
A tabu search based memetic algorithm for the

max-mean dispersion problem

Xiangjing Lai a and Jin-Kao Hao a,b,∗

aLERIA, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France

bInstitut Universitaire de France, Paris, France

Computers and Operations Research, Accepted February 2016

Abstract

Given a set V of n elements and a distance matrix [dij]n×n among elements, the
max-mean dispersion problem (MaxMeanDP) consists in selecting a subset M from
V such that the mean dispersion (or distance) among the selected elements is maxi-
mized. Being a useful model to formulate several relevant applications, MaxMeanDP
is known to be NP-hard and thus computationally di�cult. In this paper, we present
a tabu search based memetic algorithm for MaxMeanDP which relies on solution
recombination and local optimization to �nd high quality solutions. One key contri-
bution is the identi�cation of the fast neighborhood induced by the one-�ip operator
which takes linear time. Computational experiments on the set of 160 benchmark
instances with up to 1000 elements commonly used in the literature show that the
proposed algorithm improves or matches the published best known results for all in-
stances in a short computing time, with only one exception, while achieving a high
success rate of 100%. In particular, we improve 53 previous best results (new lower
bounds) out of the 60 most challenging instances. Results on a set of 40 new large
instances with 3000 and 5000 elements are also presented. The key ingredients of the
proposed algorithm are investigated to shed light on how they a�ect the performance
of the algorithm.

Keywords : Dispersion problem; tabu search; memetic algorithm; heuristics.

∗ Corresponding author.
Email addresses: laixiangjing@gmail.com (Xiangjing Lai),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 25 February 2016

1 Introduction

Given a weighted complete graph G = (V,E,D), where V is the set of n

vertices, E is the set of n×(n−1)
2

edges, and D represents the set of edge weights
dij (i ̸= j), the generic equitable dispersion problem consists in selecting a
subset M from V such that some objective function f de�ned on the subgraph
induced by M is optimized [22]. In the related literature, a vertex v ∈ V is
also called an element, and the edge weight dij ∈ D is called the distance (or
diversity) between elements i and j.

According to the objective function to be optimized as well as the constraints
on the cardinality of subset M , several speci�c equitable dispersion problems
can be de�ned. At �rst, if the cardinality of M is �xed to a given number
m, the related equitable dispersion problems include the following four clas-
sic variants: (1) the max-sum diversity problem, also known as the maximum
diversity problem (MDP), which is to maximize the sum of distances among
the selected elements [1,3,8,13,16,20,25]; (2) the max-min diversity problem
that aims to maximize the minimum distance among the selected elements
[7,21,23,24]; (3) the maximum minsum dispersion problem (MaxMinsumDP)
that aims to maximize the minimum aggregate dispersion among the selected
elements [2,22]; (4) the minimum di�erential dispersion problem (MinDi�DP)
whose goal is to minimize the di�erence between the maximum and minimum
aggregate dispersion among the selected elements to guarantee that each se-
lected element has the approximately same total distance from the other se-
lected elements [2,9,22]. In addition, when the cardinality of subset M is not
�xed, i.e., the size of M is allowed to vary from 2 to n, the related equitable
dispersion problems include the max-mean dispersion problem (MaxMeanDP)
and the weighted MaxMeanDP [4,5,17,22].

In this study, we focus on MaxMeanDP which can be described as follows
[22]. Given a set V of n elements and a distance matrix [dij]n×n where dij
represents the distance between elements i and j and can take a positive or
negative value, the max-mean dispersion problem consists in selecting a subset
M (|M | is not �xed) from V such that the mean dispersion among the selected

elements, i.e.,

∑
i,j∈M ;i<j

dij

|M | , is maximized.

MaxMeanDP can be naturally expressed as a fractional 0�1 programming
problem with binary variables xi that takes 1 if element i is selected and 0
otherwise [17,22], i.e.,

Maximize f(s) =

∑i=n−1
i=1

∑n
j=i+1 dijxixj∑n
i=1 xi

(1)

2

Subject to
n∑

i=1

xi ≥ 2 (2)

xi ∈ {0, 1}, i = 1, 2, . . . , n; (3)

where the constraint (2) guarantees that at least two elements are selected.

In addition to its theoretical signi�cance as a NP-hard problem [22], MaxMe-
anDP has a variety of real-world applications, such as web pages ranks [15],
community mining [26], and others mentioned in [4].

Given the interest of MaxMeanDP, several solution approaches have been pro-
posed in the literature to deal with this hard combinatorial optimization prob-
lem. In 2009, Prokopyev et al. [22] presented a linear mixed 0�1 programming
formulation for MaxMeanDP. In the same work, the authors also presented a
Greedy Randomized Adaptive Search Procedure (GRASP) for generic equi-
table dispersion problems. In 2013, Martí and Sandoya [17] proposed a GRASP
with the path relinking method (GRASP-PR), and the computational results
show that GRASP-PR outperforms the previously reported methods. In 2014,
Della Croce et al. [5] developed a two-phase hybrid heuristic approach com-
bining a mixed integer non linear solver and a local branching procedure, and
showed competitive results compared to the GRASP-PR method. In 2015,
Carrasco et al. [4] introduced a highly e�ective two-phase tabu search algo-
rithm which was also compared to the GRASP-PR method. Very recently
(in 2016), Della Croce et al. [6] extended their previous two-phase hybrid
heuristic approach of [5] by adding a third phase based on path-relinking, and
presented competitive results. Among these reviewed heuristics, the four most
recent methods of [4�6,17] can be considered to represent the current state
of the art and thus are used as reference algorithms for our computational
studies in Section 3.

In this paper, we propose the �rst population-based memetic algorithm MAM-
MDP for solving MaxMeanDP. The proposed algorithm combines a random
crossover operator to generate new o�spring solutions and a tabu search
method to �nd good local optima. For local optimization, MAMMDP criti-
cally relies on its tabu search procedure which explores a very e�ective one-�ip
neighborhood. The performance of our algorithm is assessed on a set of 160
benchmark instances (20 ≤ n ≤ 1000) commonly used in the literature and a
set of additional 40 large-sized instances that we generate (n = 3000, 5000).
For the �rst set of existing benchmarks, the experimental results show that
the proposed algorithm is able to attain, in a short or very short computing
time, all current best known results established by any existing algorithms,
except for one instance. Furthermore, it can even improve the previous best
known result for a number of these instances. The e�ectiveness of the proposed
algorithm is also veri�ed on much larger instances of the second set with 3000
and 5000 elements.

3

In Section 2, we describe the general scheme and the components of the pro-
posed algorithm. Section 3 is dedicated to computational results based on the
200 benchmark instances and comparisons with state-of-the-art algorithms
from the literature. In Section 4, we analyze some important components of
the proposed algorithm. Finally, we conclude the paper in the last Section.

2 Memetic Algorithm for the Max-Mean Dispersion Problem

2.1 General Procedure

Memetic algorithms are a general framework which aims to provide the search
with a desirable trade-o� between intensi�cation and diversi�cation through
the combined use of a crossover operator (to generate new promising solutions)
and a local optimization procedure (to locally improve the generated solutions)
[18,19]. The proposed memetic algorithm (denoted by MAMMDP) adopts the
principles and guidelines of designing e�ective memetic algorithm for discrete
combinatorial problems [14]. The general procedure of our MAMMDP algo-
rithm is shown in Algorithm 1, where s∗ and sw respectively represent the
best solution found so far and the worst solution in the population in terms of
the objective value, and PairSet is the set of solution pairs (si, sj), which is
initially composed of all the possible solution pairs (si, sj) in the population
and is dynamically updated as the search progresses.

