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Abstract

The maximum clique problem (MCP) is one of the most popular combinatorial opti-
mization problems with various practical applications. An important generalization
of MCP is the maximum weight clique problem (MWCP) where a positive weight
is associate to each vertex. In this paper, we present Breakout Local Search (BLS)
which can be applied to both MC and MWC problems without any particular adap-
tation. BLS explores the search space by a joint use of local search and adaptive
perturbation strategies. Extensive experimental evaluations using the DIMACS and
BOSHLIB benchmarks show that the proposed approach competes favourably with
the current state-of-art heuristic methods for MCP. Moreover, it is able to provide
some new improved results for a number of MWCP instances. This paper also re-
ports for the first time a detailed landscape analysis, which has been missing in
the literature. This analysis not only explains the difficulty of several benchmark
instances, but also justifies to some extent the behaviour of the proposed approach
and the used parameter settings.

Keywords: Clique; breakout local search; adaptive diversification; attractor;
fitness-distance correlation.

1 Introduction

Given an undirected graph G = (V,E) where V is the set of vertices and E
the set of edges, a clique C of G is a subset of V such that all vertices in C are
pairwise adjacent, i.e., ∀v, u ∈ C, {v, u} ∈ E. The maximum clique problem
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(MCP) is to find a clique C of maximum cardinality. MCP is notable for its
applicability to a wide range of important applications such as information
retrieval, experimental design, classification theory and fault diagnosis [4].

An important generalisation of MCP is the maximum weight clique problem
(MWCP), where a positive weight wv is associated to each vertex v ∈ V and
the weight W (C) of a clique C is defined as W (C) =

∑

v∈C wv. MWCP then
consists in finding a clique C of G which maximizes W (C). Note that the
maximum weight clique is not necessarily a clique of the highest cardinal-
ity. However, MCP can be viewed as a special instance of MWCP when a
unit weight is assigned to each vertex of V . Applications of MWCP occur in
computer vision, robotics, and pattern recognition [3].

Both MCP and MWCP are NP-complete [14]. Over the past decades, much
effort has been made in devising exact algorithms [17,20,26] as well as powerful
heuristics including tabu search [10,18,30], reactive search [5,23,24], stochas-
tic local search [9,15,22–24], variable neighbourhood search [12], ant colony
optimization [28] and hybrid methods [27,31]. Most of these approaches have
mainly been applied to MCP.

In this work, we propose a new heuristic approach, called Breakout Local
Search (BLS), which we apply without any particular adaptation to both the
weighted and unweighted maximum clique problems. BLS can be considered
as an iterated local search algorithm [16] which uses the tabu list idea from
tabu search [11] for its directed diversification. The basic idea behind BLS is
to use local search [21] to discover local optima and employ adaptive diversi-
fication strategies to continually move from one local optimum to another in
the search space. The continual exploration of new search areas is achieved by
alternating between random or directed, and weak or strong perturbations de-
pending on the current search state. Despite its simplicity, BLS shows excellent
performance on the set of well-known benchmark instances from the DIMACS
and BOSHLIB libraries for the maximum clique problem. BLS is also capable
of attaining new improved results for 14 maximum weight clique instances
from the DIMACS-W benchmark. Additionally, we show for the first time a
thorough landscape analysis on selected MCP and MWCP instances. Based
on this analysis, we explain to some extent the behaviour of the proposed
algorithm and justify our choice for the parameter settings used to obtain the
reported results.

The remained of the paper is organized as follows. In the next section, we
present in details the breakout local search approach for MCP and MWCP.
Section 3 shows extensive computational results and comparisons on MCP and
MWCP benchmark instances. In Section 4, we perform a landscape analysis
on selected instances and relate this analysis to the performance of BLS.
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2 Breakout Local Search (BLS) for MCP and MWCP

2.1 The BLS procedure

Recall that a local optimum with respect to a given neighborhood N is a
solution s∗ such that ∀s ∈ N(s∗), f(s∗) ≥ f(s), where f is the objective
function to be maximized. A basin of attraction of a local optimum l can be
defined as the set Bl of solutions that lead the local search to the given local
optimum l, i.e., Bl = {s ∈ S|LocalSearch(s) = l} [6]. Since a local optimum l
acts as an attractor with respect to the solutions Bl, the terms attractor and
local optimum will be used interchangeably throughout this paper.

Basically, our Breakout Local Search (BLS) approach moves from one basin of
attraction formed by a local optimum to another basin by applying directed
or undirected, large or small jumps depending on the search state. BLS starts
from an initial solution C0 and applies to it local search to reach a local
optimum or an attractor C. Each iteration of the local search algorithm scans
the whole neighborhood and selects the best improving neighboring solution
to replace the current solution [21]. If no improving neighbor exists, local
optimality is reached. At this point, BLS tries to escape from the basin of
attraction of the current local optimum and move into a neighboring basin
of attraction. For this purpose, BLS applies a number of dedicated moves to
the current optimum C (we say that C is perturbed). Each time an attractor
is perturbed, the perturbed solution is used as the new starting point for the
next round of the local search procedure.

If the search returns to the attractor C, BLS perturbs C more strongly by
increasing the number of moves to be applied for perturbation. After visiting
a certain number of local optima without improving the best solution found
so far, BLS applies a significantly stronger perturbation in order to drive
definitively the search toward a new and more distant region in the search
space.

The success of the described method depends crucially on two factors. First,
it is important to determine the number L of perturbation moves (also called
“perturbation strength” or “jump magnitude”) to be applied to change or
perturb the solution. Second, it is equally important to consider the type of
perturbation moves to be applied. While conventional perturbations are often
based on random moves, more focused perturbations using dedicated infor-
mation could be more effective. The degree of diversification introduced by a
perturbation mechanism depends both on the jump magnitude and the type of
moves used for perturbation. If the diversification is too weak, the local search
has greater chances to end up cycling between two or more locally optimal
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solutions, leading to search stagnation. On the other hand, a too strong diver-
sification will have the same effect as a random restart, which usually results
in a low probability of finding better solutions in the following local search
phase. For its perturbation mechanism, the proposed BLS takes advantage of
the information related to the search status and history. We explain the per-
turbation mechanism is Section 2.2. Algorithm 1 presents the BLS algorithm,
whose components are detailed in the following sections. Each time a local
optimum C is reached (lines 9-16, Sections 2.1.1 and 2.1.2), the jump magni-
tude L is determined depending on whether the search escaped or returned to
the previous local optimum, and whether the search is stagnating in a non-
promising region (lines 23-34, Section 2.2). BLS then applies L perturbation
moves to C in order to get a new starting point for the local search procedure
(line 37).

Algorithm 1 Breakout Local Search for the Maximum Clique Problem
Require: Graph G = (V, E), initial and maximal jump magnitude L0 and LMax, max. number T of

non-improving attractors visited before strong perturb., coefficients αr and αs for random and strong
random perturbations.

Ensure: The largest clique (for MCP) or the largest weight clique (for MWCP).
1: C ← generate initial solution(G)
2: Create initial PA, OM and OC sets /* Section 2.1.2 */
3: fc ← f(C) /* fc records the objective value of the solution */
4: Cbest ← C /* Cbest records the best solution found so far */
5: fbest ← fc /* fbest records the best objective value reached so far */
6: Cp ← C /* Cp records the last local optimum */
7: ω ← 0 /* Set counter for consecutive non-improving local optima */
8: while stopping condition not reached do

9: Select the best move m from the set of moves formed by the union M1 ∪M2 /* Section 2.1.2 */
10: while f(C ⊕m) > fc do

11: C ← C ⊕m /* Perform the best-improving move */
12: fc ← f(C ⊕m)
13: Update PA, OM and OC vertex sets
14: TL← update tabu list(m, Iter) /* Section 2.2.2 */
15: Iter ← Iter + 1
16: end while

17: if fc > fbest then

18: Cbest ← C; fbest ← fc /* Update the best solution found so far */
19: ω ← 0 /* Reset the counter of consecutive non-improving local optima */
20: else

21: ω ← ω + 1
22: end if

23: /* Determine the perturbation strength L to be applied to C */
24: if ω > T then

25: /* Search seems to be stagnating, strong perturbation required */
26: L← LMax

27: ω ← 0
28: else if C = Cp then

29: /* Search returned to the previous local optimum, increment perturbation strength */
30: L← L + 1
31: else

32: /* Search escaped from the previous local optimum, reinitialize perturbation strength */
33: L← L0

34: end if

35: /* Perturb the current local optimum C with perturbation strength L */
36: Cp ← C
37: C ← Perturbation(C, L, TL, Iter, ω, αr, αs) /* Section 2.2.2 */
38: end while
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2.1.1 Initial solution

The initial solution C used by BLS is generated in the following way. Select
uniformly at random a vertex v ∈ V and place it into C. While there exists
a vertex u ∈ V \ C such that ∀c ∈ C, {u, c} ∈ E, add u to C. This procedure
stops when no vertex can be added to C, giving a valid clique.

