V2 (i.e., v2 is not forbidden by the tabu list
or v2 leads to a new solution better than solution I∗) according to max-move
gain criterion (ties are broken randomly)

12: Generate new solution I by moving v2 from V2 to V1, (i.e., V1 = V1 ∪ {v2}
and V2 = V2 \ {v2})

13: Add v2 in the tabu list and update the move gain ∆v for each v ∈ V

14: if f(I) > f(I∗) then
15: I∗ ← I /* Update the best solution found so far */
16: end if

17: Iter ← Iter + 1
18: if I∗ not improved after cr iterations then

19: I ← Perturb(I) /* Apply perturbations to I, Section 2.3.3 */
20: end if

21: end while
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affected by this move. Specifically, the following abbreviated calculation can
be performed to update the move gains upon moving v from its set to the
other set:

• ∆v = −∆v

• for each u ∈ V − {v},

∆u =





∆u − 2× wuv, if u is in the same set as v before moving v

∆u + 2× wuv, otherwise.

An illustration of the proposed approach for initializing and updating the
move gains is provided in Figure 1.
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3
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1 2

2

1

∆A = wAB + wAC − wAF = 3
∆B = wAB + wBD = 2

∆C = wAC − wCH = 2

∆D = wBD − wDE − wDH = −2

∆E = wEG − wDE = 0
∆F = wFH − wAF = 1

∆G = wEG − wDG = 1

∆H = wCH + wFH = 3

A

B

C

D

E

F

G

H

S1 S2

1

3
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2

1

∆A = −∆A = −3
∆B = ∆B − 2 ∗ wAB = 0
∆C = ∆C − 2 ∗ wAC = −4
∆D = ∆D = −2

∆E = ∆E = 0
∆F = ∆F + 2 ∗ wAF = 3
∆G = ∆G = 1
∆H = ∆H = 3

Fig. 1. An example of the initialization (left) and update (right) of the move gain

Our tabu search procedure then restricts consideration to those vertices which
are not forbidden by the tabu list (see Section 2.3.2) and have the largest ∆
value. At each iteration of our tabu search, we first select a non tabu vertex
in V1 with the largest ∆ value and move it from V1 to V2. Then, we choose
another non tabu vertex in V2 with the best move gain and move it from V2

to V1. In the case that two or more non tabu moves have the same largest
∆ value, one of them is chosen at random. Once a vertex v is changed from
its original set to the other set, it is classified tabu for the next tl iterations,
during which v is forbidden to be moved back to its original set. A simple
aspiration criterion is applied that permits a vertex to be selected in spite
of being tabu if it leads to a solution better than the current best solution.
Notice that aspiration is only applicable to the selection of the second vertex
from V2 (see Algorithm 2, line 11) since the selection of the first vertex from V1

leads to an intermediate imbalanced bisection which is not a feasible solution.
The TS process stops when a maximum allowed number (lr) of iterations is
reached.
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2.3.2 Tabu list and tabu tenure management

Within TS, a tabu list is introduced to forbid the previously visited solutions
to be revisited. In our TS algorithm, each time a vertex v goes from its original
subset to the opposite set, it is forbidden to bring back v to its original set for
a certain number of iterations (called the tabu tenure). Inspired by the tabu
mechanism proposed in [11], we employ a particular technique whose goal is
to vary the tabu tenure throughout the search.

100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

1

2

3

4

5

6

7

8

number of iterations Iter

ta
b
u

te
n
u
re

va
lu

e
(×

α
)

Fig. 2. An illustration of the step function (one period) used for tuning the tabu
tenure.

The tabu tenure is dynamically tuned by a periodic step function T defined
over the number of iterations Iter (see Figure 2 for an example). Each period of
the step function is composed of 1500 iterations divided into 15 steps or inter-
vals [xi..xi+1−1]i=1,2,...,15 with x1 = 1, xi+1 = xi+100. The tabu tenure changes
dynamically during the search and according to the current iteration number,
it takes one of four possible values (α, 2×α, 4×α, 8×α) where α is a param-
eter. Precisely, for an iteration Iter ∈ [xi..xi+1 − 1], the tabu tenure T (Iter)
is given by (yi)i=1,2,...,15 = α × (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1). Therefore,
the tabu tenure is equal to α for the first 100 iterations [1..100], then 2 × α
for iterations from [101..200], followed by α again for iterations [201..300] and
4 × α for iterations [401..500] etc. After reaching the largest value 8 × α for
iterations [701..800], the tabu tenure drops again to α for the next 100 itera-
tions and so on. This function repeats periodically this variation scheme after
every 1500 iterations.

We have also experimented the four values (α, 2× α, 4× α, 8× α) in a static
way, i.e., applying each of them during the whole search. Experimental results
showed that the dynamic tabu tenure method performs better than the static
method and allows the search to effectively escape from local optima.
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2.3.3 Perturbation mechanism

The above basic tabu search is generally able to attain solutions of good
quality. However, it may happen that it gets stuck in deep local optima. In
our case, the search is judged stagnating each time the best bisection I∗ found
so far is not further improved after a number cr of consecutive iterations.

To help the search to escape from such deep local optima, we apply a sim-
ple perturbation mechanism to the current solution to bring diversification
into the search. The perturbation consists in swapping a number of pairs of
vertices in the following way. For each swap, we randomly choose one ver-
tex u from V1 and another vertex v from V2, and then swap u and v (i.e.,
V1 = V1

⋃
{v}\{u} and V2 = V2

⋃
{u}\{v}). This process is repeated γ times

where γ is a parameter which indicates the strength of the perturbation.

2.4 Parent selection

Our memetic algorithm is a steady-state algorithm such that at each genera-
tion one new solution is generated by combining two parent solutions chosen
from the population. To choose the parents, several selection methods can
be applied. In our case, we have experimented three well-known strategies:
roulette-wheel, tournament and random [2]. With roulette-wheel selection, an
individual is selected with a probability which is proportional to its fitness
(objective) value. For tournament selection (the standard 2-way deterministic
tournament), two individuals are taken at random and the best of the two
is selected. Random selection chooses each individual with equal probability.
Experimental results with these selection methods have shown that within
the context of this work, no significant difference was observed. This can be
explained intuitively as follows. In fact, since the individuals are improved by
the powerful tabu search procedure, they are generally of good quality, im-
plying that their fitnesses are not so different in the objective space (though
the bi-sections they represent may be quite different due to the pool updat-
ing strategy used in Section 2.6). Under such a circumstance, it is clear that
roulette-wheel, tournament and random would lead to a similar selection ef-
fect. For this reason, we have decided to retain the simple random selection
in our algorithm.