Our MAMMDP algorithm starts with an initial population P (line 4) which
includes p di�erent solutions, where each of them is randomly generated and
then improved by the tabu search procedure. After the initialization of popula-
tion (Section 2.3), the algorithm enters a while loop (lines 11 to 25) to make a
number of generations. At each generation, a solution pair (si, sj) is randomly
selected from PairSet and then the crossover operator (line 14) is applied to
the selected solution pair (si, sj) to generate a new solution so (Section 2.5).
Subsequently, so is improved by the tabu search procedure (line 15) (Section
2.4). After that, a population updating rule is used to update the population
(lines 20 to 24) (Section 2.6). Meanwhile, the PairSet is accordingly updated
as follows: First, the solution pair (si, sj) is removed from PairSet (line 13);
Then, if an o�spring solution so replaces the worst solution sw in the popu-
lation, all the solution pairs containing sw are removed from PairSet and all
the solution pairs that can be generated by combining so with other solutions
in the population are added into PairSet (lines 23 to 24). The while loop
ends when PairSet becomes empty, then the population is recreated, while
preserving the best solution (s∗) found so far in the new population (lines 4
to 8), and the above while loop is repeated if the timeout limit is not reached.

4

It is worth noting that compared with the traditional random selection scheme,
the proposed MAMMDP algorithm uses the set PairSet to contain the solu-
tion pairs of the population for crossover operations. This strategy, inspired
by the path relinking method [12], ensures that every pair of solutions in the
population is combined exactly once, favoring a more intensi�ed search.

Algorithm 1 Memetic algorithm for Max-mean Dispersion Problem
1: Input: The set V = {v1, v2, . . . , vn} of n elements and the distance matrix D =

[dij]n×n, the population size p, the timeout limit tout.
2: Output: the best solution s∗ found
3: repeat

4: P = {s1, . . . , sp} ← Population_Initialization(V) /∗ Section 2.3 ∗/
5: if it is not in the �rst loop then

6: sw ← arg min{f(si) : i = 1, . . . , p}
7: P ← P ∪ {s∗} \ {sw}
8: end if

9: s∗ ← arg max{f(si) : i = 1, . . . , p} /∗ s∗ keeps the best solution found ∗/
10: PairSet← {(si, sj) : 1 ≤ i < j ≤ p}
11: while PairSet ̸= ∅ and time < tout do
12: Randomly pick a solution pair (si, sj) ∈ PairSet
13: PairSet← PairSet \ {(si, sj)}
14: so ← CrossoverOperator(si, sj) /∗ Section 2.5 ∗/
15: so ← TabuSearch(so) /∗ Section 2.4 ∗/
16: if f(so) > f(s∗) then
17: s∗ ← so

18: end if

19: sw ← arg min{f(si) : i = 1, . . . , p}
20: if so dose not exist in P and f(so) > f(sw) then
21: P ← P ∪ {so} \ {sw}
22: PairSet← PairSet \ {(sw, sk) : sk ∈ P}
23: PairSet← PairSet ∪ {(so, sk) : sk ∈ P}
24: end if /∗ Section 2.6 ∗/
25: end while

26: until time ≥ tout

2.2 Search Space and Solution Representation

Given a MaxMeanDP instance with a set V of n elements as well as its dis-
tance matrix D = [dij]n×n, the search space Ω explored by our MAMMDP
algorithm is composed of all possible subsets of V , i.e, Ω = {M : M ⊆ V }.
Formally, a subset M of V can be expressed by a n-dimensional binary vector,
(x1, x2, . . . , xn), where xi takes 1 if element i belongs to M , and 0 otherwise.
The search space Ω is thus given by:

Ω = {(x1, x2, . . . , xn) : xi ∈ {0, 1}, 1 ≤ i ≤ n}

5

Clearly, the size of the search space Ω is bounded by O(2n).

For any candidate solution s = (x1, x2, ..., xn) ∈ Ω, its quality is determined by
the objective value (f(s), Formula (1)) of the max-mean dispersion problem.

2.3 Population Initialization

In our memetic algorithm, the initial population of p solutions is generated
as follows. First, we generate p random solutions, where each component xi

(i = 1, 2, . . . , n) of solution (x1, x2, ..., xn) is randomly assigned a value from
{0, 1} using a uniform probability distribution. Then, we apply the tabu search
procedure (see Section 2.4) to these solutions to reach p local optima which
form the initial population.

2.4 Local Optimization using Tabu Search

Local optimization is a key component of a memetic algorithm and ensures
generally the role of an intensi�ed search to locate high quality local optimum.
In this study, we devise a tabu search (TS) method as the local optimization
procedure which proves to be highly e�ective when it is applied alone. Given
a neighborhood structure (N(s)) and a starting solution (s0), our tabu search
procedure iteratively replaces the incumbent solution s by a best eligible neigh-
boring solution (s

′ ∈ N(s)) until the stopping condition is met, i.e., the best
solution (sb) is not improved for α consecutive iterations (called the depth of
TS). At each iteration of TS, the performed move is recorded in the tabu list
to prevent the reverse move from being performed for the next tt iterations.
Here, tt is called the tabu tenure and controlled by a special tabu list man-
agement strategy. A move is identi�ed to be eligible if it is not forbidden by
the tabu list or it leads to a solution better than the best solution found so
far in terms of the objective function value (aspiration criterion). The general
scheme of our TS method is described in Algorithm 2, and the neighborhood
structure employed by our TS method and the tabu list management strategy
are described in the following subsections.

2.4.1 Move and Neighborhood

The neighborhood N1 of our tabu search algorithm is de�ned by the one-�ip
move operator which consists of changing the value of a single variable xi to
its complementary value 1−xi. As such, given a solution s, the one-�ip neigh-
borhood N1(s) of s is composed of all possible solutions that can be obtained
by applying the one-�ip move to s. The size of the neighborhood N1(s) is

6

Algorithm 2 TabuSearch(s0, N(s), α)

1: Input: Input solution s0, neighborhood N(s), search depth α
2: Output: The best solution sb found during the tabu search process
3: s← s0 /* s is the current solution */
4: sb ← s /* sb is the best solution found so far */
5: d = 0 /* d counts the consecutive iterations where sb is not updated */
6: repeat

7: Choose a best eligible neighboring solution s′ ∈ N(s)
/* s′ is called eligible if it is not forbidden by the tabu list or better than sb */

8: s← s′

9: Update tabu list
10: if f(s) > f(sb) then
11: sb ← s,
12: d = 0
13: else

14: d = d+ 1
15: end if

16: until d = α
17: return sb

thus bounded by O(n), where n is the number of elements in V . To e�ciently
examine the neighborhood N1, we devise a fast neighborhood evaluation tech-
nique which contributes greatly to the computational e�ectiveness of the tabu
search method.

2.4.2 Fast Neighborhood Evaluation Technique

Our fast neighborhood evaluation technique maintains a n-dimensional vector
W = (p1, p2, . . . , pn) to e�ectively calculate the move value (i.e., the change
of objective value) of each possible move applicable to the current solution s,
where the entry pi represents the sum of distances between the element i and
the selected elements for the current solution, i.e., pi =

∑
j∈M ;j ̸=i dij, where M

is the set of selected elements.

If an one-�ip move is performed by �ipping variable xi as xi ← (1− xi), then
the move value ∆i can be rapidly computed as follows:

∆i =


−f(s)
|M |+ 1

+
pi

|M |+ 1
, for xi = 0; (4)

f(s)

|M | − 1
− pi
|M | − 1

, for xi = 1; (5)

where f(s) is the objective value of the current solution s and |M | is the
number of selected elements in s. Subsequently, the vector W is accordingly

7

updated as:

pj =


pj + dij, for xi = 0, j ̸= i; (6)

pj − dij, for xi = 1, j ̸= i; (7)

pj, for j = i; (8)

The vector W is initialized at the beginning of each call of TS with the com-
plexity of O(n2), and is updated in O(n) after each move. With the fast evalu-
ation technique, the best move can be identi�ed in O(n). Therefore, the total
complexity of each iteration of the TS method is bounded by O(n).