2.1.2 The neighbourhood relations and its exploration

For solution transformations, BLS employs four distinct move operators (moves
for short) whose basic idea is to generate a new clique from the current clique
C by adding vertices v ∈ V \ C to C, swapping vertices u and v such that
u ∈ C and v ∈ V \ C, or removing vertices v ∈ C from C.

Three sets PA, OM and OC are involved in the definition of these moves. The
vertex set PA consists of nodes excluded from the clique C that are connected
to all the vertices in C, i.e., PA = {v : v /∈ C,∀u ∈ C, {v, u} ∈ E}.

The OM set consists of vertex pairs (v, u) such that v is excluded from C and
is connected to all vertices in C except to vertex u ∈ C, i.e.,
OM = {(v, u) : v /∈ C and u ∈ C, |N(v) ∩ C| = |C| − 1, {v, u} /∈ E}, where
N(v) = {i : i ∈ V, {i, v} ∈ E}.

The OC set consists of all the vertices excluded from the clique C, i.e., OC =
{v : V \ C}.

The four moves M1 to M4 can then be defined as follows:

M1: Select a vertex v ∈ PA and insert it into C. After this move, the change
in the objective function is given by the following expression: ∆ = wv.

M2: Select a vertex pair (v, u) ∈ OM . Insert v into C and remove u from C.
The change in the objective function can be computed as: ∆ = wv −wu.

M3: Select a vertex v ∈ C and remove it from C. The change in the objective
function is given as: ∆ = −wv.

M4: Select a vertex v ∈ OC such that (wv +
∑

{v,u}∈E,u∈C wu) ≥ α ∗ f(C),
where f(C) is the current solution cost and 0 < α < 1. Add v to C.
Repair the resulting clique C by removing from C all vertices x such that
{v, x} /∈ E.

During the local search phase, BLS explores the union of the moves M1 and
M2. In other words, each iteration of the local search consists in identifying the
best move m from M1∪M2 and applying it to C to obtain a new solution (line
11 in Algorithm 1, denoted by C ← C ⊕m at line). This process is repeated
until a local optimum is reached (see lines 9–15 of Algo. 1). The directed
perturbation of BLS (see Section 2.2.2) applies a move m from M1∪M2∪M3.
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For random and strong random perturbation that acts as a restart (see Section
2.2.2), m is selected from M4 with possibly different values for coefficient α
(denoted by αr for random and αs for strong random perturbation).

2.2 Adaptive perturbation mechanism

2.2.1 General principle

The perturbation mechanism plays a crucial role within BLS since the local
search alone cannot escape from a local optimum. BLS thus tries to move
to the next basin of attraction by applying a weak or strong, directed or
random perturbation depending on the state of search. The pseudo-code of this
adaptive perturbation-based diversification procedure is given in Algorithms
2 and 3.

The idea of BLS is to first explore neighboring attractors, and move to a new
distant area only if the search seems to be stagnating. Therefore, after each
local search phase, BLS performs most of the time a weak perturbation (by
applying a small number L of moves) that is hopefully just strong enough
to escape the current basin of attraction and to fall under the influence of a
neighboring local optimum. If the jump was not sufficient to escape the current
attractor, the perturbation strength L is incremented and the perturbation
is applied again to the current attractor (see lines 28–30 of Alg. 1). A strong
perturbation (with a large number L of moves) is carried out only after visiting
a certain number T of attractors without any improvement on the quality of
the best solution found (see lines 23–27 of Alg. 1).

In addition to the number of moves to be applied for each perturbation, we
also determine the type of moves. In the next section, we describe in details
the different ways to select moves for perturbation.

2.2.2 The perturbation strategies

BLS employs both random and directed perturbations to guide the search
towards new regions of the search space.

The directed perturbation is based on the idea of tabu list from tabu search.
It uses a selection rule that favors moves that minimize the cost degradation,
under the constraint that they are not prohibited by the tabu list. Move pro-
hibition is determined in the following way. Each time a vertex v is placed into
the clique C, it can be removed from C without restrictions. However, each
time v is dropped from C, it is forbidden to place it back to C for γ iterations.
The value of γ is determined by the following relation:
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Algorithm 2 Perturbation procedure Perturbation(C,L, TL, Iter, ω, αr, αs)
Require: Local optimum C, perturbation strength L, tabu list TL, global itera-

tion counter Iter, number of consecutive non-improving local optima visited ω,
coefficients αr and αs for random and strong random perturbations.

Ensure: A perturbed solution C.
1: if ω = 0 then

2: /* Best sol. not improved after a certain num. of visited local opt.*/
3: C ← Perturb(C, L, M4) /* Strong random perturb. with moves from set M4

when α = αs, see Sect. 2.1.2 for the definition of set M4 */
4: else

5: Determine probability P according to Formula (1)
6: With probability P , C ← Perburb(C, L, A)

/* Directed perturbation with moves from set A, see this section for the
definition of set A */

7: With probability (1− P ), C ← Perturb(C, L, M4)
/* Rand. perturb. with moves from set M4 when α = αr, see Sect. 2.1.2 for
the definition of set M4 */

8: end if

9: Return C

Algorithm 3 Perturbation operator Perburb(C,L,M)
Require: Local optimum C, perturbation strength L, tabu list TL, global iteration

counter Iter, the set of perturbation moves M .
Ensure: A perturbed solution π.
1: for i := 1 to L do

2: Take move m ∈M

3: C ← C ⊕m /* Apply move m to C */
4: TL← update tabu list(m, Iter) /* Section 2.2.2 */
5: Update the PA, OM , OC vertex sets
6: Iter ← Iter + 1
7: end for

8: Return C

γ = φ + random(|OM |),

where φ is a coefficient and random is a function which returns at random a
value ranging from 1 to |OM | (the number of elements in the OM set, see
Section 2.1.2).

The information for move prohibition is maintained in the tabu list TL where
the ith element in TL is the iteration number when vertex i was dropped from
a clique C. The tabu status of a move is neglected only if the move leads
to a new solution better than the best solution found so far. The directed

perturbation relies thus both on 1) history information which keeps track, for
each move, the last time (iteration) when it was performed and 2) the quality
of the moves to be applied for perturbation in order not to deteriorate too
much the perturbed solution. The eligible moves for the directed perturbation
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are identified by the set A such that:

A = {m|m ∈ {M1 ∪M2 ∪M3},max{∆m}, prohibited(m) = false or
(∆m + f(C)) > fbest}

where ∆m is the change in the objective function after performing move m (see
Section 2.1.2). Note that the directed perturbation considers all the eligible
moves from the union of three types of moves M1, M2 and M3 (see Section
2.1.2).

The random perturbation, which is significantly stronger than the directed
perturbation, consists in performing moves randomly selected from the set
of moves M4 (see Section 2.1.2). The degree of random perturbation can be
adjusted by changing the value of parameter α (0 < α < 1). If α ≈ 0, the
random perturbation is very strong and can be compared to a random restart.
If α ≈ 1, the strength of random perturbation is insignificant.

As soon as a search stagnation is detected, i.e., the best found solution has not
been improved after visiting a certain number of local optima, BLS applies
the random perturbation (lines 1–4 of Algo. 2) in order to drive the search
towards distant regions of the search space. Otherwise, BLS takes turns prob-
abilistically between these two types of perturbations (lines 4–9 of Algo. 2).
The probability of applying a particular perturbation is determined depend-
ing on the search state, i.e., the current number of consecutive non-improving
attractors visited ω. The idea is to apply the directed perturbation with a
higher probability at the beginning of the search, i.e., whenever the search
progresses towards improved new local optima (counter ω is small). With the
increase of ω, the probability of using the directed perturbation progressively
decreases while the probability of applying random moves increases for the
purpose of a stronger diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of the directed perturbation.
Therefore, we constrain the probability P of applying the directed perturba-
tion to take values no smaller than a threshold P0:

P =











e−ω/T if e−ω/T > P0

P0 otherwise
(1)

where T is the maximum number of non-improving local optima visited before
triggering a stronger perturbation.
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2.3 Discussion

The general BLS procedure inherits some features from the two well-established
metaheuristics: iterated local search [16] and tabu search [11]. We briefly dis-
cuss the similarities and differences between our BLS approach and these two
methods.