2.5 Crossover operator

Crossover is another key component of our memetic algorithm. In practice, in-
stead of applying blind crossovers, it is often preferable to devise a dedicated
recombination operator that have strong “semantics” with respect to the prob-
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lem being solved [17]. In the case of MBP, a bisection of a graph G = (V,E)
corresponds to a partition of V into two disjoint groups of vertices. With this
point of view, MBP can be considered as a grouping problem [8]. For grouping
problems, the crossover operators should manipulate groups of objects rather
than individual objects. Such an approach for designing crossover operators
has been successfully applied to solve a number of grouping problems such as
graph coloring [12,27,32], bin packing [8] and graph partitioning [3,11].

In this work, we propose a dedicated grouping crossover operator for MBP, the
proposed crossover operator is constrained to conserve subsets (or grouping
vertices) of the vertex partitions of parents in offspring solutions. The rationale
behind this approach is based on a careful analysis of local optimal solutions
which discloses that high quality local optima share many grouping vertices
(see Section 4). Therefore, if a set of vertices are always grouped together
throughout a set of high quality solutions, these vertices are considered to
have a high chance to be part of a globally optimal solution.

The proposed crossover operator follows the general principle presented above
and operates in two sequential steps. We first create a partial bisection of
maximal size by conserving the largest common vertex groupings with respect
to the two selected parents. In order to obtain a full bisection, we complete this
partial bisection by redistributing the remaining unassigned vertices based on
a greedy construction strategy.

More precisely, given two parents Ia = {V a
1 , V

a
2 } and Ib = {V b

1 , V
b
2 }, the partial

offspring Ic = {V c
1 , V

c
2 } is constructed such that V c

1 = V a
1

⋂
V b
1 and V c

2 =
V a
2

⋂
V b
2 . It should be noted that if |V a

1

⋂
V b
1 | < |V

a
2

⋂
V b
2 |, we first exchange

the two parts of Ib before constructing the offspring Ic for the purpose of
preserving the largest common grouping vertices (see Figure 2 for an example).
For the constructed partial offspring Ic = {V c

1 , V
c
2 }, it can be shown that

|V c
1 | = |V

c
2 |.

When the partial offspring Ic = {V c
1 , V

c
2 } is constructed, the vertices in V a

1 \
V c
1 and V a

2 \ V
c
2 are left unassigned. For the vertices in V a

1 \ V
c
1 , they are

grouped together in both parent solutions Ia and Ib (in fact, V a
1 \ V

c
1 ⊂ V a

1

and V a
1 \ V

c
1 ⊂ V b

2 , see Figure 3 for an example). Similarly, the vertices in
V a
2 \ V

c
2 are also grouped together in both Ia and Ib. Thus, these left vertices

should be dealt with care in order to generate a diversified offspring solution.
In the following, we use a diversification-guided strategy to redistribute these
unassigned vertices by taking into account both the solution quality of the
offspring and its distance to its parent solutions.

Given the partial solution Ic = {V c
1 , V

c
2 }, we use two greedy functions that

take into account the contribution of the left vertices to the objective function
of Ic. Specifically, for each v ∈ V a

1 \V
c
1 , we define σ(v) =

∑
u∈V c

1

wuv and σ′(v) =
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∑
u∈V c

2

wuv. Then the vertices in V a
1 \ V

c
1 are assigned to the two parts of Ic one

by one. At the first step, we examine all the vertices in V a
1 \V

c
1 to identify the

vertex with the largest σ value and move it from V a
1 \V

c
1 to V c

1 . Afterward, V
c
2

is considered, we identify the vertex in V a
1 \ V

c
1 with the largest σ′ value and

assign it to V c
2 . Then at each step of our procedure, V c

1 and V c
2 are considered

in turn to distribute the remaining vertices in V a
1 \V

c
1 (see Figure 2). Once all

vertices in V a
1 \V

c
1 are assigned to the two subsets of Ic, the same procedure is

applied to handle the vertices in V a
2 \V

c
2 . Finally, one observes that the offspring

Ic generated by our crossover operator has essentially the same distance to its
two parents and is of relatively high quality.

2.6 Pool updating strategy

When an offspring solution is created by the crossover operator presented in
the last section and improved by the tabu search algorithm described in Sec-
tion 2.3, we decide whether the improved offspring should be inserted into the
population and which existing solution of the population should be replaced.
Basically, our decisions are made based on both solution quality and distance
between solutions in the population [26,27,32]. Therefore, we first define the
distance between two solutions before presenting the used pool updating strat-
egy.

Definition 1. Distance between two bisections: Given two bisections
Ia = {V a

1 , V
a
2 } and Ib = {V b

1 , V
b
2 }, the distance between Ia and Ib (call it d) can
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Fig. 3. An illustration of the crossover operator.
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be defined as the minimum number of one-move steps necessary to transform
Ib to Ia. A move step corresponds to the operation of moving one vertex from
one side of the bisection to the other side. More formally, the distance d(Ia, Ib)
is determined using the formula d(Ia, Ib) = |V | − s(Ia, Ib) where s(Ia, Ib) is
a similarity function which corresponds to the number of vertices that do not
need to be moved to transform Ib to Ia [33]. This similarity function can be
defined as follows. If |V a

1

⋂
V b
1 | < |V

a
1

⋂
V b
2 |, we first exchange the two parts of

Ib, then s(Ia, Ib) is defined as s(Ia, Ib) = |(V a
1

⋂
V b
1 ) ∪ (V a

2

⋂
V b
2 )|.

Definition 2. Distance between one bisection and a population: Given
a population Pop = {I1, ..., Ip} and the distance dij between any two bisec-
tions I i and Ij (i, j = 1, ..., p, i 6= j), the distance between a bisection I i

(i = 1, ..., p) and the population Pop is defined as the minimum distance
between I i and any other bisection in the population:

Di,Pop = min{dij|I
j ∈ Pop, j 6= i} (3)

The general scheme of our pool updating strategy is described in Algorithm 3.
In order to update the population, the new generated offspring I0 is tentatively
inserted into the population, i.e., Pop′ = Pop

⋃
{I0}. Then, the worst solution

(denoted by Iw) in the population Pop′ = {I0, ..., Ip} is identified. If Iw is not
the offspring I0, then I0 is inserted into the population and replaces the worst
solution Iw, i.e., Pop = Pop ∪ {I0}\{Iw}. To determine the worst solution
in the population, we use a quality-and-distance scoring function which was
originally proposed in [26] and is defined as follows:

g(I i) = βÃ(f(I i)) + (1− β)Ã(Di,Pop) (4)

where f(I i) is the objective function value defined in section 2.1, β is a param-

Algorithm 3 Pool Updating Rule

Require: Population Pop = {I1, ..., Ip} and offspring solution I0

Ensure: Updated population Pop = {I1, ..., Ip}
1: Temporarily insert I0 into the population: Pop′ = Pop ∪ {I0}
2: for i = 0, ..., p do