2.4.3 Tabu List Management Strategy

In our TS procedure, we use a tabu list management strategy to dynamically
tune the tabu tenure tt, which is adapted according to a technique proposed in
[10] where the tabu tenure is given by a periodic step function. If the current
iteration is y, then the tabu tenure of a move is denoted by tt(y).

Precisely, our tabu tenure function is de�ned, for each period, by a sequence of
values (a1, a2, · · · , aq+1) and a sequence of interval margins (y1, y2, · · · , yq+1)
such that for each y in [yi, yi+1 − 1], tt(y) = ai + rand(2), where rand(2)
denotes a random integer between 0 to 2. Here, q is �xed to 15, (a)i=1,··· ,15 =
Tmax

8
× (1, 2, 1, 4, 1, 2, 1, 8, 1, 2, 1, 4, 1, 2, 1), where Tmax is a parameter which

represents the maximum tabu tenure. Finally, the interval margins are de�ned
by y1 = 1, yi+1 = yi + 5ai (i ≤ 15).

As such, the tabu tenure varies periodically (with cycles of 15 periods) and
for each period the tabu tenure takes one of four possible values: Tmax

8
× 1

(the smallest), Tmax

8
× 2, Tmax

8
× 4, and Tmax

8
× 8 (the largest). In our case,

Tmax is set to 120 (See Section 4.2 for an analysis of this parameter), leading
to the values of 15, 30, 60, 120. Each tabu tenure is kept for a number of
consecutive iterations. In principle, this function helps the TS method reach
a good tradeo� between intensi�cation and diversi�cation during its search.

2.5 Crossover Operator

Within a memetic algorithm, the crossover operator is another essential in-
gredient whose main goal is to bring the search process to new promising
search regions to diversify the search. In this work, we adopt the standard
uniform crossover operator. Given two parent solutions s1 = (x1

1, x
1
2, . . . , x

1
n)

and s2 = (x2
1, x

2
2, . . . , x

2
n), the value of each component xo

i (i = 1, 2, . . . , n)
of the o�spring solution so is randomly chosen from the set {x1

i , x
2
i } with an

equal probability of 0.5. In spite of its simplicity, this crossover operator has

8

shown to be quite robust and e�ective in many settings.

2.6 Population Updating Rule

When a new o�spring solution is generated by the crossover operator, it is �rst
improved the tabu search procedure and then used to update the population
according to the following rule. If the o�spring solution is distinct from any
existing solution in the population and is better than the worst solution in the
population in terms of objective value, then the o�spring solution replaces the
worst solution of the population. Otherwise, the population is kept unchanged.

3 Experimental Results and Comparisons

In this section, we present extensive computational experiments to assess the
performance of our memetic algorithm.

3.1 Benchmark Instances

Our computational experiments is carried out on two types of instances,
namely Type I and Type II. The distances of Type I instances are randomly
generated in the interval [−10, 10] with a uniform probability distribution,
while the distances of Type II instances are generated from [−10,−5]∪ [5, 10]
with the same probability distribution.

Additionally, the set of benchmark instances used is composed of two subsets.
The �rst subset consists of 80 Type I instances and 80 Type II instances with
the number of elements n ranging from 20 to 1000. These 160 instances were
extensively adopted by the previous studies [4,5,17] and are available online
at http://www.optsicom.es/edp/. We also use a second subset of 20 Type
I and 20 Type II large instances with n = 3000 or 5000 that we generated in
the same way as the previous instances 1 .

1 The source code of generating these instances is available from our website: http:
//www.info.univ-angers.fr/pub/hao/maxmeandp.html.

9

3.2 Parameter Settings and Experimental Protocol

Our memetic algorithm relies on only three parameters: the population size p,
the depth of tabu search α and the maximum tabu tenure Tmax. For p and α,
we follow [25] and set p = 10, α = 50000 while setting Tmax = 120 empirically
(See Section 4.2 for an analysis of this parameter). This parameter setting is
used for all the experiments reported in Section 3. Even if �ne-tuning these
parameters would lead to better results, as we show below, our algorithm with
this �xed setting is able to attain a high performance with respect to the state
of the art results.

Our memetic algorithm is programmed in C++ and compiled using g++ com-
piler with the '-O2' �ag 2 . All experiments are carried out on a computer with
an Intel Xeon E5440 processor (2.83 GHz CPU and 2Gb RAM), running the
Linux operating system. Following the DIMACS machine benchmark proce-
dure 3 , our machine requires respectively 0.23, 1.42, and 5.42 seconds for the
graphs r300.5, r400.5, r500.5.

Given the stochastic nature of our algorithm, we solve each tested problem
instance 20 times, where the stopping condition is given by a cuto� time limit
which depends on the size of the instances. Speci�cally, the cuto� limit tout is
set to be 10 seconds for n ≤ 150, 100 seconds for n ∈ [500, 1000], 1000 seconds
for n = 3000, and 2000 seconds for n = 5000. As we discuss in Section 3.3,
these time limits are signi�cantly shorter than those used by the reference
algorithms of the literature.

3.3 Results and Comparisons on Small and Medium Sized Instances

Our �rst experiment aims to evaluate the performance of our MAMMDP
algorithm on the set of 160 popular instances with up to 1000 elements. The
computational results of MAMMDP on the 60 medium sized instances are
summarized in Table 1, whereas the results of the 100 small instances with
n ≤ 150 are available at our web-page (see Section 3.1, footnote 1).

In addition to the instance name and size (columns 1 and 2), column 3 of
Table 1 indicates the best objective values (fpre) of the literature which are
compiled from the best results yielded by four recent and best performing
algorithms, namely GRASP-PR [17], a two-phased hybrid heuristic approach

2 Our best results are available at our web-page (see Section 3.1, footnote 1). The
source code of our algorithm will also be available.
3 dmclique, ftp://dimacs.rutgers.edu/pub/dsj/clique, the benchmark procedure is
complied by gcc compiler with the '-O2' �ag

10

Table 1
Computational results of the proposed MAMMDP algorithm on the set of 60 rep-
resentative instances with 500 ≤ n ≤ 1000. Each instance is independently solved
20 times, and improved results are indicated in bold compared to the previous best
known results fpre of the literature reported in [4�6,17].