Like ILS, BLS uses local search to discover local optima and perturbation
to diversify the search. BLS distinguishes itself from ILS by the two types
of perturbations that are triggered according to the search status, leading to
variable levels of diversification. Moreover, a locally optimal solution returned
by the local search procedure is always accepted as the new starting solution
for BLS no matter its quality, which completely eliminates the acceptance
criterion component of iterated local search.

The directed perturbation of BLS is based on the notion of tabu list that is
borrowed from tabu search. However, BLS does not consider the tabu list dur-
ing its local search phases while each iteration of tabu search is constrained by
the tabu list. As such, BLS and tabu search may explore different trajectories
during their respectiv search, leading to different local optima. As we will see
in the next section, BLS is able to attain highly competitive results on the set
of well-known benchmarks for the maximum clique and the maximum weight
clique problems.

3 Experimental results

3.1 Benchmark instances

We perform an extensive experimental evaluation of the proposed algorithm on
both the maximum clique and the maximum weight clique problems. For MCP,
we conduct experiments on the following two sets of benchmark instances:

DIMACS benchmark : These instances 1 , presented at the Second DIMACS
Implementation Challenge, are the most frequently used for comparison and
evaluation of MC algorithms. More specifically, we use the following popular
families:

• Brock – instances where the optimal clique is “hidden” by incorporating
low-degree vertices.

1 http://cs.hbg.psu.edu/txn131/clique.html
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• pHat – random instances having a wider range of vertex degrees. The gen-
erator for these instances is a generalization of the classical uniform random
graph generator.
• MANN – clique formulation of the Steiner Triple Problem. These instances

are created using Mannino’s code to convert the set covering formulation of
the Steiner Triple Problem to clique problems.
• Kel – instances based on Keller’s conjecture on tilings using hypercubes.
• Ham and Joh – graphs steaming from the coding theory.
• Gen – random instances with a unique known optimal solution.
• Other families such as C, San, SanR which are randomly generated using

different methods.

The size of the DIMACS instances ranges from less than 50 vertices and 1,000
edges up to more than 3,300 vertices and 5,000,000 edges.

BOSHLIB benchmark : Although the DIMACS benchmark is still the most
popular for evaluating maximum clique algorithms, we also consider the more
recent frb test instances 2 arising from the SAT’04 Competition. BOSHLIB
instances are randomly generated graphs with hidden optimal solutions and
appear to be more difficult than most of the instances from the DIMACS
suite. The instance size ranges from 450 vertices and 17,794 edges up to 1,534
vertices and 12,7011 edges.

For the less studied maximum weight clique problem, we use the DIMACS-W
benchmark which is easily converted from the DIMACS instances by allocat-
ing weights to vertices in the following way. For vertex i, wi is set equal to i

mod 200 + 1. This method for transforming DIMACS instances to weighted
DIMACS-W instances was initially proposed in [24]. In order to evaluate the
proposed approach on more test problems with different characteristics, we
create a set of additional instances by transforming the unweighted (and more
recent) BOSHLIB instances to the weighted instances (that we call BOSHLIB-
W). This is realized in the same way as for the DIMACS instances by applying
the above described weighting function from [24]. As such, these BOSHLIB-
W instances can easily be reproduced and used to test new weighted clique
algorithms. Notice that other maximum weight clique algorithms from the
literature [2,18] use randomly generated graphs with randomly generated ver-
tex weights, which makes it impossible to replicate exactly the benchmark
experiments for comparisons.

2 http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/graph-benchmarks.htm
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3.2 Experimental protocol

Our BLS algorithm is programmed in C++, and compiled with GNU gcc on
a Xeon E5440 with 2.83 GHz and 2 GB. Following the DIMACS machine
benchmark 3 , our machine requires 0.23 CPU seconds for r300.5, 1.42 CPU
seconds for r400.5, and 5.42 CPU seconds for r500.5. In the following, all
CPU times are scaled with respect to the reference machine. For all tested
instances, we execute our BLS approach 100 times. To increase the chances
for reaching the best-known/optimal solution, we set the maximum number
of iterations per run to 16× 107 for both problems. For the unweighted clique
problem, BLS terminates as soon as the best-known result from the literature
is attained. This stopping condition is also used by several other state-of-art
maximum clique approaches. However, the early termination criterion does
not apply for the weighted clique problem since the weighted case is much less
studied than the unweighted case and thus allows some space for improvement.
Given the different structures of the used benchmark instances (see Section
4.2) and two separate problems, we run BLS under three different parameter
settings to reach its peak performance. Table 1 gives the parameter settings,
determined by a preliminary experimentation, for the unweighted problem (on
the DIMACS and BOSHLIB benchmarks) and the weighted problem (on the
DIMACS-W and BOSHLIB-W benchmarks). In the case of the unweighted
clique problem, we use the parameter settings presented in column ‘Settings
1’ for instances from families Brock and MANN . The setting of parameters
for all the other MC instances is given in column ‘Settings 2’. In the case
of MWCP, we use the parameter settings from column ‘Settings 2’ for the
BOSHLIB-W instances, and the parameter settings from column ‘Settings 3’
for the DIMACS-W instances.

Note that the directed and random perturbations are combined as indicated in
Section 2.2.2 when the first and third parameter settings are used. On the other
hand, random perturbation is disabled (except during strong perturbation) in
the case of the second parameter settings by setting the value of P0 to 1. This
obviously decreases the amount of diversification which generally improves
BLS performance for some hard unweighted instances. In Section 4.3, we try
to provide an explanation to this behaviour.

To evaluate the performance of BLS, we compare it with several state-of-art
algorithms using the following criteria from the literature:

(1) The best solution obtained over a given number of runs;
(2) The average solution over a given number of runs;
(3) The number of instances for which an optimal or best-known solution is

3 dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique
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Table 1
Settings of important parameters for MCP and MWCP

Para. Description Settings 1 Settings 2 Settings 3

L0 initial jump magnitude 0.01 ∗ |V | 0.1 ∗ |V | 4

T max. number of non-improving attractors visited
before strong perturb. (restart)

1000 1000 1000

LMax maximal jump magnitude for restart 0.1 ∗ |V | 0.1 ∗ |V | 4

αs coefficient α for strong pertur. (restart) 0.8 0.8 0.7

φ coefficient for tabu tenure 7 7 7

P0 smallest probability for applying directed perturb. 0.75 1 0.75

αr coefficient α for random pertur. 0.8 – 0.92

reached within a reasonable computing time.

Beside the aforementioned criteria, the scaled average computing times needed
to reach the best-known solution from the literature are also mentioned for
indicative purposes.

It should be noted that a comparative analysis of the results found in the litera-
ture on state-of-art clique algorithms is not a straight-forward task because of
the differences in computing hardware, programming language, termination
criterion, etc. The comparisons in the following sections are thus presented
only for indicative purposes and should be interpreted with caution. Never-
theless, our experimental study shows to some extend the performance of the
proposed BLS algorithm relative to these state-of-the-art approaches.

3.3 Comparative results for MCP

To evaluate the performance of BLS on the unweighted maximum clique prob-
lem, we compare it with the following algorithms that achieve state-of-art
performances:

(1) Reactive Local Search (RLS) [5]– an advanced tabu search method which
is complemented by a feedback scheme to determine the amount of di-
versification;

(2) Variable Neighbourhood Search (VNS) [12] – a basic variable neighorhood
search heuristic that combines greedy with the simplicial vertex test in
its descent step;

(3) Phased Local Search (PLS) [23]– a stohastic local search algorithm which
alterantes between phases of iterative improvement and plateau search.