3: Calculate the distance between Ii and Pop′ according to Eq. (3)
4: Calculate the goodness score g(Ii) of Ii according to Eq. (4)
5: end for

6: Identify the worst solution Iw with the smallest goodness score in Pop′: Iw =
arg min{g(Ii)|i = 0, ..., p}

7: if Iw is not the offspring I0 then

8: Replace Iw with I0: Pop = Pop ∪ {I0}\{Iw}
9: end if
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Table 1
Settings of important parameters

Parameters Section Description Values

p 2.2 size of population 10
α 2.3 tabu tenure management factor 15
cr 2.3 non-improvement TS iterations before

perturbation
3,000

γ 2.3 perturbation strength 200
lr 2.3 number of TS iterations after recombination 106

β 2.6 goodness score coefficient 0.6 [26]

eter set to 0.6 according to [26], and Ã(.) represents the normalized function:

Ã(y) =
y − ymin

ymax − ymin + 1
(5)

where ymin and ymax are respectively the minimum and maximum of y in the
population Pop. “+1” is used to avoid the possibility of a 0 denominator.

3 Experimental results

3.1 Test Instances

To evaluate the efficiency of the proposed memetic approach, extensive exper-
iments were carried out on 71 well-known G-set benchmark graphs that are
frequently used to assess max-bisection and max-cut algorithms. The G-set
contains graphs ranging in size from 800 vertices to 20000 vertices 1 . These
instances are generated by a machine-independent graph generator, compris-
ing of toroidal, planar and random weighted graphs. Many authors including
[38,5,9,23,28,31,35,36] employ these instances to test their algorithms for the
max-bisection problem as well as the max-cut problem.

3.2 Parameter settings

The parameter settings used in our experiments are given in Table 1. These
parameter values have been determined by performing a preliminary exper-
iment on a selection of 11 (hard) instances (G32, G33, G35, G40, G41, G42,
G55, G57, G62, G65 and G66). To determine the parameter values, we first
began with the parameters required by the TS algorithm (α, cr, γ, see Sec-
tion 2.3) and then determined the parameters used by the memetic algorithm
(p, lr, β). For the TS algorithm we tested values for α in the range [10..30],
cr in the range [2000..6000] and γ in the range [100..300]. For each value of

1 Available at http://www.stanford.edu/∼yyye/yyye/Gset/
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Table 2
Parameter tuning: α
Instance TS with different α values

α = 10 α = 15 α = 20 α = 25 α = 30

fbest favg fbest favg fbest favg fbest favg fbest favg

G32 1396 1391.20 1400 1392.80 1400 1393.10 1400 1392.70 1398 1393.90

G33 1374 1371.20 1376 1371.80 1374 1372.40 1376 1373.60 1374 1372.30

G35 7669 7659.30 7673 7663.30 7673 7664.05 7668 7664.45 7673 7666.25

G40 2383 2366.45 2388 2369.70 2392 2373.05 2389 2368.95 2386 2364.80

G41 2390 2368.55 2396 2369.20 2388 2372.25 2393 2368.60 2384 2369.70

G42 2474 2459.45 2476 2465.95 2472 2463.65 2477 2465.75 2474 2465.40

G55 10257 10229.40 10263 10231.20 10265 10229.80 10263 10228.90 10259 10232.80

G57 3458 3445.90 3460 3446.20 3456 3446.00 3456 3446.50 3454 3445.60

G62 4812 4794.00 4812 4792.00 4810 4791.80 4810 4796.90 4810 4795.10

G65 5504 5474.50 5504 5476.50 5498 5475.70 5498 5477.00 5492 5477.80

G66 6276 6254.00 6282 6259.50 6284 6255.00 6276 6255.90 6276 6257.40

Table 3
Parameter tuning: cr
Instance TS with different cr values

cr=2000 cr = 3000 cr = 4000 cr = 5000 cr = 6000

fbest favg fbest favg fbest favg fbest favg fbest favg

G32 1396 1390.20 1400 1392.80 1400 1393.10 1400 1393.50 1402 1394.20

G33 1376 1371.40 1376 1371.80 1376 1372.70 1376 1371.90 1376 1372.20

G35 7672 7663.65 7673 7663.30 7671 7663.25 7673 7662.20 7668 7660.00

G40 2394 2368.80 2388 2369.70 2388 2366.20 2385 2366.10 2385 2358.80

G41 2387 2372.10 2396 2369.20 2395 2367.90 2393 2369.95 2395 2369.00

G42 2471 2463.85 2476 2465.95 2473 2456.50 2468 2456.05 2478 2456.85

G55 10265 10220.60 10263 10231.20 10263 10229.60 10261 10226.20 10257 10225.90

G57 3458 3448.00 3460 3446.20 3454 3441.90 3462 3446.00 3452 3438.40

G62 4812 4798.20 4812 4792.00 4808 4792.10 4808 4792.10 4802 4788.90

G65 5500 5476.00 5504 5476.50 5494 5473.40 5492 5478.90 5484 5465.90

G66 6280 6262.00 6282 6259.50 6272 6252.10 6286 6258.80 6262 6238.70

these parameters, 20 independent runs of TS were performed on each prob-
lem instance. Table 2 shows the results for different α values (with cr = 3000
and γ = 200) while Table 3 indicates the results for different cr values (with
α = 15 and γ = 200) and Table 4 shows the results for different γ values (with
α = 15 and cr = 3000). The tables show the best and averaged objective
values found over the 20 runs. From these tables, we observe that the combi-
nation (α = 15, cr = 3000, γ = 200) globally leads to the best results. For the
parameters related to the memetic algorithm, we fixed p = 10, lr = 106 in a
similar way while β = 0.6 is chosen according to [26].

These parameter values were used to report our computational results, even
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Table 4
Parameter tuning: γ
Instance TS with different γ values

γ = 100 γ = 150 γ = 200 γ = 250 γ = 300

fbest favg fbest favg fbest favg fbest favg fbest favg

G32 1402 1394.50 1402 1393.60 1400 1392.80 1398 1387.60 1392 1381.90

G33 1376 1371.00 1378 1372.00 1376 1371.80 1374 1370.70 1372 1368.10

G35 7671 7654.75 7672 7660.85 7673 7663.30 7670 7661.00 7672 7650.35

G40 2382 2352.35 2386 2360.85 2388 2369.70 2391 2370.20 2392 2375.50

G41 2382 2354.40 2401 2364.00 2396 2369.20 2394 2375.95 2399 2376.10

G42 2466 2449.60 2475 2457.75 2476 2465.95 2470 2457.55 2473 2456.70

G55 10235 10211.80 10249 10229.40 10263 10231.20 10265 10233.70 10267 10238.20

G57 3448 3433.00 3452 3438.80 3460 3446.20 3458 3447.30 3458 3448.90

G62 4796 4775.50 4806 4790.50 4812 4792.00 4810 4795.80 4812 4791.00

G65 5482 5455.70 5486 5467.70 5504 5476.50 5498 5479.90 5498 5477.50

G66 6258 6230.90 6266 6245.90 6282 6259.50 6284 6250.90 6286 6258.00

though improved results would be possible by further fine turning the param-
eters. As we see below, the adopted parameter settings are good and robust
enough to allow the algorithm to attain very competitive results for the set of
the tested instances compared with those reported in the literature.