MAMMDP
Instance n fpre [17](2013) [5](2014) [6](2016) [4](2014) fbest favg SR t(s)
MDPI1_500 500 81.28 78.6050000 81.25 81.28 81.28 81.277044 81.277044 20/20 0.69
MDPI2_500 500 77.79 76.8734667 77.45 77.79 77.60 78.610216 78.610216 20/20 1.43
MDPI3_500 500 76.30 75.6914063 75.31 76.30 75.65 76.300787 76.300787 20/20 2.71
MDPI4_500 500 82.33 81.8058434 82.28 82.33 81.47 82.332081 82.332081 20/20 0.95
MDPI5_500 500 80.08 78.5695714 80.01 80.08 79.92 80.354029 80.354029 20/20 2.80
MDPI6_500 500 81.25 79.6426282 81.12 81.25 79.93 81.248553 81.248553 20/20 0.78
MDPI7_500 500 78.16 75.4989726 78.09 78.16 77.71 78.164511 78.164511 20/20 0.92
MDPI8_500 500 79.06 76.9836424 79.01 79.06 78.70 79.139881 79.139881 20/20 1.27
MDPI9_500 500 77.36 75.7209449 76.98 77.36 77.15 77.421000 77.421000 20/20 2.37
MDPI10_500 500 81.25 80.3789051 81.24 81.25 81.02 81.309871 81.309871 20/20 0.91
MDPII1_500 500 109.38 108.152545 109.16 109.38 109.33 109.610136 109.610136 20/20 0.75
MDPII2_500 500 105.33 103.287851 105.06 105.33 104.81 105.717536 105.717536 20/20 0.88
MDPII3_500 500 107.79 106.301714 107.64 107.79 107.18 107.821739 107.821739 20/20 0.89
MDPII4_500 500 106.10 104.618442 105.37 106.10 105.69 106.100071 106.100071 20/20 0.56
MDPII5_500 500 106.59 103.608188 106.37 106.55 106.59 106.857162 106.857162 20/20 0.99
MDPII6_500 500 106.17 104.813987 105.52 105.77 106.17 106.297958 106.297958 20/20 0.98
MDPII7_500 500 107.06 104.503378 106.61 107.06 106.92 107.149379 107.149379 20/20 0.88
MDPII8_500 500 103.78 100.021407 103.41 103.78 103.49 103.779195 103.779195 20/20 0.59
MDPII9_500 500 106.24 104.927769 106.20 106.24 105.97 106.619793 106.619793 20/20 1.11
MDPII10_500 500 104.15 103.497014 103.79 104.15 103.56 104.651507 104.651507 20/20 1.01
MDPI1_750 750 95.86 � � � 95.86 96.650699 96.650699 20/20 4.31
MDPI2_750 750 97.42 � � � 97.42 97.564880 97.564880 20/20 3.82
MDPI3_750 750 96.97 � � � 96.97 97.798864 97.798864 20/20 1.81
MDPI4_750 750 95.21 � � � 95.21 96.041364 96.041364 20/20 4.38
MDPI5_750 750 96.65 � � � 96.65 96.761928 96.761928 20/20 0.65
MDPI6_750 750 99.25 � � � 99.25 99.861250 99.861250 20/20 5.55
MDPI7_750 750 96.26 � � � 96.26 96.545413 96.545413 20/20 1.01
MDPI8_750 750 96.46 � � � 96.46 96.726976 96.726976 20/20 1.73
MDPI9_750 750 96.78 � � � 96.78 98.058377 98.058377 20/20 2.18
MDPI10_750 750 99.85 � � � 99.85 100.064185 100.064185 20/20 3.42
MDPII1_750 750 127.69 � � � 127.69 128.863707 128.863707 20/20 5.66
MDPII2_750 750 130.79 � � � 130.79 130.954426 130.954426 20/20 2.31
MDPII3_750 750 129.40 � � � 129.40 129.782453 129.782453 20/20 11.64
MDPII4_750 750 125.68 � � � 125.68 126.582271 126.582271 20/20 1.48
MDPII5_750 750 128.13 � � � 128.13 129.122878 129.122878 20/20 1.32
MDPII6_750 750 128.55 � � � 128.55 129.025215 129.025215 20/20 7.98
MDPII7_750 750 124.91 � � � 124.91 125.646682 125.646682 20/20 3.38
MDPII8_750 750 130.66 � � � 130.66 130.940548 130.940548 20/20 1.91
MDPII9_750 750 128.89 � � � 128.89 128.889908 128.889908 20/20 1.30
MDPII10_750 750 132.99 � � � 132.99 133.265300 133.265300 20/20 1.81
MDPI1_1000 1000 118.76 � � � 118.76 119.174112 119.174112 20/20 8.25
MDPI2_1000 1000 113.22 � � � 113.22 113.524795 113.524795 20/20 3.52
MDPI3_1000 1000 114.51 � � � 114.51 115.138638 115.138638 20/20 2.32
MDPI4_1000 1000 110.53 � � � 110.53 111.150397 111.150397 20/20 3.58
MDPI5_1000 1000 111.24 � � � 111.24 112.723188 112.723188 20/20 1.61
MDPI6_1000 1000 112.08 � � � 112.08 113.198718 113.198718 20/20 7.72
MDPI7_1000 1000 110.94 � � � 110.94 111.555536 111.555536 20/20 1.88
MDPI8_1000 1000 110.29 � � � 110.29 111.263194 111.263194 20/20 3.55
MDPI9_1000 1000 115.78 � � � 115.78 115.958833 115.958833 20/20 2.38
MDPI10_1000 1000 114.29 � � � 114.29 114.731644 114.731644 20/20 2.16
MDPII1_1000 1000 145.46 � � � 145.46 147.936175 147.936175 20/20 1.60
MDPII2_1000 1000 150.49 � � � 150.49 151.380035 151.380035 20/20 1.78
MDPII3_1000 1000 149.36 � � � 149.36 150.788178 150.788178 20/20 4.92
MDPII4_1000 1000 147.91 � � � 147.91 149.178006 149.178006 20/20 3.80
MDPII5_1000 1000 150.23 � � � 150.23 151.520847 151.520847 20/20 3.28
MDPII6_1000 1000 147.29 � � � 147.29 148.343378 148.343378 20/20 3.22
MDPII7_1000 1000 148.41 � � � 148.41 148.742375 148.742375 20/20 6.30
MDPII8_1000 1000 145.87 � � � 145.87 147.826804 147.826804 20/20 13.52
MDPII9_1000 1000 145.67 � � � 145.67 147.083880 147.083880 20/20 3.83
MDPII10_1000 1000 148.40 � � � 148.40 150.046137 150.046137 20/20 2.13
#Better 53 53
#Equal 7 7
#Worse 0 0
p-value 7.74e-06 7.74e-06 3.12e-4 4.85e-13

[5], a three-phase hybrid approach [6], and a two-phase tabu search (TP-TS)
method [4] (from http://www.optsicom.es/edp/). Note that the previous
best known results (fpre) are given with two decimal in the literature. Columns
4 to 7 respectively give the best objective values obtained by each of these four
reference algorithms, where the mark `�' means that the corresponding result
is not available. In [4,17], the cuto� time limits were set to 90, 600, and 1800
seconds for instances with n = 500, 750, 1000, respectively while in [5] the
cuto� limits were set to 60 and 600 seconds for the instances of size 150 and
500, and prolonged to be 120 and 1200 seconds for instances of 150 and 500
items in [6]. The GRASP-PR method was performed on a computer with an
Intel Core Solo 1.4 GHz CPU with 3 GB RAM [17]. The two-phase hybrid

11

heuristic in [5] and the three-phase hybrid approach in [6] were run on a
computer with an Intel Core i5-3550 3.30 GHz CPU with 4 GB RAM [5] and
the TP-TS method was run on a computer with an Intel Core 2 Quad CPU
and 6GB RAM [4].

The results of our MAMMDP algorithm are given in columns 8 to 11, in-
cluding the best objective value (fbest) over 20 independent runs, the average
objective value (favg), the success rate (SR) to reach fbest, and the average
computing time in seconds (t(s)) to reach fbest. The rows Better, Equal, Worse

respectively indicate the number of instances for which our result is better,
equal to and worse than fpre. The improved results compared to fpre are indi-
cated in bold. In addition, to verify whether there exists a signi�cant di�erence
between the best results of MAMMDP and those of four reference algorithms,
the p-values from the non-parametric Friedman tests are reported in the last
row of Table 1.

First, Table 1 shows that MAMMDP improves the previous best known result
for all instances except for 7 cases for which our result matches the previous
best known result. These results clearly indicate the superiority of MAMMDP
compared to the previous MaxMeanDP algorithms. Second, when examining
the success rate of the algorithm, one can �nd that the MAMMDP algorithm
achieves a success rate of 100% for all tested instances, which means a good
robustness of the MAMMDP algorithm. Third, in terms of average comput-
ing time, it can be seen that for all instances, MAMMDP obtains its best
result with an average time of less than 14 seconds, which are much shorter
than those of the previous algorithms in the literature. Moreover, all p-values
are smaller than 0.05, con�rming the statistical signi�cance of the observed
di�erences.