Tables 2 and 3 show performance results for BLS in comparison with the
results reported by the three reference approaches on the set of DIMACS in-
stances. Column ‘BR’ gives the optimal clique size (indicated by ‘*’) or the
best-known clique size reported in the literature. For each approach, column
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‘Clique size’ shows the best result obtained with the given algorithm over 100
runs, followed by the average and worse clique size values indicated in paren-
theses. For indicative purposes, we further provide the success rate (column
‘Success’) of BLS for attaining the best-known result from the literature. From
the results in Tables 2 and 3, we can make the following observations.

For the instances from the Brock family, BLS reaches the best reported results
from the literature with a perfect success rate for all the instances except in
three cases (brock800 1, brock800 2, and brock800 3) where the success rate
for reaching the best-known result is 70%, 68% and 84% respectively. These
Brock instances seem to be particularly difficult for RLS and VNS approaches
which fail to attain the best-known clique for the largest Brock instances (i.e.,
brock800 x). On these instances, the PLS algorithm attains the best-known
solution in every single trial, and requires considerably less time than BLS.

For the instances from the MANN family, RLS and VNS show better perfor-
mance compared to BLS and PLS. Particularly, VNS is able to attain the
best-known clique for both large instances MANN a45 (|C| = 345) and
MANN a81 (|C| = 1100) within short computing time. BLS shows inferior
performance, compared to the three reference approaches, on the two largest
MANN instances and is able to attain a maximum clique size of only 342 and
1094 for MANN a45 and MANN a81 respectively.

For the instances from the Kel family, BLS and RLS are equally effective and
attain in every single trial the best reported clique within reasonable time.
The two other reference approaches (VNS and PNS) are also able to reach
the best-known solution for all the keller instances. However, compared to
BLS and RLS, they show worse performance on the largest instance keller6
in terms of the average result.

For the instances from the family C, BLS attains the best-known clique in
every single trial for all the instances except for instance C2000.9 where the
success rate for reaching the best-known result is 10%. It should be noted that
C2000.9 is probably the hardest DIMACS instance and only few algorithms
from the literature [30] are able to obtain the clique size of 80 for C2000.9.

For the instances of other families (i.e., Gen, Ham, Joh, pHat, San and SanR),
BLS is able to reach the best-known clique size for all the instances in every
single trial within a time which is often less than a second. PLS also matches
the performance of BLS on these instances. The performance of RLE and VNS
has not been reported for a number of instances from these families. However,
on some tested instances, VNS and RLS perform as good as BLS and PLS.

In summary, BLS reaches the best-known result for 68 out of the 70 DIMACS
instances, while PLS is able to obtain the best-known solution for 67 of these
instances. Out of the 34 used DIMACS instance, RLS attains the best-known
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result for 30 instance while VNS reaches the best-known result for 31 of these
instances. These results imply that BLS is quite competitive with the three
reference approaches on the DIMACS instances and reaches performance com-
parable to the latest maximum clique algorithm described in [30].

Table 4 reports results of our BLS approach in comparison with those obtained
with the PLS algorithm on the set of instances from the BOSHLIB collection.
The two other reference approaches, RLS and VNS, are excluded from this
comparison since their performance on BOSHLIB instances is not reported.
From these results, we can make the following conclusions.

For small to medium size BOSHLIB instances (i.e., frb30-X to frb45-X ) with
up to 945 vertices, both BLS and PLS attain the optimal result in every
single trial. For large instance (i.e., frb50-X to frb59-X ), BLS attains the
optimal clique value for every instance while PLS is unable to reach the optimal
solution in two cases (i.e., frb59-26-1 and frb59-26-2 ). Moreover, BLS reports
better average results than PLS on these large BOSHLIB instances except
in three cases where BLS provides a slightly worse average result. As for the
computing time, BLS requires on average from 0.08 to 2399.92 seconds to reach
the best-known results from the literature, while PLS needs on average from
0.03 to 1259.03 seconds to attain its best results. Therefore, on the BOSHLIB
benchmark, PLS is more effective than BLS in terms of computing time, while
BLS shows to be more effective in terms of solution quality.

3.4 Comparative results for MWCP

This section is dedicated to an evaluation of BLS performance on the maxi-
mum weight clique problem using the DIMACS-W and BOSHLIB-W bench-
marks. For this purpose, we perform a comparison between BLS and the lead-
ing MWCP algorithm reported in [24] on the DIMACS-W instances.

Table 5 and 6 report the comparative results on the DIMACS-W benchmark.
For the BLS approach, column ‘Clique weight’ shows the largest, average and
smallest weight clique obtained over 100 executions. In [24], the author reports
only the largest weight clique obtained by PLS over 100 runs (indicated in col-
umn ‘Best clq.’). For each algorithm, column ‘Success’ provides the number of
times the reported largest weight clique is obtained, while column ‘CPU(s)’ is
the run-time in seconds averaged over all successful trials. Finally, the last col-
umn ∆(BLS−PLS) provides the difference between the objective values (weight
of the clique) of the best solutions attained by BLS and PLS respectively.

From the results in tables 5 and 6, we observe that BLS improves the best
results of PLS for 14 out of the 70 DIMACS-W instances. Only in two cases, the
best solution attained by BLS is worse than that obtained by PLS. Moreover,
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Table 2. Comparative results of BLS with some of the best-performing maximum clique algorithms on the set of DIMACS instances.
CPU(s) is the run-time in seconds averaged over all successful trials (i.e., trials when a best-known solution is reached).

BLS RLS [5] VNS [12] PLS [23]

Instance BR Success Cliquesize CPU(s) Cliquesize CPU(s) Cliquesize CPU(s) Cliquesize CPU(s)

brock200 1 21⋆ 100 21 0.01 – – – – 21 0.00

brock200 2 12⋆ 100 12 0.18 12 0.51 12(11.3;11) 0.05 12 0.01

brock200 3 15⋆ 100 15 0.57 – – – – 15 0.01

brock200 4 17⋆ 100 17 0.43 17 1.03 17(16.9;16) 0.33 17 0.03

brock400 1 27⋆ 100 27 121.4 – – – – 27 0.11

brock400 2 29⋆ 100 29 17.4 29(26.1;25) 4.58 29(27.4;25) 0.33 29 0.04

brock400 3 31⋆ 100 31 5.08 – – – – 31 0.02

brock400 4 33⋆ 100 33 3.17 33(32.4; 25) 11.83 33 1.8 33 0.01

brock800 1 23⋆ 70 23(22.4;21) 1568.24 – – – – 23 11.25

brock800 2 24⋆ 68 24(23.04;21) 1078.13 21 – 21 – 24 9.12

brock800 3 25⋆ 84 25(24.52;22) 1020.11 – – – – 25 5.63

brock800 4 26⋆ 100 26 601.74 21 – 21 – 26 2.44

gen200 p0.9 44 44⋆ 100 44 0.00 44 0.00 44 0.04 44 0.00

gen200 p0.9 55 55⋆ 100 55 0.00 55 0.00 55 0.01 55 0.00

gen400 p0.9 55 55 100 55 2.21 55 0.13 55(54.8;54) 1.68 55 0.02

gen400 p0.9 65 65 100 65 0.00 65 0.01 65 0.06 65 0.00

gen400 p0.9 75 75 100 75 0.00 75 0.01 75 0.05 75 0.00

hamming6-2 32⋆ 100 32 0.00 – – – – 32 0.00

hamming6-4 4⋆ 100 4 0.00 – – – – 4 0.00

hamming8-2 128⋆ 100 128 0.00 – – – – 128 0.00

hamming8-4 16⋆ 100 16 0.00 16 0.00 16 0.00 16 0.00

hamming10-2 512⋆ 100 512 0.02 – – – – 512 0.00

hamming10-4 40 100 40 0.02 40 0.00 40 0.01 40 0.00

MANN a27 126⋆ 100 126 35.2 126 0.34 126 0.00 126 0.00

MANN a45 345⋆ 0 342(340.82;340) – 345(343.6; 343) 37.64 345(344.5; 344) 1.02 344 –

MANN a81 1100 0 1094(1092.17; 1091) – 1098 – 1100(1099.3;1098) 43.87 1098 –

keller4 11⋆ 100 11 0.00 11 0.00 11 0.00 11 0.00

keller5 27 100 27 0.09 27 0.02 27 0.02 27 0.01

keller6 59 100 59 24.8 59 17.92 59(58.2;57) 12.0 59(57.75;57) 205.9

johnson8-2-4 4⋆ 100 4 0.00 – – – – 4 0.00

johnson8-4-4 14⋆ 100 14 0.00 – – – – 14 0.00

johnson16-2-4 8⋆ 100 8 0.00 – – – – 8 0.00

johnson32-2-4 16⋆ 100 16 0.00 – – – – 16 0.00

p hat300-1 8⋆ 100 8 0.00 8 0.00 8 0.00 8 0.00

p hat300-2 25⋆ 100 25 0.00 25 0.00 25 0.00 25 0.00

p hat300-3 36⋆ 100 36 0.00 36 0.00 36 0.00 36 0.00

15



Table 3. Comparative results of BLS with some of the best-performing maximum clique algorithms on the set of DIMACS instances.
CPU(s) is the run-time in seconds averaged over all successful trials (i.e.,trials when a best-known solution is reached).