3.3 Experimental protocol

Our MAMBP algorithm is programmed in C and compiled using GNU GCC
on a PC running Windows XP with an Intel Xeon E5440 processor (2.83 GHz
and 8G RAM).

Given the stochastic nature of MAMBP, each instance is independently solved
20 times with different random seeds. Each run is stopped when the processing
time reaches its timeout limit. The timeout limit is set to be 30 minutes for
graphs with |V | < 5000 while for graphs with |V | ≥ 5000 a time limit of 120
minutes is allowed. Note that our timeout limit condition is comparable with
the stop condition reported in [28,36].

Two comparisons are performed in order to assess the performance of the pro-
posed memetic algorithm. The first comparison focuses on the max-bisection
problem while the second one contrasts our (balanced) bisections with parti-
tions obtained by several state of the art max-cut algorithms [5,9,28,31,35,36].
Notice that for the case of max-cut, the two subsets of a partition obtained
by a max-cut algorithm are not required to be of equal cardinality. In this
sense, a max-cut algorithm would have more opportunities to find partitions
of larger weights. The best bisections obtained by our memetic algorithm are
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available from: http://www.info.univ-angers.fr/pub/hao/MAMBP.html

3.4 Comparison with state-of-art max-bisection algorithm

In this section, we present the equal sized bisections obtained by our memetic
approach for the max-bisection problem. To assess the relative quality of our
results, we compare MAMBP with the new Lagrangian net algorithm (NLNA)
which was published very recently [38]. NLNA was run on a Lenovo PC with an
Intel Core E5300 processor (2.36 GHZ CPU and 1.96 GB RAM). According
to the Standard Performance Evaluation Cooperation (www.spec.org), this
computer is 1.2 time slower than the computer we used for our experiments.
Note that in the literature there are at least two other heuristic bisection
algorithms based on deterministic annealing [7] and variable neighborhood
search [25]. Unfortunately, the results reported in these references cannot be
reproduced since the graphs used are not available to the public domain. As
a consequence, it is impossible to compare with their results.

Table 5 presents the detailed computational results of our MAMBP algorithm
in comparison with those of the reference algorithm (NLNA) reported in [38].
The first two columns in the table indicate the name of and the number of ver-
tices of the graph. Columns 3 to 7 show MAMBP’s results including the best
objective value (fbest), the success rate (hit) for reaching fbest, the averaged ob-
jective value (favg(std)) over the 20 runs with the standard deviation between
parentheses for a hit value smaller than 100%, the average iterations (Iter)
and the average CPU time in seconds (time) over the 20 runs on which the
fbest value is reached. Columns 8 to 9 present NLNA’s results. Given the speed
ratio between our computer and the computer used for NLNA, we normalize
the computing times of NLNA by dividing them with a factor of 1.2. The
last column (∆) indicates the differences in the best objective values between
MAMBP and NLNA.

From Table 5, one observes that, for the 56 instances where the NLNA algo-
rithm reports its results, our MAMBP algorithm dominates NLNA in terms
of solution quality. For each of these instances, our MAMBP algorithm is able
to attain a much larger objective value (fbest) compared with NLNA. Even
our average results (favg) are better than the best results reported by NLNA.
For the other 15 instances, no results are reported by NLNA (“-” in Table 5
indicates that a result for that particular instance was not available).

Finally, concerning the computing times, the times indicated are those that
are needed for each algorithm to attain its fbest values. To verify that our
MAMBP algorithm can easily attain the best objective values of NLNA, we
rerun MAMBP and use NLNA’s best objective values as our stop conditions.
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Although we do not show the detailed results, this second experiment show
that for the instances with less than 5000 vertices, MAMBP attains NLNA’s
best objective value in less than one second (against 3.17 to 58.18 seconds
for NLNA). For larger graphs with at least 5000 vertices, MAMBP discovers
NLNA’s best objective value in no more than 10 seconds (against 260.91 to
512.62 seconds for NLNA). It is clear that MAMBP needs much less computing
time than NLNA to discover solutions of comparable quality.

We can conclude that our MAMBP algorithm dominates the reference NLNA
algorithm both in terms of solution quality and computing time.

Table 5: Comparative results for the max-bisection problem between MAMBP
and NLNA [38] on the G-set benchmark instances. The symbol “-” means that
the related statistics are not available.