3.4 Computational Results and Comparison on Large-Scale Instances

In order to further assess the performance of the proposed MAMMDP algo-
rithm on large-scale instances, our second experiment was carried out based
on the set of 40 instances with n = 3000, 5000. In this experiment, one of the
best performing algorithms in the literature (i.e., the recent two-phase tabu
search (TP-TS) algorithm of [4]) is run once with a long computational time
of one week, and the proposed MAMMDP algorithm is run according to the
experimental protocol in Section 3.2. Note that for the TP-TS algorithm only
one run is conducted due to the fact that the random seed for generating initial
solutions is �xed in the executable code provided by its authors. Experimental
results are reported in Table 2, where the rows Better, Equal, Worse of the
table respectively show the number of instances for which the corresponding
result of our MAMMDP algorithm is better, equal to and worse than the re-

12

Table 2
Computational results and comparison on the set of 40 new large instances with
n = 3000, 5000. Bold values indicate better results compared to those obtained by
the TP-TS algorithm of [4], one of the best performing methods in the literature.

MAMMDP
Instance n TP-TS [4] fbest favg SR t(s)
MDPI1_3000 3000 188.095317 189.048965 189.048965 20/20 88.36
MDPI2_3000 3000 186.473026 187.387292 187.387292 20/20 60.71
MDPI3_3000 3000 184.341415 185.666806 185.655084 13/20 352.85
MDPI4_3000 3000 185.588182 186.163727 186.153631 16/20 300.37
MDPI5_3000 3000 186.234859 187.545515 187.545515 20/20 61.29
MDPI6_3000 3000 189.093513 189.431257 189.431257 20/20 51.99
MDPI7_3000 3000 187.451175 188.242583 188.242583 20/20 86.57
MDPI8_3000 3000 185.735801 186.796814 186.796814 20/20 48.04
MDPI9_3000 3000 187.107609 188.231264 188.231264 20/20 151.78
MDPI10_3000 3000 184.686569 185.682511 185.623778 10/20 228.72
MDPII1_3000 3000 252.181753 252.320433 252.320433 20/20 59.70
MDPII2_3000 3000 248.697168 250.062137 250.062137 20/20 220.10
MDPII3_3000 3000 250.530306 251.906270 251.906270 20/20 146.32
MDPII4_3000 3000 253.096329 253.941007 253.940596 19/20 370.76
MDPII5_3000 3000 252.562146 253.260423 253.260350 17/20 374.00
MDPII6_3000 3000 249.715999 250.677750 250.677750 20/20 55.35
MDPII7_3000 3000 249.593867 251.134413 251.134413 20/20 74.72
MDPII8_3000 3000 252.056539 252.999648 252.999648 20/20 79.82
MDPII9_3000 3000 251.362462 252.425770 252.425770 20/20 90.27
MDPII10_3000 3000 251.116925 252.396590 252.396590 20/20 13.18
MDPI1_5000 5000 236.333205 240.162535 240.102875 7/20 312.13
MDPI2_5000 5000 239.014282 241.827401 241.792978 6/20 1244.36
MDPI3_5000 5000 238.474238 240.890819 240.888162 19/20 810.48
MDPI4_5000 5000 237.397159 240.997186 240.976789 6/20 653.64
MDPI5_5000 5000 240.043931 242.480129 242.475885 19/20 735.16
MDPI6_5000 5000 238.001498 240.322850 240.306326 8/20 976.02
MDPI7_5000 5000 239.744358 242.814943 242.774982 5/20 259.50
MDPI8_5000 5000 237.915045 241.194990 241.161763 8/20 1148.60
MDPI9_5000 5000 235.910266 239.760560 239.667613 4/20 1219.71
MDPI10_5000 5000 241.804289 243.473734 243.373015 4/20 457.28
MDPII1_5000 5000 316.747833 322.235897 322.181291 5/20 1519.05
MDPII2_5000 5000 323.682866 327.301910 327.006342 5/20 1103.13
MDPII3_5000 5000 321.929067 324.813456 324.801590 10/20 955.81
MDPII4_5000 5000 317.676681 322.237586 322.197276 5/20 664.10
MDPII5_5000 5000 317.747934 322.491211 322.380726 7/20 1014.90
MDPII6_5000 5000 319.388979 322.950488 322.703887 4/20 352.88
MDPII7_5000 5000 319.980558 322.850438 322.793125 10/20 714.31
MDPII8_5000 5000 318.854528 323.112120 323.053268 11/20 879.48
MDPII9_5000 5000 320.437562 323.543775 323.339842 7/20 569.73
MDPII10_5000 5000 320.853036 324.519908 324.414458 15/20 752.95
#Better 40 40
#Equal 0 0
#Worse 0 0
p-value 2.54e-10 2.54e-10

sult of the TP-TS algorithm, and other entries have the same meanings as
those of Table 1.

Table 2 shows that for the instances with 3000 elements, MAMMDP reaches
a success rate of at least 10/20, which is an interesting indicator as to its good
performance for these instances. However, for the still larger instances with
n = 5000, the success rate of the algorithm signi�cantly varies between 4/20
and 19/20, which means that these large instances are clearly more di�cult.
Moreover, the di�erence between the best and average objective values ob-
tained by the MAMMDP algorithm is very small for all instances, implying a
good robustness of the proposed MAMMDP algorithm.

When comparing with the TP-TS method in [4], one �nds that the proposed
MAMMDP algorithm largely outperforms this reference method. Speci�cally,
for each instance tested, both the average and best objective values obtained
by the MAMMDP algorithm with a short time limit (1000 and 2000 seconds
respectively for n = 3000 and 5000) are better than that obtained by the
TP-TS method with a long running time of one week. Furthermore, the small
p-values (<0.05) imply that the improvement of the MAMMDP algorithm
over the TP-TS method is statistically signi�cant.

13

4 Analysis and Discussions

In this section, we study some essential ingredients of the proposed MAMMDP
algorithm to understand their impacts on the performance of the algorithm,
including the fast one-�ip neighborhood, a sensitivity analysis of the main
parameter, and the role of the memetic framework.

4.1 Importance of the Fast one-�ip Neighborhood

Table 3
Comparison of results of our tabu search method and the multi-start steepest de-
scent (MSD) method (using the fast one-�ip neighborhood) with the previous best
known results (fpre) on 30 representative instances. Bold values indicate better re-
sults compared to fpre in terms of both fbest and favg. Note that each instance was
independently solved 20 times by the two algorithms.