BLS RLS [5] VNS [12] PLS [23]

Instance BR Success Cliquesize CPU(s) Cliquesize CPU(s) Cliquesize CPU(s) Cliquesize CPU(s)

p hat500-1 9⋆ 100 9 0.00 – – – – 9 0.00

p hat500-2 36⋆ 100 36 0.00 – – – – 36 0.00

p hat500-3 50 100 50 0.01 – – – – 50 0.00

p hat700-1 11⋆ 100 11 0.02 11 0.02 11 0.03 11 0.00

p hat700-2 44⋆ 100 44 0.00 44 0.00 44 0.00 44 0.00

p hat700-3 62 100 62 0.00 62 0.00 62 0.00 62 0.00

p hat1000-1 10 100 10 0.00 – – – – 10 0.00

p hat1000-2 46 100 46 0.01 – – – – 46 0.00

p hat1000-3 68 100 68 0.04 – – – – 68 0.01

p hat1500-1 12⋆ 100 12 4.12 12 2.86 12 20.33 12 1.22

p hat1500-2 65 100 65 0.03 65 0.01 65 0.01 65 0.00

p hat1500-3 94 100 94 0.03 94 0.02 94 0.03 94 0.01

san1000 15⋆ 100 15 95.33 – – – – 15 1.76

san200 0.7 1 30⋆ 100 30 0.05 – – – – 30 0.00

san200 0.7 2 18⋆ 100 18 0.43 – – – – 18 0.01

san200 0.9 1 70⋆ 100 70 0.00 – – – – 70 0.00

san200 0.9 2 60⋆ 100 60 0.01 – – – – 60 0.00

san200 0.9 3 44⋆ 100 44 0.01 – – – – 44 0.00

san400 0.5 1 13⋆ 100 13 15.07 – – – – 13 0.01

san400 0.7 1 40⋆ 100 40 61.05 – – – – 40 0.01

san400 0.7 2 30⋆ 100 30 2.65 – – – – 30 0.01

san400 0.7 3 22⋆ 100 22 1.1 – – – – 22 0.02

san400 0.9 1 100⋆ 100 100 0.04 – – – – 100 0.00

sanr200 0.7 18⋆ 100 18 0.01 – – – – 18 0.00

sanr200 0.9 42⋆ 100 42 0.01 – – – – 42 0.00

sanr400 0.5 13⋆ 100 13 0.05 – – – – 13 0.00

sanr400 0.7 21 100 21 0.01 – – – – 21 0.00

C125.9 34⋆ 100 34 0.00 34 0.00 34 0.00 34 0.00

C250.9 44⋆ 100 44 0.00 44 0.00 44 0.01 44 0.00

C500.9 57 100 57 0.00 57 0.29 57 0.18 57 0.07

C1000.9 68 100 68 35.7 68 3.93 68 3.47 68 0.70

C2000.5 16 100 16 2.9 16 0.94 16 0.94 16 0.27

C2000.9 80 1 80(78.6;78) 4811.17 78(77.6; 77) – 78(77.2; 76) – 78 –

C4000.5 18 100 18 654.6 18 206.07 18 208.19 18 55.94
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Table 4. Comparative results of BLS with PLS on the whole set of BOSHLIB instances. Column ‘BK’ shows the value of the optimal
clique. Column ‘Clique size’ indicates the value of the best clique obtained over 100 trials, followed by the average and worst clique
value given in parenthesis. CPU(s) is the run-time in seconds averaged over all successful trials (i.e., trials when a best-known solution
is reached).

Instance BLS PLS Instance BLS PLS

Name |C| Success Clique size CPU(s) Clique size CPU(s) Name |C| Success Clique size CPU(s) Clique size CPU(s)

frb30-15-1 30⋆ 100 30 0.10 30 0.05 frb50-23-1 50⋆ 96 50(49.96; 49) 882.22 50(49.72; 49) 771.03

frb30-15-2 30⋆ 100 30 0.13 30 0.07 frb50-23-2 50⋆ 56 50(49.56; 49) 1074.17.21 50(49.45; 49) 863.62

frb30-15-3 30⋆ 100 30 1.49 30 0.05 frb50-23-3 50⋆ 8 50(49.08; 49) 1037.68 50(49.16; 49) 767.94

frb30-15-4 30⋆ 100 30 0.08 30 0.03 frb50-23-4 50⋆ 100 50 55.51 50 93.24

frb30-15-5 30⋆ 100 30 1.13 30 0.24 frb50-23-5 50⋆ 100 50 142.93 50(49.99; 49) 321.73

frb35-17-1 35⋆ 100 35 8.14 35 3.07 frb53-24-1 53⋆ 4 53(52.04; 52) 2306.74 53(52.06; 52) 1259.02

frb35-17-2 35⋆ 100 35 2.25 35 0.91 frb53-24-2 53⋆ 16 53(52.16; 52) 2015.13 53(52.23; 52) 1142.17

frb35-17-3 35⋆ 100 35 0.37 35 0.19 frb53-24-3 53⋆ 88 53(52.88; 52) 1199.95 53(52.66; 52) 874.34

frb35-17-4 35⋆ 100 35 6.82 35 4.17 frb53-24-4 53⋆ 54 53(52.54; 52) 1361.23 53(52.48; 52) 1049.54

frb35-17-5 35⋆ 100 35 0.96 35 0.58 frb53-24-5 53⋆ 90 53(52.9; 52) 1100.00 53(42.46; 52) 722.56

frb40-19-1 40⋆ 100 40 1.45 40 2.45 frb56-25-1 56⋆ 20 56(55.2; 55) 2304.83 56(55.1; 54) 914.54

frb40-19-2 40⋆ 100 40 49.61 40 39.89 frb56-25-2 56⋆ 6 56(55.06; 55) 1500.44 56(54.93; 54) 1255.37

frb40-19-3 40⋆ 100 40 5.97 40 3.56 frb56-25-3 56⋆ 21 56(55.2; 55) 1409.09 56(55.08; 55) 1088.87

frb40-19-4 40⋆ 100 40 35.98 40 17.00 frb56-25-4 56⋆ 86 56(55.86; 55) 999.51 56(55.66; 54) 961.61

frb40-19-5 40⋆ 100 40 167.36 40 73.55 frb56-25-5 56⋆ 100 56 591.49 56(55.81; 55) 803.10

frb45-21-1 45⋆ 100 45 37.11 45 30.49 frb59-26-1 59⋆ 1 59(57.96; 57) 3298.21 58(57.85; 57) –

frb45-21-2 45⋆ 100 45 83.68 45 60.92 frb59-26-2 59⋆ 1 59(58.00; 57) 2399.92 58(57.63; 57) –

frb45-21-3 45⋆ 100 45 341.73 45 305.31 frb59-26-3 59⋆ 31 59(58.31; 58) 2338.59 59(57.77; 57) 1422.51

frb45-21-4 45⋆ 100 45 52.60 45 43.71 frb59-26-4 59⋆ 20 59(58.2; 58) 1823.63 59(57.71; 57) 1507.95

frb45-21-5 45⋆ 100 45 124.74 45 80.29 frb59-26-5 59⋆ 100 59 403.30 59(58.77; 57) 879.90
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BLS reports a better success rate (average result) than PLS for another 12
instances. Only in one case, BLS has a lower success rate. As for the CPU
time, BLS requires on average from 0 up to 2942.54 seconds to attain its best
solution. The maximum run-time for PLS is not reported in [24] since, for
some instances, the normal CPU time allowed for each trial prevented PLS
from reaching its best result from column ‘Best clq’.