Instance |V | MAMBP NLNA[38] ∆

fbest favg(std) hit Iter time fbest time

G1 800 11624 11624 20/20 186225 2.40 11490 22.22 134

G2 800 11617 11617 20/20 457273 5.20 11505 21.95 112

G3 800 11621 11621 20/20 54756 1.32 11511 21.95 110

G4 800 11646 11646 20/20 183623 1.77 11554 22.04 92

G5 800 11631 11631 20/20 35178 0.88 11521 21.80 110

G6 800 2177 2177 20/20 83819 1.16 2037 22.08 140

G7 800 2002 2002 20/20 91160 0.82 1889 22.00 113

G8 800 2004 2004 20/20 312230 4.26 1873 21.94 131

G9 800 2052 2052 20/20 202926 1.19 1907 21.86 145

G10 800 1998 1998 20/20 555555 5.59 1875 21.96 123

G11 800 564 564 20/20 847410 12.10 560 3.18 4

G12 800 556 556 20/20 810531 11.54 546 3.17 10

G13 800 582 582 20/20 14481952 32.52 572 3.17 10

G14 800 3062 3062 20/20 165369788 799.00 3023 7.02 39

G15 800 3050 3050 20/20 125879080 692.96 2996 7.01 54

G16 800 3052 3052 20/20 28611328 82.82 2994 7.02 58

G17 800 3047 3047 20/20 257435761 778.67 2997 6.99 53

G18 800 992 992 20/20 3210382 16.36 909 7.03 83

G19 800 905 905 20/20 13295276 40.31 823 7.00 82

G20 800 941 941 20/20 275771 2.48 865 6.98 76

G21 800 930 930 20/20 6733404 34.71 849 6.98 81

G22 2000 13359 13359 20/20 49429658 303.20 13105 57.48 254

G23 2000 13344 13344 20/20 33121221 132.13 13120 57.36 224

G24 2000 13336 13336 20/20 25855349 102.75 13115 57.34 221

G25 2000 13340 13340 20/20 76664567 308.51 13125 57.41 215

G26 2000 13328 13328 20/20 56585007 366.09 13160 57.25 168

G27 2000 3341 3341 20/20 17155489 109.49 3109 57.16 232

G28 2000 3298 3298 20/20 34382069 217.84 3063 58.13 235

G29 2000 3403 3403 20/20 3121 1.36 3179 58.06 224

G30 2000 3412 3412 20/20 11178762 44.82 3139 58.18 273

G31 2000 3309 3309 20/20 41271756 263.21 3092 58.13 217

G32 2000 1410 1410 20/20 139405200 887.50 1382 16.88 28

G33 2000 1382 1382 20/20 132970476 856.80 1344 17.01 38

G34 2000 1384 1384 20/20 82098799 536.12 1350 16.88 34

G35 2000 7686 7684.70(1.93) 11/20 168054486 1312.42 7548 39.22 138

G36 2000 7678 7676.20(2.29) 12/20 158749652 1259.10 7530 39.08 148

G37 2000 7689 7687.80(1.81) 8/20 200196553 1543.36 7541 39.21 148

G38 2000 7688 7688 20/20 132667831 922.66 7537 39.23 151

G39 2000 2408 2408 20/20 212777429 976.95 2255 40.11 153

G40 2000 2400 2398.20(5.41) 18/20 227544366 1198.28 2189 40.00 211

G41 2000 2405 2405 20/20 111406876 546.57 2234 40.03 171
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Table 5 – continued from previous page

Instance |V | MAMBP NLNA[38] ∆

fbest favg(std) hit Iter time(s) fbest time(s)

G42 2000 2481 2477.50(6.19) 8/20 325913745 1513.96 2290 40.11 191

G43 1000 6659 6659 20/20 135951 1.25 6580 15.34 79

G44 1000 6650 6650 20/20 1797956 1.18 6548 15.33 102

G45 1000 6654 6654 20/20 1089575 4.23 6513 15.33 141

G46 1000 6649 6649 20/20 2886106 10.48 6538 15.33 111

G47 1000 6657 6657 20/20 1650153 5.97 6529 15.34 128

G48 3000 6000 6000 20/20 13128 1.42 - - -

G49 3000 6000 6000 20/20 25179 1.28 - - -

G50 3000 5880 5880 20/20 1509358 33.89 - - -

G51 1000 3847 3847 20/20 90999846 292.60 3773 10.58 114

G52 1000 3851 3851 20/20 245428916 814.96 3788 10.61 63

G53 1000 3850 3850 20/20 133669193 516.28 3784 10.60 66

G54 1000 3851 3851 20/20 150196875 551.51 3789 10.63 62

G55 5000 10299 10291.50(8.36) 2/20 454657489 2396.84 - - -

G56 5000 4016 4007.30(9.14) 3/20 354003885 1886.98 - - -

G57 5000 3488 3475.60(12.98) 2/20 343206720 4883.34 - - -

G58 5000 19276 19265.10(11.28) 1/20 466659576 4276.67 18931 268.71 345

G59 5000 6085 6070.80(15.27) 1/20 476554320 4446.16 5578 260.91 507

G60 7000 14186 14172.90(10.15) 1/20 484216617 5508.45 - - -

G61 7000 5796 5782.30(15.82) 2/20 515858117 3755.71 - - -

G62 7000 4866 4848.20(16.00) 1/20 399958710 4652.00 - - -

G63 7000 26754 26725.20(24.91) 2/20 253009370 5670.30 - - -

G64 7000 8731 8707.60(17.21) 1/20 495005836 5793.56 - - -

G65 8000 5556 5538.60(17.45) 1/20 389509251 5385.86 5418 290.72 132

G66 9000 6352 6332.50(21.18) 2/20 260212500 6267.15 6194 391.03 154

G67 10000 6934 6923.60(9.97) 1/20 374288575 6203.44 6782 512.62 152

G70 10000 9580 9565.00(17.36) 2/20 247649652 7032.70 - - -

G72 10000 6990 6972.20(17.34) 2/20 373117581 7046.03 - - -

G77 14000 9900 9881.10(17.41) 1/20 251667626 6752.26 - - -

G81 20000 13978 13961.00(15.03) 1/20 76080159 7023.49 - - -

3.5 Comparison with state-of-art dedicated max-cut algorithms

In this section, we further assess the performance of our MAMBP approach
by comparing our results for MBP (i.e., equal sized partitions) with those
obtained with different max-cut algorithms (i.e., not necessarily equal sized
partitions). Recall that the max-bisection problem is constrained by the equal
cardinality requirement for the two parts of its partitions while the max-cut
problem accepts any two-part partitions. Consequently, a solution for the MBP
is always a solution for the MCP, but the reverse is not true. In this section,
we show that even with this equal cardinality constraint, our max-bisection
algorithm MAMBP is able to find solutions that are better than the state of
the art max-cut algorithms.

For this comparison, we are mainly interested in solution quality, i.e., the
largest sum of the weights of the cutting edges of a partition. Due to the
differences among the programming languages, data structures, compiler op-
tions and computers, we don’t focus on computing time. We just mention that
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the timeout limits we used are quite similar to those adopted by two recent
reference algorithms [28,36].

The comparative results are summarized in Table 6 on the 69 G-set benchmark
instances excluding the two largest graphs G77 and G81 for which no results
are available for the reference algorithms. Columns 1 and 2 respectively give
the instance name and the previous best solution value f ∗

max cut from references
[1,5,9,23,28,31,35,36] (most of them are dedicated max-cut algorithms). Col-
umn 3 recalls the best results of our MAMBP approach extracted from Table
5. Columns 4–9 present the best results obtained by 6 reference algorithms:
SS [28], TS-UBQP [23], DSA [1], VNSPR [9], CirCut [5] and GRASP-TS/PM
[36]. The last three rows summarize the comparison between these algorithms
and ours. The rows ‘Better’, ‘Equal’ and ‘Worse’ respectively denote the num-
ber of instances for which our MAMBP algorithm attains a result of better,
equal and worse quality than each reference algorithm. We mark in bold those
results that are the updated best known values obtained by the MAMBP
approach.

From Table 6, we observe that our MAMBP algorithm is able to improve the
current best known results in the literature for 31 instances while equaling
the best known results for 25 other instances. This is a remarkable perfor-
mance given that these best known results are the joint results of 2 or more
max-cut algorithms. Indeed, when one compares our MAMBP algorithm with
each of the 6 reference algorithms (SS, TS-UBQP, DSA, VNSPR, CirCut
amd GRASP-TS/PM), we observe that MAMBP attains worse results for at
most 10 instances while better results for at least 25 instances. These compar-
isons provide further evidence of the quality of the partitions achieved by our
MAMBP algorithm.