MSD Tabu Search
Instance n fpre fbest favg SR fbest favg SR
MDPI1_500 500 81.28 81.277044 81.106549 6/20 81.277044 81.246582 19/20
MDPI2_500 500 77.79 78.546377 78.099058 2/20 78.610216 78.607906 19/20
MDPI3_500 500 76.30 76.132727 75.801544 4/20 76.300787 76.245534 16/20
MDPI4_500 500 82.33 82.332081 82.193750 4/20 82.332081 82.326721 18/20
MDPI5_500 500 80.08 80.335310 80.119814 2/20 80.354029 80.339680 8/20
MDPII1_500 500 109.38 109.610136 109.589862 12/20 109.610136 109.600254 17/20
MDPII2_500 500 105.33 105.627817 105.239588 4/20 105.717536 105.702056 18/20
MDPII3_500 500 107.79 107.821739 107.619251 4/20 107.821739 107.763377 19/20
MDPII4_500 500 106.10 106.100071 105.790225 3/20 106.100071 106.082241 18/20
MDPII5_500 500 106.59 106.817718 106.602249 3/20 106.857162 106.843908 18/20
MDPI1_750 750 95.86 96.366463 95.941724 5/20 96.650699 96.645990 19/20
MDPI2_750 750 97.42 97.459545 97.070551 3/20 97.564880 97.562612 14/20
MDPI3_750 750 96.97 97.362054 97.023236 4/20 97.798864 97.797455 16/20
MDPI4_750 750 95.21 95.368811 94.924359 1/20 96.041364 96.010351 14/20
MDPI5_750 750 96.65 96.667671 95.684861 2/20 96.761928 96.758349 17/20
MDPII1_750 750 127.69 128.068348 127.539988 2/20 128.863707 128.765676 17/20
MDPII2_750 750 130.79 130.464095 130.068083 4/20 130.954426 130.934415 17/20
MDPII3_750 750 129.40 129.53194 128.967954 5/20 129.782453 129.744375 10/20
MDPII4_750 750 125.68 126.506605 125.928465 2/20 126.582271 126.568047 15/20
MDPII5_750 750 128.13 128.580648 127.904501 2/20 129.122878 129.041765 16/20
MDPI1_1000 1000 118.76 118.329488 117.986893 1/20 119.174112 119.149807 15/20
MDPI2_1000 1000 113.22 113.249248 112.646028 5/20 113.524795 113.517910 17/20
MDPI3_1000 1000 114.51 114.497181 113.977224 5/20 115.138638 114.968788 18/20
MDPI4_1000 1000 110.53 110.373096 109.833438 3/20 111.150397 110.934387 15/20
MDPI5_1000 1000 111.24 112.073920 111.07192 4/20 112.723188 112.557951 16/20
MDPII1_1000 1000 145.46 147.099271 145.863805 2/20 147.936175 147.936175 20/20
MDPII2_1000 1000 150.49 150.368746 149.588345 5/20 151.380035 151.329955 18/20
MDPII3_1000 1000 149.36 149.119968 148.337575 4/20 150.788178 150.782873 18/20
MDPII4_1000 1000 147.91 147.835705 147.155971 3/20 149.178006 149.140618 17/20
MDPII5_1000 1000 150.23 150.083205 149.466598 3/20 151.520847 151.519357 19/20
#Better 18 9 26 25
#Equal 3 0 4 0
#Worse 9 21 0 5
p-value 8.33e-2 1.1e-2 3.41e-7 2.61e-4

In MAMMDP, local optimization is based on the one-�ip neighborhood which
can be rapidly examined in linear time. To highlight the key role of this fast
neighborhood, we carried out an experiment with two simple methods, i.e.,
a multi-start steepest descent (MSD) method and our tabu search method
described in Section 2.4. The steepest descent method is a special case of our
tabu search method in which both the tabu tenure tt(y) and the depth of
tabu search α are set to 0, and the MSD method restarts the steepest descent
method with randomly generated initial solutions until the given cuto� time
is reached. For this experiment, the MSD method and our tabu search method
were independently run 20 times to solve each of 30 representative instances
with a time limit of 10 seconds per run.

14

The computational results are summarized in Table 3, where the symbols
fpre, fbest, favg and SR have the same meanings as those of the previous
tables, and the rows Better, Equal, Worse respectively show the number of
instances for which the corresponding result of the associated algorithm is
better, equal to and worse than the best known value fpre reported in the
literature. In addition, to verify whether there exists a signi�cant di�erence
between the corresponding results of our tabu search algorithm (as well as the
MSD algorithm) and fpre , the p-values from the non-parametric Friedman
tests are given in the last row of the table.

Table 3 discloses that the simple MSD method which only uses the one-�ip
neighborhood is able to obtain very competitive results compared to fpre.
Indeed, the best objective value fbest of the MSD method is better than the
best known value of fpre for 18 out of 30 representative instances. However,
the p-value (0.0833 > 0.05) does not indicate a signi�cant di�erence between
the best objective values fbest of the MSD method and the values of fpre. On
the other hand, one �nds that the average objective value favg of the MSD
method is better than the value of fpre for 9 out of 30 tested instances, even
though the reverse is true for 21 instances. These outcomes clearly show that
the fast one-�ip neighborhood is very e�ective for the MaxMeanDP problem
compared to those employed by other heuristic algorithms in the literature.

Furthermore, when comparing our tabu search method with the MSD method,
one �nds that the tabu search method which, like MSD, explores only the
one-�ip neighborhood, performs even better. It obtains improved best known
results for 26 instances (and the same result for the remaining cases) and
dominates the MSD method in terms of both the best and average objective
values.

This experiment con�rms that the fast one-�ip neighborhood is very appropri-
ate for local optimization applied to the MaxMeanDP problem and constitutes
one key element of the proposed MAMMDP algorithm.

4.2 Sensitivity Analysis of Parameter Tmax

Now, we turn our attention to a sensitivity analysis of the important parameter
Tmax which is used to control the tabu tenures. To analyze the in�uence of
parameter Tmax, we carried out an experiment on a set of 34 representative
instances, where we varied the value of Tmax within a reasonable range, i.e.,
Tmax ∈ {60, 80, 100, 120, 140, 160, 180, 200}, and then run the resulting tabu
search procedure 20 times for each value of Tmax and each instance. Finally,
the average objective values obtained over 20 runs were recorded for this study.

The experimental results are summarized in Table 4, where the second row

15

Table 4
In�uence of the parameter Tmax on the performance of tabu search procedure. Each
instance was independently solved 20 times using the tabu search procedure for each
parameter value in the range {60, 80, 100, 120, 140, 160, 180, 200}, and the average
objective values (favg) over 20 runs are respectively reported.

favg
Instance/Tmax 60 80 100 120 140 160 180 200
MDPI1_500 81.22 81.21 81.28 81.28 81.28 81.26 81.26 81.19
MDPI2_500 78.28 78.31 78.58 78.59 78.53 78.58 78.55 78.54
MDPI3_500 75.99 76.14 76.17 76.25 76.26 76.14 76.21 76.21
MDPI4_500 82.33 82.32 82.33 82.33 82.32 82.31 82.32 82.31
MDPI5_500 80.28 80.27 80.35 80.35 80.33 80.34 80.32 80.30
MDPII1_500 109.55 109.60 109.60 109.47 109.60 109.58 109.61 109.61
MDPII2_500 105.49 105.65 105.70 105.68 105.70 105.68 105.66 105.66
MDPII3_500 107.65 107.80 107.80 107.81 107.82 107.80 107.78 107.64
MDPII4_500 106.01 105.84 106.08 106.09 106.09 106.07 105.92 106.10
MDPII5_500 106.56 106.76 106.74 106.83 106.83 106.83 106.76 106.79
MDPI1_750 96.31 96.58 96.61 96.47 96.47 96.59 96.59 96.57
MDPI2_750 97.42 97.49 97.56 97.56 97.54 97.53 97.52 97.49
MDPI3_750 97.59 97.44 97.79 97.78 97.76 97.79 97.76 97.71
MDPI4_750 95.65 95.77 95.95 95.88 95.88 95.94 95.91 95.85
MDPI5_750 96.53 96.72 96.74 96.73 96.74 96.73 96.72 96.72
MDPII1_750 128.42 128.71 128.75 128.40 128.74 128.72 128.49 128.67
MDPII2_750 130.63 130.88 130.95 130.92 130.71 130.92 130.91 130.84
MDPII3_750 129.26 129.71 129.64 129.56 129.71 129.69 129.67 129.65
MDPII4_750 126.31 126.40 126.51 126.44 126.55 126.56 126.24 126.54
MDPII5_750 128.72 128.82 129.10 129.03 129.03 129.06 129.04 129.03
MDPI1_1000 118.81 119.01 119.15 118.84 119.12 119.15 119.15 119.12
MDPI2_1000 113.27 113.32 113.50 113.36 113.49 113.48 113.27 113.46
MDPI3_1000 114.58 114.99 115.10 115.11 115.10 115.05 114.96 114.99
MDPI4_1000 110.81 110.89 111.03 110.92 111.06 111.02 110.95 111.01
MDPI5_1000 111.48 111.82 112.62 112.72 112.71 112.57 112.25 112.61
MDPII1_1000 147.25 147.81 147.91 147.92 147.91 147.91 147.86 147.85
MDPII2_1000 150.80 151.12 151.36 151.34 151.31 151.31 151.28 151.22
MDPII3_1000 149.81 150.71 150.56 150.48 150.63 150.60 150.63 150.51
MDPII4_1000 148.84 149.06 149.14 149.09 149.10 149.03 149.05 149.00
MDPII5_1000 151.09 151.44 151.43 151.50 151.35 151.48 151.46 151.33
MDPI1_3000 186.63 188.07 188.51 188.67 188.69 188.82 188.90 188.70
MDPII1_3000 248.85 250.58 250.73 251.74 251.90 251.84 251.94 251.94
MDPI1_5000 236.42 237.83 237.86 238.74 239.33 238.94 239.49 239.44
MDPII1_5000 317.17 318.14 319.46 320.76 321.24 320.83 321.41 321.62
Average 128.41 128.74 128.90 128.96 129.02 129.00 129.00 129.01

gives the value of Tmax. Columns 2 to 9 show the average objective values
obtained by the tested values of Tmax for each instance, respectively.