Table 7 shows the performance of BLS on the BOSHLIB-W instances. Given
that the BOSHLIB-W instances can easily be reproduced, our results on these
instances are useful to compare other weighted methods.

4 Analysis and discussion

It is well known that the performance of any heuristic algorithm depends on
the balance between intensification and diversification. However, the desired
balance is influenced by the landscape structure such as the distribution of
local optima, the correlation between solutions, the number of global optima,
etc. In this section, we wish to obtain some insight on the search space of MC
and MWC problem instances in order to understand the behaviour of our BLS
algorithm. For this purpose, we analyse the distribution of local optima and
perform a fitness distance analysis (FDA) which investigates correlation be-
tween the quality (fitness) of local optima and their distances to the optimum
[13]. Moreover, we study the impact of different diversification degrees on the
performance of the proposed approach.

4.1 Analysis protocol

We perform a landscape analysis for both MCP and MWCP on 35 selected
instances. The results reported for each instance are based on a set of distinct
solutions obtained by 4000 independent runs of BLS. To measure distance
between solutions, we use the hamming distance which is the minimum number
of substitutions required to change one solution into another. If the optimal
solution is unknown for an instance, we use the best-known local optima to
compute fitness-distance correlation and refer to them as global optima. We
take into account for this analysis that some instances have multiple global
optima.
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Table 5
Comparative results of BLS and PLS on the set of DIMACS-W instances. Column
‘Clique weight’ shows the best, average and worst result obtained over 100 execu-
tions by BLS; column ‘Best clq.’ shows the best clique weight value obtained with
PLS over 100 trials; ‘Success’ provides the number of times the reported maxi-
mum weighted clique is obtained; ‘CPU(s)’ is the run-time in seconds averaged over
all successful trial; column ∆(BLS−PLS) provides the difference between the weight
values of the best solutions attained by BLS and PLS respectively.

BLS PLS

Name Success Clique weight CPU(s) Success Best
clq.

CPU(s) ∆(BLS−PLS)

brock200 1 100 2821 0.00 100 2821 0.14 0

brock200 2 100 1428 0.03 100 1428 0.02 0

brock200 3 100 2062 0.01 100 2062 0.01 0

brock200 4 100 2107 0.01 100 2107 0.52 0

brock400 1 100 3422 0.05 32 3422 321.66 0

brock400 2 100 3350 0.08 61 3350 306.04 0

brock400 3 100 3471 0.26 100 3471 8.86 0

brock400 4 100 3626 7.60 100 3626 0.04 0

brock800 1 100 3121 0.13 100 3121 23.20 0

brock800 2 100 3043 0.51 69 3043 658.82 0

brock800 3 100 3076 0.50 100 3073 2.47 3

brock800 4 100 2971 339.07 100 2971 2.78 0

gen200 p0.9 44 100 5043 0.01 100 5043 3.29 0

gen200 p0.9 55 100 5416 1.75 100 5416 0.04 0

gen400 p0.9 55 100 6718 0.18 2 6718 250.24 0

gen400 p0.9 65 100 6940 0.05 4 6935 147.73 5

gen400 p0.9 75 100 8006 0.43 100 8006 0.00 0

hamming6-2 100 1072 0.00 100 1072 0.00 0

hamming6-4 100 134 0.00 100 134 0.00 0

hamming8-2 100 10976 0.12 100 10976 0.00 0

hamming8-4 100 1472 0.00 100 1472 0.00 0

hamming10-2 100 50512 6.64 100 50512 0.00 0

hamming10-4 100 5129 26.86 1 5086 1056.77 43

MANN a27 16 12281(12276.9; 12273) 396.58 – 12264 – 17

MANN a45 1 34229(34211.3; 34201) 929.41 – 34129 – 100

MANN a81 1 111237(111188; 111162) 2942.54 – 110564 – 673

keller4 100 1153 0.04 100 1153 0.02 0

keller5 100 3317 0.65 100 3317 87.93 0

keller6 44 8062(8027.2; 7923) 1980.16 – 7382 – 680

johnson8-2-4 100 66 0.00 100 66 0.00 0

johnson8-4-4 100 511 0.00 100 511 0.00 0

johnson16-2-4 100 548 0.01 100 548 0.00 0

johnson32-2-4 100 2033 0.48 100 2033 32.95 0
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Table 6
Continued

BLS PLS

Name Success Clique weight CPU(s) Success Best
clq.

CPU(s) ∆(BLS−PLS)

p hat300-1 100 1057 0.01 100 1057 0.01 0

p hat300-2 100 2487 0.02 100 2487 14.36 0

p hat300-3 100 3774 0.01 47 3774 310.21 0

p hat500-1 100 1231 0.04 100 1231 0.31 0

p hat500-2 100 3920 0.01 – 3925 – -5

p hat500-3 100 5375 0.05 – 5361 – 14

p hat700-1 100 1441 0.01 100 1441 0.15 0

p hat700-2 100 5290 0.02 100 5290 57.89 0

p hat700-3 100 7565 0.13 12 7565 529.76 0

p hat1000-1 100 1514 0.07 100 1514 5.61 0

p hat1000-2 100 5777 0.04 87 5777 693.63 0

p hat1000-3 100 8111 0.41 – 7986 – 125

p hat1500-1 100 1619 0.14 100 1619 36.07 0

p hat1500-2 100 7360 0.18 4 7328 778.85 32

p hat1500-3 100 10321 1.78 – 10014 – 307

san1000 100 1716 4.94 – 1716 – 0

san200 0.7 1 100 3370 30.65 100 3370 0.00 0

san200 0.7 2 100 2422 0.01 66 2422 294.83 0

san200 0.9 1 100 6825 23.68 100 6825 0.00 0

san200 0.9 2 100 6082 0.19 100 6082 0.00 0

san200 0.9 3 100 4748 0.02 72 4748 162.99 0

san400 0.5 1 100 1455 0.22 100 1455 147.47 0

san400 0.7 1 98 3641(3640.64; 3623) – 100 3941 0.02 -300

san400 0.7 2 33 3110(3002.56; 2952) 166.00 100 3110 0.04 0

san400 0.7 3 100 2771 0.05 100 2771 3.24 0

san400 0.9 1 100 9776 6.25 100 9776 0.00 0

sanr200 0.7 100 2325 0.01 100 2325 0.46 0

sanr200 0.9 100 5126 0.00 5 5126 134.61 0

sanr400 0.5 100 1835 0.04 100 1835 0.49 0

sanr400 0.7 100 2992 0.03 100 2992 104.11 0

C125.9 100 2529 0.01 100 2529 5.99 0

C250.9 100 5092 0.06 17 5092 182.24 0

C500.9 100 6955 0.25 – 6822 – 133

C1000.9 100 9254 12.33 5 8965 254.22 289

C2000.5 100 2466 2.10 18 2466 524.50 0

C2000.9 74 10999(10989.9; 10964) 1152.78 – 10028 – 971

C4000.5 100 2792 179.89 – 2792 – 0
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Table 7. Computational results of BLS on the set of BOSHLIB-W instances. Column ‘Success’ provides the number of times the reported
maximum weight clique is obtained; ‘Clique weight’ shows the best, average and worst result obtained over 100 executions; ‘CPU(s)’ is
the run-time in seconds averaged over all successful trial; column ‘Avg. Iter’ provides the number of BLS iterations required to reach
the best solution averaged over all successful trial.