On the other hand, on 13 instances, MAMBP’s results are slightly inferior to
the best known results. It is interesting to notice that most of these instances
are of small size (with no more than 800 vertices). One possible explanation
could be that for these graphs, the best max-cut solution is such that the two
parts of the partition are of unequal size and thus not included in the search
space of our MAMBP algorithm.

To sum, even if our MAMBP algorithm operates within a constrained search
space composed solely of bisections (i.e., partitions of equal parts), its per-
formance is remarkable for the max-cut problem when MAMBP is compared
with dedicated max-cut algorithms.
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Table 6: Comparative results of our MAMBP algorithm with the results of 6
state of the art max-cut algorithms on the G-set benchmark instances. Notice
that max-cut algorithms lead to a partition whose two sets V1 and V2 may be
of different sizes contrary to a partition of MAMBP whose two sets are always
of equal size.

Instance f∗

max cut fMAMBP 6 reference max-cut algorithms

SS[28] TS-
UBQP[23]

DSA[1] VNSPR[9] CirCut[5] GRASP-
TS/PM[36]

G1 11624 11624 11624 11624 - 11621 11624 11624

G2 11620 11617 11620 11620 - 11615 11617 11620

G3 11622 11621 11622 11620 - 11622 11622 11620

G4 11646 11646 11646 11646 - 11600 11641 11646

G5 11631 11631 11631 11631 - 11598 11627 11631

G6 2178 2177 2165 2178 - 2102 2178 2178

G7 2006 2002 1982 2006 - 1906 2003 2006

G8 2005 2004 1986 2005 - 1908 2003 2005

G9 2054 2052 2040 2054 - 1998 2048 2054

G10 2000 1998 1993 2000 - 1910 1994 2000

G11 564 564 562 564 542 564 560 564

G12 556 556 552 556 540 556 552 556

G13 582 582 578 580 564 580 574 582

G14 3064 3062 3060 3061 2982 3055 3058 3063

G15 3050 3050 3049 3050 2975 3043 3049 3050

G16 3052 3052 3045 3052 - 3043 3045 3052

G17 3047 3047 3043 3046 - 3030 3037 3047

G18 992 992 988 991 - 916 978 992

G19 906 905 903 904 - 838 888 906

G20 941 941 941 941 876 900 941 941

G21 931 930 930 930 855 902 931 931

G22 13359 13359 13346 13359 12989 13295 13346 13349

G23 13342 13344 13317 13342 13006 13290 13317 13332

G24 13337 13336 13303 13337 12985 13276 13314 13324

G25 13332 13340 13320 13332 - 12298 13326 13326

G26 13328 13328 13294 13328 - 12290 13314 13313

G27 3336 3341 3318 3336 - 3296 3306 3325

G28 3295 3298 3285 3295 - 3220 3260 3287

G29 3394 3403 3389 3391 - 3303 3376 3394

G30 3403 3412 3403 3403 3080 3320 3385 3402

G31 3302 3309 3288 3288 2936 3302 3285 3299

G32 1410 1410 1398 1406 1338 1396 1390 1406

G33 1382 1382 1362 1378 1330 1376 1360 1374

G34 1384 1384 1364 1378 1334 1372 1368 1376

G35 7685 7686 7668 7678 - 7635 7670 7661

G36 7677 7678 7660 7670 - 7632 7660 7660

G37 7689 7689 7664 7682 - 7643 7666 7670

G38 7683 7688 7681 7683 - 7602 7646 7670

G39 2397 2408 2393 2397 - 2303 2395 2397

G40 2392 2400 2374 2390 - 2302 2387 2392

G41 2400 2405 2386 2400 - 2298 2398 2398

G42 2474 2481 2457 2469 - 2390 2469 2474

G43 6660 6659 6656 6660 - 6659 6656 6660

G44 6650 6650 6648 6639 - 6642 6643 6649

G45 6654 6654 6642 6652 - 6646 6652 6654

G46 6649 6649 6634 6649 - 6630 6645 6649

G47 6656 6657 6649 6656 - 6640 6656 6656

G48 6000 6000 6000 6000 6000 6000 6000 6000

G49 6000 6000 6000 6000 6000 6000 6000 6000

G50 5880 5880 5880 5880 5880 5880 5880 5880

G51 3847 3847 3846 3847 - 3808 3837 3847

G52 3850 3851 3849 3849 - 3816 3833 3850

G53 3848 3850 3846 3848 - 3802 3842 3848
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Table 6 – continued from previous page

Instance f∗

max cut fMAMBP 6 reference max cut algorithms

SS[28] TS-
UBQP[23]

DSA[1] VNSPR[9] CirCut[5] GRASP-
TS/PM[36]

G54 3851 3851 3846 3851 - 3820 3842 3850

G55 10236 10299 - 10236 9960 - - -

G56 3934 4016 - 3934 3649 - - -

G57 3460 3488 - 3460 3220 - - -

G58 19248 19276 - 19248 - - - -

G59 6019 6085 - 6019 - - - -

G60 14057 14186 - 14057 13658 - - -

G61 5680 5796 - 5680 5273 - - -

G62 4822 4866 - 4822 4612 - - -

G63 26963 26754 - 26963 8059 - - -

G64 8610 8731 - 8610 7861 - - -

G65 5518 5556 - 5518 - - - -

G66 6304 6352 - 6304 - - - -

G67 6894 6934 - 6894 - - - -

G70 9499 9580 - 9458 9499 - - -

G72 6922 6990 - 6922 6644 - - -

Better 44 42 25 47 44 27

Equal 8 17 3 6 6 18

Worse 2 10 0 1 4 9

4 Analysis of MAMBP

4.1 Influence of crossover, pool replacement strategy and perturbation mech-

anism

In this section, we investigate the influence of some important ingredients of
the proposed memetic algorithm: crossover (Section 2.5), population updat-
ing strategy (Section 2.6) and perturbation mechanism (Section 2.3.3). These
studies are based on the same selection of the 11 hard problem instances used
for setting the parameters (Section 3.2).