Table 4 discloses that the average objective values obtained by di�erent values
of Tmax are in most cases very close, indicating that the performance of the
tabu search method is not sensitive to the setting of parameter Tmax. Moreover,
it can be seen that Tmax = 120 yields a desirable result in most cases, which
is the reason why the default value of Tmax is set to 120 in this study.

4.3 Role of the Memetic Framework

As shown in Section 4.1, our tabu search procedure is very competitive com-
pared to the existing algorithms in the literature. So it is interesting to know
whether our MAMMDP algorithm has a signi�cant improvement over this ef-
�cient TS procedure. For this purpose, we show a comparison between MAM-
MDP and a multi-start version of the tabu search procedure (MTS). For this
experiment, we used 40 large instances with n = 3000 or 5000, and run both
MTS and MAMMDP 20 times to solve each instance under the time lim-
its given in Section 3.2 (1000 seconds for n = 3000 and 2000 seconds for
n = 5000). Notice that for MTS, the TS procedure was run in a multi-start
way with a randomly generated initial solution for each re-start until the time-

16

out limit was reached, the TS procedure being re-started once the depth of
tabu search α (which is set to 5× 104) is reached. The computational results
of both algorithms are summarized in Table 5 which is composed of two parts,
where the rows Better, Equal, Worse respectively indicate the number of in-
stances for which the result of an algorithm is better, equal to and worse than
that of another one, and other symbols have same meanings as those of Table
1. Moreover, to verify whether there exists a signi�cant di�erence between the
MAMMDP and MTS algorithms in terms of fbest and favg, the p-values from
the non-parametric Friedman tests are also reported in the table.

Table 5
Comparison between the multi-start tabu search method (MTS) and the proposed
memetic algorithm on the set of 40 large instances with n ≥ 3000. Each instance was
independently solved 20 times by both algorithms respectively, and better results
between the two compared algorithms are indicated in bold in terms of the best and
average objective values.

MAMMDP MTS
Instance fbest favg SR t(s) fbest favg SR t(s)
MDPI1_3000 189.048965 189.048965 20/20 88.36 189.048965 189.048965 20/20 120.05
MDPI2_3000 187.387292 187.387292 20/20 60.71 187.387292 187.387292 20/20 101.07
MDPI3_3000 185.666806 185.655084 13/20 352.85 185.666806 185.651588 10/20 526.05
MDPI4_3000 186.163727 186.153631 16/20 300.37 186.163727 186.163727 20/20 136.64
MDPI5_3000 187.545515 187.545515 20/20 61.29 187.545515 187.545515 20/20 133.70
MDPI6_3000 189.431257 189.431257 20/20 51.99 189.431257 189.431257 20/20 35.59
MDPI7_3000 188.242583 188.242583 20/20 86.57 188.242583 188.242583 20/20 137.56
MDPI8_3000 186.796814 186.796814 20/20 48.04 186.796814 186.796814 20/20 66.76
MDPI9_3000 188.231264 188.231264 20/20 151.78 188.231264 188.231264 20/20 101.11
MDPI10_3000 185.682511 185.623778 10/20 228.72 185.682511 185.672371 18/20 352.70
MDPII1_3000 252.320433 252.320433 20/20 59.70 252.320433 252.320433 20/20 72.49
MDPII2_3000 250.062137 250.062137 20/20 220.10 250.062137 250.054744 7/20 513.80
MDPII3_3000 251.906270 251.906270 20/20 146.32 251.906270 251.906270 20/20 127.32
MDPII4_3000 253.941007 253.940596 19/20 370.76 253.941007 253.939680 18/20 352.64
MDPII5_3000 253.260423 253.260350 17/20 374.00 253.260423 253.260164 14/20 349.19
MDPII6_3000 250.677750 250.677750 20/20 55.35 250.677750 250.677750 20/20 69.78
MDPII7_3000 251.134413 251.134413 20/20 74.72 251.134413 251.134413 20/20 97.74
MDPII8_3000 252.999648 252.999648 20/20 79.82 252.999648 252.999648 20/20 115.84
MDPII9_3000 252.425770 252.425770 20/20 90.27 252.425770 252.425770 20/20 106.79
MDPII10_3000 252.396590 252.396590 20/20 13.18 252.396590 252.396590 20/20 16.06
#Better 0 4 4 14 0 2 2 6
#Equal 20 14 14 0 20 14 14 0
#Worse 0 2 2 6 0 4 4 14
p-value 1.0 4.142e-1
MDPI1_5000 240.162535 240.102875 7/20 312.13 240.141212 240.021201 2/20 163.67
MDPI2_5000 241.827401 241.792978 6/20 1244.36 241.817543 241.753546 2/20 734.33
MDPI3_5000 240.890819 240.888162 19/20 810.48 240.890819 240.825167 4/20 531.94
MDPI4_5000 240.997186 240.976789 6/20 653.64 240.973489 240.915459 3/20 560.43
MDPI5_5000 242.480129 242.475885 19/20 735.16 242.480129 242.430474 5/20 515.62
MDPI6_5000 240.322850 240.306326 8/20 976.02 240.328684 240.266264 5/20 290.72
MDPI7_5000 242.814943 242.774982 5/20 259.50 242.820139 242.759895 3/20 819.01
MDPI8_5000 241.194990 241.161763 8/20 1148.60 241.144781 241.113453 3/20 721.59
MDPI9_5000 239.760560 239.667613 4/20 1219.71 239.760560 239.514958 4/20 360.05
MDPI10_5000 243.473734 243.373015 4/20 457.28 243.385487 243.348149 9/20 939.59
MDPII1_5000 322.235897 322.181291 5/20 1519.05 322.223220 322.131204 3/20 197.42
MDPII2_5000 327.301910 327.006342 5/20 1103.13 327.301910 327.075247 5/20 18.52
MDPII3_5000 324.813456 324.801590 10/20 955.81 324.810826 324.790223 4/20 27.82
MDPII4_5000 322.237586 322.197276 5/20 664.10 322.212289 322.126605 4/20 338.02
MDPII5_5000 322.491211 322.380726 7/20 1014.90 322.420806 322.301249 5/20 105.12
MDPII6_5000 322.950488 322.703887 4/20 352.88 322.950488 322.615227 5/20 212.55
MDPII7_5000 322.850438 322.793125 10/20 714.31 322.850438 322.778396 8/20 756.14
MDPII8_5000 323.112120 323.053268 11/20 879.48 323.033840 322.873156 5/20 161.94
MDPII9_5000 323.543775 323.339842 7/20 569.73 323.522709 323.278556 3/20 148.94
MDPII10_5000 324.519908 324.414458 15/20 752.95 324.519908 324.294790 10/20 753.14
#Better 11 19 2 1
#Equal 7 0 7 0
#Worse 2 1 11 19
p-value 1.26e − 2 5.699e − 5

Table 5 discloses that for the 20 instances with n = 3000 the MAMMDP
algorithm performs slightly better than the MTS algorithm, but the di�erence
is small. However, for the 20 larger instances with n = 5000, the MAMMDP
algorithm signi�cantly outperforms the MTS algorithm. First, compared with
the MTS algorithm, the MAMMDP algorithm obtains better and worse results
in terms of the best objective value on 11 and 2 instances respectively. Second,
in terms of the average objective value, the MAMMDP algorithm yields better

17

results on 19 out of 20 instances. In addition, from the Friedman tests, it can
be seen that the obtained p-values are 1.26e−2 (<0.05) and 5.699e−5 (<0.05)
respectively for the best and average objective values, implying there exists
a signi�cant di�erence between these two methods. These outcomes indicate
that although the memetic part of the proposed MAMMDP algorithm is not so
critical for small and easy instances (i.e., local optimization with tabu search
equipped with the fast one-�ip neighborhood su�ces), it is quite useful to
better solve large and di�cult instances.