Name Success Clique weight CPU(s) Avg. Iter Name Success Clique weight CPU(s) Avg. Iter

frb30-15-1 100 2990 1.12 150606 frb50-23-1 11 5494(5486.41; 5485) 1221.72 77739303

frb30-15-2 100 3006 8.15 1129585 frb50-23-2 5 5462(5440.22; 5426) 2837.74 129335094

frb30-15-3 100 2995 11.67 1564603 frb50-23-3 98 5486(5485.98; 5485) 537.96 35125348

frb30-15-4 100 3032 0.33 43693 frb50-23-4 14 5454(5453.14; 5453) 1190.43 76154594

frb30-15-5 100 3011 3.64 483863 frb50-23-5 100 5498 388.18 24983985

frb35-17-1 100 3650 68.45 8961529 frb53-24-1 13 5670(5652.18; 5640) 1056.82 64130771

frb35-17-2 100 3738 197.42 23867783 frb53-24-2 3 5707(5685.32; 5671) 147.65 8864390

frb35-17-3 100 3716 11.58 1451092 frb53-24-3 48 5640(5629.38; 5604) 984.53 62353262

frb35-17-4 100 3683 232.36 30995122 frb53-24-4 13 5714(5676.16; 5636) 1604.50 69504498

frb35-17-5 100 3686 20.00 2595520 frb53-24-5 4 5659(5642.5; 5627) 278.91 16400953

frb40-19-1 96 4063(4062.8; 4058) 291.14 31630105 frb56-25-1 5 5916(5860.82; 5834) 1764.87 77113037

frb40-19-2 100 4112 439.81 36351497 frb56-25-2 1 5886(5838.96; 5803) 1013.85 39694846

frb40-19-3 46 4115(4111.72; 4107) 778.75 76596837 frb56-25-3 1 5859(5811; 5778) 101.48 3684299

frb40-19-4 98 4136(4135.92; 4132) 333.89 32834888 frb56-25-4 12 5892(5860.86; 5834) 1256.9 70600583

frb40-19-5 88 4118(4117.52; 4114) 343.82 35297705 frb56-25-5 1 5853(5787.04; 5759) 4386.6 154764648

frb45-21-1 58 4760(4754.3; 4739) 982.32 82392194 frb59-26-1 17 6591(6571.6; 6548) 1435.99 72411248

frb45-21-2 100 4784 307.06 23928814 frb59-26-2 13 6645(6602.34; 6568) 1834.93 93343723

frb45-21-3 88 4765(4764.76; 4763) 641.03 53288518 frb59-26-3 1 6608(6542.74; 6502) 507.93 26106825

frb45-21-4 96 4799(4797.24; 4755) 576.80 49992432 frb59-26-4 6 6592(6526.5; 6493) 952.34 48756880

frb45-21-5 100 4779 206.60 16637346 frb59-26-5 5 6584(6546.94; 6527) 1512.09 77719959
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Table 8
FDC analysis on 35 selected instances for the maximal clique and the maximal
weighed clique problems. For each instance, we provide the number of distinct global
optima found (column ‘#go’), the size of the analysed sample (column ‘#lo’), the
FDC coefficient (column ‘ρ’ ), the normalized average distance between local optima
(column ‘avg dlo’), and the normalized average distance between a local optimum
and the nearest global optimum (column ‘avg dgo’).

Unweighted maximum clique problem Weighted maximum clique problem

Instance #go #lo ρ avg dlo avg dgo #go #lo ρ avg dlo avg dgo

brock800 1 1 2300 0.177 0.830 0.915 1 451 -0.242 0.703 0.735

brock800 2 1 2444 0.134 0.800 0.898 1 476 -0.003 0.681 0.686

brock800 3 1 2300 0.116 0.766 0.880 1 444 -0.150 0.647 0.676

brock800 4 1 2347 0.126 0.736 0.865 1 336 -0.065 0.625 0.814

MANN a27a 483 4000 -0.657 0.660 0.415 3 1409 -0.175 0.395 0.413

keller5 2141 3945 -0.851 0.931 0.231 2 975 -0.350 0.806 0.816

keller6 30 3918 -0.069 0.878 0.860 1 3591 -0.294 0.778 0.813

C1000.9 22 4000 -0.298 0.849 0.740 1 1510 -0.365 0.654 0.657

C2000.5 1188 3311 -0.986 0.951 0.491 1 227 -0.044 0.837 0.834

C2000.9 1 4000 0.308 0.876 0.920 1 3072 -0.056 0.358 0.381

san1000 1 3795 0.608 0.577 0.782 1 120 -0.307 0.534 0.521

san400 0.7 2 1 2937 -0.003 0.543 0.736 1 44 -0.655 0.392 0.676

san400 0.7 3 1 2699 0.145 0.713 0.837 1 17 -0.747 0.523 0.499

hamming10-2 3 816 -0.977 0.481 0.227 1 3456 -0.013 0.461 0.492

hamming10-4 3466 3998 -0.976 0.954 0.085 8 1807 -0.070 0.788 0.651

gen400 p0.9 65 1 747 -0.761 0.602 0.700 1 132 -0.585 0.422 0.364

gen400 p0.9 75 1 311 -0.873 0.514 0.655 1 307 -0.826 0.400 0.435

p hat1000-1 276 302 -0.978 0.946 0.053 1 4 -0.932 0.750 0.600

p hat1000-2 482 523 -0.943 0.306 0.023 2 38 -0.778 0.435 0.303

p hat1000-3 24 1186 -0.566 0.435 0.423 1 646 -0.353 0.408 0.385

p hat1500-1 1 735 0.155 0.861 0.913 1 11 -0.332 0.719 0.633

p hat1500-2 1169 1413 -0.965 0.253 0.046 1 196 -0.551 0.374 0.311

p hat1500-3 1989 3152 -0.911 0.199 0.077 1 2280 -0.473 0.390 0.329

frb50-23-1 32 3866 -0.205 0.881 0.863 1 3047 -0.059 0.781 0.804

frb50-23-2 31 3913 -0.205 0.878 0.874 1 3205 0.072 0.782 0.805

frb50-23-3 2 3909 0.184 0.883 0.911 1 3088 -0.199 0.780 0.792

frb50-23-4 309 3548 -0.727 0.874 0.775 1 2937 -0.031 0.786 0.806

frb53-24-1 2 3997 0.135 0.882 0.907 1 3593 -0.100 0.805 0.814

frb53-24-2 10 3968 0.051 0.920 0.928 1 3518 -0.014 0.807 0.805

frb53-24-3 35 3993 -0.205 0.882 0.867 1 3637 -0.031 0.809 0.816

frb53-24-4 17 3961 -0.105 0.880 0.890 1 3838 0.024 0.805 0.818

frb56-25-1 6 3970 0.079 0.884 0.911 1 3977 -0.054 0.812 0.835

frb56-25-2 10 3983 0.059 0.883 0.913 1 4000 -0.130 0.807 0.802

frb56-25-3 5 3976 -0.007 0.886 0.902 1 3982 0.106 0.816 0.843

frb56-25-4 86 3977 -0.317 0.886 0.884 1 3972 0.039 0.810 0.819
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4.2 FDC and distribution of local optima

The fitness-distance correlation (FDC) coefficient ρ [13] is a well-known tool
for landscape analysis and can provide useful indications about the problem
hardness, even if such an analysis has some known shortcomings and limi-
tations. The FDC captures the correlation between the fitness (i.e., quality)
of a solution and its distance to the nearest global optimum (or best-known
solution if no global optimum is available). For a maximization problem, a
value of ρ = −1 indicates a perfect correlation between fitness and distance
to the optimum, implying that improving the fitness reduces the distance to
the global optimum. For landscapes with −0.15 < ρ < 0.15, there is virtually
no correlation between fitness and distance, while for correlation of ρ = 1,
there is no correlation at all. In this case, using the fitness to guide the search
towards global optimum may be misleading. The FDC can also be visualized
with a fitness-distance (FD) plot, where the same data used for estimating ρ
is displayed graphically. Such plots have been used to estimate the distribu-
tion of local optima for a number of problems including for instance the TSP
problem [8], graph partitioning problem [7,19], flow-shop scheduling problem
[25], and the QAP [29].
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Fig. 1. Distance of local optima to the best-known solution based on solutions
sampled by BLS algorithm for four unweighted maximum clique instances.

23



Table 8 reports the results of our FDC analysis on the 35 selected instances for
the maximum clique (left part) and the maximum weight clique (right part)
problems. For each instance, we collect 4000 solutions and indicate the number
of distinct global optima found (column ‘#go’), the size of the analysed sample
(i.e., the number of distinct local optima, column ‘#lo’), the FDC coefficient
(column ‘ρ’ ), the average distance between local optima (column ‘avg dlo’),
and the average distance between a local optimum and the nearest global
optimum (column ‘avg dgo’). For the sake of clarity, we normalize the distances
avg dlo and avg dgo by dividing them by the maximal possible distance. For
illustrative purposes, FD plots for four instances of the unweighted maximum
clique problem (brock800 2, C2000.9, hamming10-2 and frb53-24-1 ) are given
in Figure 1.