4.1.1 Influence of crossover: comparing MAMBP with TS

MAMBP uses TS as one of its main optimization procedures. It is therefore
interesting to know if MAMBP, by integrating a crossover operator, is able
to improve on the results of the TS algorithm alone. To verify this, we carry
out additional experiments on the selection of the 11 G-set graphs and show
a comparison between MAMBP and TS. For this experiment, we use the TS
algorithm described in Algorithm 2 (see Section 2.3) with the same parameter
settings given in Table 1. To make the comparison as fair as possible, we run
TS with the same timeout limits as for MAMBP: 30 minutes for graphs with
|V | < 5000 and 120 minutes if |V | ≥ 5000 (see Section 3.3). In order not
to penalize the tabu search algorithm which usually stops after lr iterations
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Table 7
Comparative results of MAMBP and TS on 11 G-set instances for the max-bisection problem

Instance |V | MAMBP TS

fbest favg hit time(s) fbest favg hit time(s)

G32 2000 1410 1410 20/20 887.50 1402 1400.80 4/20 1519.17

G33 2000 1382 1382 20/20 856.80 1380 1378.60 6/20 802.67

G35 2000 7686 7684.70 11/20 1312.42 7683 7680.35 1/20 1521.15

G40 2000 2400 2398.20 18/20 1198.28 2400 2397.80 2/20 1285.30

G41 2000 2405 2405 20/20 546.57 2405 2403.40 5/20 982.45

G42 2000 2481 2479.50 8/20 1513.96 2481 2477.50 2/20 807.34

G55 5000 10299 10291.50 2/20 2396.84 10291 10275.70 1/20 1971.73

G57 5000 3488 3475.60 2/20 4883.34 3472 3466.20 1/20 2833.71

G62 7000 4866 4848.20 1/20 4652.00 4830 4827.20 3/20 5089.40

G65 8000 5556 5538.60 1/20 5385.86 5516 5511.00 2/20 4408.32

G66 9000 6352 6332.50 2/20 6267.15 6298 6293.20 2/20 5959.70

(lr = 106 in our case as indicated in Table 1), TS is restarted after lr = 106

iterations whenever the timeout limit is not reached. Like for MAMBP, we run
the tabu search algorithm 20 times on each of the 11 selected G-set graphs.

Table 7 summarizes the computational results of the TS algorithm in com-
parison with those of MAMBP taken from Table 5. The following information
for each instance is shown: the best objective value (fbest), the averaged ob-
jective value over the 20 runs (favg), the success rate (hit) for reaching its
fbest value and the average CPU time (time) over the runs on which the
fbest value is reached. From Table 7, we notice that for all the 11 selected
instances, MAMBP performs far better than TS. Especially for each of the
instances with at least 5000 vertices, MAMBP is able to reach a larger objec-
tive value fbest than TS. In addition, improvements are more pronounced for
larger-size graphs. These comparative results provide clear evidence that the
recombination operator plays an important role in the overall performance of
our MAMBP algorithm and is more efficient when it comes to handling large
graphs.

4.1.2 Influence of population updating strategy

In order to evaluate the distance-and-quality based population updating strat-
egy (denoted by DisQual), we compare it with a popular updating strategy
widely used in the literature (denoted by PoolWorst), which uses the new
offspring solution to replace the worst solution (in terms of the fitness) of the
population.

We have experimented both strategies within our memetic algorithm. As an
illustration, Fig. 4 shows the detailed comparison on a large and difficult graph
(G55). Similar results have been observed on other instances. The stopping
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criterion is the number of generations (i.e., the number of applications of the
recombination operation) which is set to 300.

We keep other ingredients unchanged in the MAMBP algorithm and observe
two evolution profiles of each population updating strategy: the best objec-
tive value (over 20 runs) vs. the number of generations (Fig. 4, left) and the
population diversity vs. the number of generations (Fig. 4, right). The diver-
sity of the population is defined as the average distance between each pair of
solutions in the population (see Section 2.6) [12,27,32].
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Fig. 4. Comparison between two population updating strategies

Fig. 4 (left) shows that the population converges more quickly toward high
quality solutions with the distance-and-quality based population updating
strategy than with the classical PoolWorst strategy. In addition, the popula-
tion diversity is better preserved during the evolution process with DisQual
than with PoolWorst, which is directly correlated to the evolution of the solu-
tion quality. We can conclude that the distance-and-quality updating strategy
introduced in our approach allows the algorithm to better explore the search
space and prevents the population from stagnating in poor local optima.

4.2 Influence of the perturbation mechanism

As indicated in Section 2.3.3, our tabu search procedure employs a perturba-
tion mechanism which tries to bring controlled diversifications into the search.
In order to be sure this perturbation mechanism makes a meaningful contribu-
tion, we report in Table 8 a comparison between the two versions of our tabu
search algorithm with and without the perturbation mechanism (denoted by
TS+PM and TS-PM respectively). We run both algorithms 20 times on the
set of the 11 selected instances, each run being limited to lr = 106 iterations.
Table 8 reports the results of this experiment. For each instance, the following
information is provided: the best objective value (fbest), the averaged objec-
tive value over the 20 executions (favg), and the number of executions (hit)
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Table 8
The influence of the perturbation mechanism on 11 G-set bi-section instances

Instance |V | TS-PM TS+PM

fbest favg hit fbest favg hit

G32 2000 1398 1382.00 1/20 1400 1392.80 2/20

G33 2000 1372 1355.20 1/20 1376 1371.80 4/20

G35 2000 7665 7650.25 1/20 7673 7663.30 1/20

G40 2000 2366 2343.85 2/20 2388 2369.70 1/20

G41 2000 2379 2346.85 2/20 2396 2369.20 2/20

G42 2000 2459 2430.40 1/20 2476 2465.95 1/20

G55 5000 10004 9923.05 1/20 10263 10231.20 1/20

G57 5000 3420 3399.60 1/20 3460 3446.20 1/20

G62 7000 4778 4755.20 1/20 4812 4792.00 1/20

G65 8000 5450 5423.80 1/20 5504 5476.50 2/20

G66 9000 6226 6205.60 1/20 6282 6259.50 1/20

reaching its fbest value. Table 8 discloses that in most cases, our TS algorithm
performs better with the perturbation mechanism (Column “TS+PM”) than
without it (Column “TS-PM”), confirming the usefulness of the perturbation
mechanism within the TS algorithm.

4.3 Landscape analysis and motivation for the proposed crossover operator

In the last section, we demonstrated the importance of the proposed crossover
operator to the overall performance of the memetic algorithm by comparing
the performance of the proposed memetic algorithm with its underlying tabu
search algorithm. In this section, we try to explain why our grouping crossover
operator performs well and provide motivations for the proposed crossover op-
erator. For this purpose, we analyze structural similarity between local optima
of different quality in terms of the size of the commonly shared vertex group-
ings. Additionally, we investigate the correlation between quality (fitness) of
local optima and their distances (according to Definition 1, Section 2.6) to
the optimum by utilizing fitness landscape analysis techniques, which have
been shown to be useful for understanding the behavior of an optimization
algorithm.