5 Conclusions

In this paper, we propose the �rst population-based memetic algorithm (MAM-
MDP) for solving the NP-hard max-mean dispersion problem (MaxMeanDP).
MAMMDP integrates an e�ective tabu search procedure and a random crossover
operator while adopting an original scheme for parent selection. The compu-
tational results on a large number of 200 benchmark instances show that the
proposed algorithm is very competitive compared with the state-of-the-art
algorithms in the literature. Speci�cally, it improves or matches the previous
best known results for all tested instances with n ≤ 1000 with an average com-
puting time of less than 14 seconds and a success rate of 100%, with only one
exception. In particular, we found improved best results (new lower bounds)
for 53 out of the 60 most challenging instances. We also show computational
results on 40 large instances with 3000 or 5000 elements which can serve as
reference lower bounds for evaluating new MaxMeanDP algorithms.

The investigations of several essential components of the proposed algorithm
shed light on the following points. First, the high performance of the proposed
algorithm is largely attributed to the fast liner-time neighborhood induced by
the one-�ip operator. Second, the adopted technique for tuning the tabu list
is robust and is not so sensitive to its parameter Tmax. Third, the population-
based memetic framework is particularly suitable to solve large and di�cult
problem instances.

The proposed algorithm could be adapted to the weighted version of the max-
mean dispersion problem with several small modi�cations. Some ideas of the
proposed algorithm could be applied to other binary optimization problems
(including some dispersion problems) where no constraint is imposed on the
number of variables taking the value of one.

18

Acknowledgments

We are grateful to the anonymous referees for their valuable comments and
suggestions. Our special thanks to Dr. R. Martí, Dr. M. Gallego, and Dr. A.
Duarte for providing us with the executable code of their TS algorithm [4].
This work was partially supported by a post-doc grant (for X.J. Lai) from
the Region of Pays de la Loire (France) and the PGMO project (2013-2015,
Jacques Hadamard Mathematical Foundation, Paris).

References

[1] Aringhieri R., Cordone R., 2011, Comparing local search metaheuristics for the
maximum diversity problem. Journal of the Operational Research Society 62, 266�
280.

[2] Aringhieri R., Cordone R., Grosso A., 2015, Construction and improvement
algorithms for dispersion problems. European Journal of Operational Research

242(1), 21�33.

[3] Aringhieri R., Cordone R., Melzani Y., 2008, Tabu search versus GRASP for the
maximum diversity problem. 4OR: A Quarterly Journal of Operations Research

6(1),45�60.

[4] Carrasco, R., Pham A., Gallego M., Gortázar F., Martí R., Duarte A., 2015,
Tabu search for the max-mean dispersion problem. Knowledge Based System 85,
256�264.

[5] Della Croce F., Garra�a M., Salassa F., 2014, A hybrid heuristic approach based
on a quadratic knapsack formulation for the max-mean dispersion problem. Lecture
Notes in Computer Science, pp. 186�197.

[6] Della Croce F., Garra�a M., Salassa F.,2016, A hybrid three-phase approach for
the max-mean dispersion problem. Computers & Operations Research 71, 16�22.

[7] Della Croce F., Grosso A., Locatelli M., 2009, A heuristic approach for the max-
min diversity problem based on max-clique. Computers & Operations Research

36(8) 2429�2433.

[8] Duarte A., Martí R., 2007, Tabu search and grasp for the maximum diversity
problem. European Journal of Operational Research 178(1), 71�84.

[9] Duarte A., Sánchez-Oro J., Resende M.G.C., Glover F., Martí R., 2015, Greedy
randomized search procedure with exterior path relinking for di�erential dispersion
minimization. Information Sciences 296, 46�60.

[10] Galinier P., Boujbel Z., Fernandes M. C., 2011, An e�cient memetic algorithm
for the graph partitioning problem. Annals of Operations Research 191(1), 1�22.

19

[11] Glover F., Laguna. M., 1997, Tabu search. Kluwer Academic Publishers, Boston.

[12] Glover F., Laguna M., Martí R., 2000, Fundamentals of scatter search and path
relinking. Control Cybernetics 39, 653�684.

[13] Glover F., Kuo C.C., Dhir K.S., 1998, Heuristic algorithms for the maximum
diversity problem. Journal of Information and Optimization Sciences 19(1), 109�
132.

[14] Hao J.K., 2012, Memetic algorithms in discrete optimization. In F. Neri,
C. Cotta, P. Moscato (Eds.) Handbook of Memetic Algorithms. Studies in
Computational Intelligence 379, Springer, Chapter 6, pp. 73�94.

[15] Kerchove C., Dooren P.V., 2008, The page trust algorithm: how to rank
web pages when negative links are allowed? Proceedings SIAM International

Conference on Data Mining, 346�352.

[16] Martí R., Gallego M., Duarte A., 2010, A branch and bound algorithm for the
maximum diversity problem. European Journal of Operational Research 200(1),
36�44.

[17] Martí R., Sandoya F., 2013, GRASP and path relinking for the equitable
dispersion problem. Computers & Operations Research 40(12), 3091�3099.

[18] Moscato P., Cotta C., A gentle introduction to memetic algorithms. In F.

Glover and G. Kochenberger (Eds.), Handbook of Metaheuristics, Kluwer, Norwell,
Massachusetts, USA, 2003.

[19] Neri F., Cotta C., Moscato P.(Eds.) Handbook of Memetic Algorithms. Studies
in Computational Intelligence 379, Springer, 2011.

[20] Palubeckis G., 2007, Iterated tabu search for the maximum diversity problem.
Applied Mathematics and Computation 189(1), 371�383.

[21] Porumbel D.C., Hao J.K., Glover F., 2011, A simple and e�ective algorithm for
the MaxMin diversity problem. Annals of Operations Research 186(1), 275�293.

[22] Prokopyev O.A., Kong N., Martinez-Torres D.L., 2009, The equitable dispersion
problem. European Journal of Operational Research 197(1), 59�67.

[23] Resende M.G.C., Martí R., Gallego M., Duarte A., 2010, GRASP and path
relinking for the max�min diversity problem. Computers & Operations Research

37(3), 498�508.

[24] Saboonchi B., Hansen P., Perron S., 2014, MaxMinMin p-dispersion problem:
A variable neighborhood search approach. Computers & Operations Research 52
(Part B), 251�259.

[25] Wu Q.H., Hao J.K., 2013, A hybrid metaheuristic method for the maximum
diversity problem. European Journal of Operational Research 231(2), 452�464.

[26] Yang B., Cheung W., Liu J., 2007, Community mining from signed social
networks. IEEE Transactions on Knowledge & Data Engineering 19(10), 1333�
1348.

20