To analyze structural similarity between local optima, we use the same set of
the 11 selected G-set graphs as before. For each instance, we produce 8000
local optima of different quality using our memetic algorithm as well as its
underlying tabu search with different time limits. Among these 8000 local op-
tima, we select the top 10% (800) with the largest objective function values
and call them ‘high-quality solutions’. Moreover, since the global optimal solu-
tions for the selected instances are unknown, we use instead the best solutions
found by our memetic algorithm as our supposed global optima.
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Table 9
Analysis of structural similarity between high-quality solutions for 11 hard max-bisection instances

Instance ndistinct ρfdc Shq Slo Dhq Dlo

G32 200 -0.71 0.64 0.55 34.10 64.70

G33 79 -0.69 0.63 0.57 49.60 67.70

G35 167 -0.69 0.69 0.57 32.80 66.50

G40 177 -0.31 0.73 0.59 44.60 81.40

G41 613 -0.80 0.93 0.63 11.40 67.40

G42 152 -0.22 0.70 0.59 60.70 82.50

G55 5 -0.19 0.66 0.56 63.40 84.00

G57 30 -0.61 0.60 0.55 53.20 67.60

G62 26 -0.62 0.59 0.54 61.00 75.10

G65 37 -0.63 0.58 0.54 60.70 75.40

G66 44 -0.62 0.58 0.53 60.80 76.90

Table 9 contains the data related to the similarity between our 8000 local
optima. Column ndistinct indicates the total number of distinct global optima
found for each instance. Columns Shq and Slo report respectively the average
degree of similarity between the 800 high-quality solutions and the average
degree of similarity between all the 8000 sampled local optima, the degree

of similarity between two solutions Ia and Ib is expressed as s(Ia,Ib)
|V |

where

s(Ia, Ib) is a similarity function as described in Section 2.6. Columns Dhq and
Dlo present respectively the average distance of high-quality solutions to their
nearest global optimum and the average distance of all local optima to their
nearest global optimum, expressed as a percentage of |V |

2
given that |V |

2
is the

maximum distance between any two solutions.

From Table 9, we observe that in most cases, the degree of similarity between
high-quality solutions is generally very large, which indicates high quality
solutions share many groupings of vertices. We also notice that for all the
cases, the degree of similarity between high-quality solutions is larger than
that between other local optima. In addition, the values reported in ‘Dhq’ are
generally smaller than the ones in ‘Dlo’, which indicates that the structure
of the set of high quality solutions is very similar to the structure of the
supposed global optimum. This suggests that if a significant number of vertices
is grouped together throughout each of the high quality solutions, there is a
strong chance that they are also grouped together in the global optimum. This
observation constitutes a motivation and justification for our crossover which
tries to preserve the largest common vertex groupings with respect to the two
selected parent solutions.

In order to give further evidence that the G-set instances are well suited for our
memetic algorithm, we carry out a landscape analysis and employ the fitness
distance correlation (FDC) [19] to study the difficulty of theG-set instances for
our memetic algorithm. FDC estimates how closely the fitness and distance to

25



G32

1300

1320

1340

1360

1380

1400

1420

1440

1460

1480

1500

fi
tn

es
s

200 270 340 410 480 550 620 690 760 830 900
distance to optimum

G33

1300

1310

1320

1330

1340

1350

1360

1370

1380

1390

1400

fi
tn

es
s

200 280 360 440 520 600 680 760 840 920 1000
distance to optimum

G35

7600

7610

7620

7630

7640

7650

7660

7670

7680

7690

7700

fi
tn

es
s

0 100 200 300 400 500 600 700 800 900 1000
distance to optimum

G42

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

fi
tn

es
s

0 100 200 300 400 500 600 700 800 900 1000
distance to optimum

G55

1.02×104

1.025×104

1.03×104

fi
tn

es
s

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
distance to optimum

G57

4800

4810

4820

4830

4840

4850

4860

4870

4880

4890

4900

fi
tn

es
s

0 300 600 900 1200 1500 1800 2100 2400 2700 3000
distance to optimum

G65

5400

5500

5600

fi
tn

es
s

1000 1600 2200 2800 3400 4000
distance to optimum

G66

6200

6300

6400

fi
tn

es
s

2000 2600 3200 3800 4400 5000
distance to optimum

Fig. 5. Fitness-distance correlation plots with respect to the solution fitness and
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the nearest global optimum are related. If fitness improves when the distance
to the optimum becomes smaller, then the search space is expected to be easy
for the search algorithm, since there is a “path” to the optimum via solutions
with increasing fitness. A value of the fitness distance correlation coefficient
ρfdc = −1 for a maximization problem indicates that fitness and distance to
the optimum are perfectly related and that search promises to be easy. A value
of ρfdc = 1 means that the fitness function is completely misleading. FDC can
also be visualized with the FD plot, where the same data used for estimating
ρfdc is displayed graphically. For this study, we use the same solutions as above
and the best solution as our supposed global optima. FD plots of 8 of the 11
instances are given in Fig. 5.

From these plots, one observes that G42 and G55 have the weakest FD cor-
relations with a value of ρfdc equaling -0.261 and -0.193 respectively (Table
9). It is interesting to relate these values to the results of the memetic algo-
rithm shown in Table 5. Indeed, for these graphs, MAMBP reaches its best
solutions with a relatively low probability of 8/20 and 2/20 respectively. On
the contrary, for the two graphs where the FC correlations are the highest
(G42 and G41 with ρfdc = −0.706 and −0.799), MAMBP attains its best
solutions easily with a 100% success rate. However, for the remaining graphs,
the relation between the FDC and MAMBP’s performance is more difficult to
establish. This shows that a simple measure like FDC cannot be used to fully
characterize the search difficulty of a problem instance.

5 Conclusion

In this paper, we have presented for the first time a memetic algorithm for
the max-bisection problem (MAMBP). The proposed algorithm relies on a
diversification-guided grouping crossover operator, a tabu search optimization
procedure and a quality-and-diversity based population updating strategy.

The computational results obtained on the set of 71 well-known G-set graphs
demonstrate that the proposed algorithm outperforms a recently published
Lagrangian net algorithm for MBP by delivering improved solutions for each
graph. Moreover, when considering the max-bisection problem as the “bal-
anced” max-cut problem, the MAMBP algorithm remain highly competitive
even compared to 6 state of the art max-cut algorithms. For 31 instances,
MAMBP improves on the previous best known results reported in the litera-
ture.

Furthermore, we have carried out experiments to show the importance of the
proposed crossover operator to the overall performance of the memetic algo-
rithm. We have also shown an analysis of the similarity between high quality
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solutions and of the search landscapes to get insights into the search space
and provide motivations for the proposed grouping crossover operator. We
have shown experimentally the usefulness of other important ingredients like
the dynamic tabu tenure management, the perturbation mechanism and the
pool updating strategy.
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