From the results for the unweighted maximum clique problem, we observe
that there are significant differences in landscapes of problem instances. For
some MCP instances, our search detected only one global optimum, while for
other instances there may exist even thousands of distinct globally optimal
solutions. Moreover, some landscapes have highly correlated local optima (i.e.,
ρ < −0.15) meaning that the fitness (evaluation function) provides a good
guidance for the search. Indeed, the FD plot in Figure 1c indicates an almost
perfect correlation for hamming10-2 whose ρ coefficient is very close to -1. On
the other hand, some MCP instances (e.g., brock800 X, C2000.9, frb53-24-1 )
have highly uncorrelated landscapes (i.e., ρ > 0.15), implying that the search
may be difficult for many state-of-art approaches. From the plots in figures
1a, 1b, 1d, it is clear that there is no correlation for instances brock800 2,

C2000.9, and frb53-24-1. This explains why these instances are particularly
hard for many algorithms.

From the results in Table 8, it can also be observed that the values of avg
dlo and avg dgo are often very large (i.e., > 0.8) in the case of MCP. To gain
an even better insight in the distribution of local optima in the search space,
we investigate the minimal distance between pairs of medium or high quality
local optima. These solutions may be viewed as ‘strong’ attractors since it
is more likely that they may be visited during the search than a low quality
local optimum. The results of this study for 6 unweighted maximum clique
instances are given in Figure 2. The x-axis shows the normalized minimal dis-
tance between a pair of ‘strong’ attractors, while the y-axis shows the number
of pairs of ‘strong’ attractors separated by the given distance. Figure 2 indi-
cates that there exists a significant difference in the distribution of medium and
high quality local optima for MC instances. For brock800 2, hamming10-2 and
san1000, the minimal distance between pairs of ‘strong’ attractors is generally
significantly smaller than in the case of C2000.9 and keller6. Intuitively, a
weaker diversification introduced into the search for such instances may cause
the search to cycle between ‘strong’ attractors that are not globally optimal
solutions. For an effective solving of these instances, strong diversifications are
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Fig. 2. Distribution of medium and high quality local optima (i.e., ‘strong’ attrac-
tors) for 6 maximum clique instances. The x-axis shows the normalized minimal
distance between pairs of ‘strong’ attractors, while the y-axis shows the number of
pairs of ‘strong’ attractors separated by the given distance.

needed.

The analytical results from Table 8 for the maximum weight clique problem
indicate that the MWCP instances also exhibit different degrees of landscape
correlation. For some problems (e.g., Brock800 X, C2000.9, san1000 ), we note
that local optima are much better correlated than in the case of the unweighted
clique problem. However, the landscapes of frb instances are rather uncorre-
lated. We further observe that the distances avg dlo and avg dgo are often
significant, but generally slightly smaller than in the case of MCP. In Figure
3, we study the minimal distance between pairs of medium or high quality lo-
cal optima for 6 weighted maximum clique instances. As in the case of MCP,
we observe that for some instances (e.g., brock800 2, C2000.9, hamming10-2,

keller6 ), the minimal distance between pairs of ‘strong’ attractors is generally
smaller than for other instances (e.g., frb53-24-1 ).
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Fig. 3. Distribution of medium and high quality local optima (i.e., ‘strong’ attrac-
tors) for 6 maximum weight clique instances. The x-axis shows the normalized
minimal distance between pairs of ‘strong’ attractors, while the y-axis shows the
number of pairs of ‘strong’ attractors separated by the given distance.

4.3 Influence of different diversification degrees to BLS performance

In this section, we investigate the impact of different diversification degrees
and try to provide some explanations based on the observations made from
the landscape analysis of Section 4.2. Because of space limitations, we focus
this study only on the more popular unweighted maximum clique problem.

In Figure 4, we show the performance of BLS on 6 maximum clique instances
over 50 independent executions when four different degrees of diversification
(d1−d4) are introduced into the search. The diversification d1 is the strongest
one used for this experiment. The parameter settings used to obtain this de-
gree of diversification are provided in column ‘Settings 1’ of Table 1. The
diversification d2 is the second strongest which uses the same parameter set-
tings as indicated in column ‘Settings 2’ of Table 1, except for parameters P0

and αr that we set to 0.75 and 0.92 respectively. The diversification d3 uses
the same parameter settings as in column ‘Settings 2’ of Table 1, while the
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weakest diversification d4 is obtained with the parameter settings from column
‘Settings 1’ of Table 1 with the exception of P0 = 1. Note that for d1 and d2,
the directed and random perturbations are combined, while for d3 and d4, the
random perturbation is disabled.

From Figure 4a, we observe that a stronger diversification is beneficial for
instance brock800 2 and that the best-known solution (i.e., |C| = 23) cannot
be attained if a weaker diversification is used. Although we did not show
plots for other instances of the Brock family, they generally show the same
behaviour. As noted in Section 4.2, the minimal distance between pairs of
‘strong’ attractors for instance brock800 2 is rather small for most attractor
pairs. It is thus most likely for the search to cycle and waste time in non-
promising regions if a weaker diversification is applied.

We note that the situation is quite opposite in the case of C2000.9. Indeed,
BLS attained even twice over 50 runs the best-known clique size of 80 with
the weakest diversification d4. From the analytical results, we observed that,
unlike for the Brock instances, the minimal distance between pairs of ‘strong’
attractors is significantly larger for C2000.9, which avoids cycling even with a
much weaker diversification.

For keller6, we note from plot 2e that the minimal distance between pairs of
‘strong’ attractors is large as in the case of C2000.9. This explains why BLS is
unable to reach the best-known clique size ([C| = 59) in every single trial with
the strongest diversification d1. Moreover, we observe that BLS performance
on keller6 does not depend that much on different degrees of diversification
as in the case of C2000.9. One possible explanation is that local optima of
C2000.9 are much more uncorrelated than those of keller6. In other words, the
value of the FDC coefficient ρ for C2000.9 (see Table 8) is significantly higher
than for keller6 implying that C2000.9 is much harder for most algorithms.

Plot 4d shows the impact of different diversification degrees for hamming10-2.
For this instance, BLS is able to reach the optimum regardless of the amount
of diversification introduced into the search. In this case, we thus study the
performance of BLS in terms of the number of iterations required to attain
the optimum. From Figure 4d, we observe that the performance of BLS on
hamming10-2 is slightly better when stronger diversifications (d1 and d2)
are used. This can partially be justified by the fact that the landscape of
hamming10-2 has a very large number of globally optimal solutions (over
3466 out of 4000 sampled solutions) compared to most instances. For such
landscapes, greedy multi-start algorithms should provide excellent results.

For instances frb53-24-1 and frb56-25-4 from the BOSHLIB benchmark, plots
4e and 4f indicate that a weaker diversification is more useful than a stronger
one. Indeed, the largest clique size for these two instances cannot be attained
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by BLS if d1 is employed. From plot 2d, we observe that the minimal distance
between most pairs of ‘strong’ attractors is significant (i.e., < 0.5), while only
a small number of attractor pairs are separated by a distance which is less than
0.1. The distribution of medium and high quality local optima for frb instances
is thus very similar to that of C2000.9 and keller6, which explains to some
extent why a weaker diversification is more appropriate for frb instances.
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Fig. 4. Influence of different diversification degrees on the performance of BLS.
Diversification d1 is the strongest, while d4 is the weakest.

5 Conclusion

In this paper, we presented the Breakout Local Search approach for the
maximum clique (MC) and the maximum weight clique (MWC) problems.
BLS alternates between a local search phase (to find local optima) and a
perturbation-based diversification phase (to jump from a local optimum to
another local optimum). The diversification phase is of an extreme impor-
tance for the performance of BLS since the local search alone is unable to
escape a local optimum. The diversification mechanism of the proposed ap-
proach adaptively controls the jumps towards new local optima according to
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the state of search. This is achieved by varying the magnitude of a jump and
selecting the most suitable perturbation for each diversification phase.

Experimental evaluations on a wide set of benchmark instances showed that
despite its simplicity, our approach competes very favourably with the cur-
rent most effective (often more complex) algorithms for the maximum clique
problem. In particular, BLS is able to reach the current best solution for all
the benchmark instances form the DIMACS and BOSHLIB benchmark collec-
tions, except for 2 cases (MANN a45 and MANN a81 ). Moreover, it provides
new improved results for 14 MWCP instances from the DIMACS-W bench-
mark. Only rare approaches are able to attain such a performance on both
MCP and MWCP without any particular adaptation.

Another contribution of this paper is a detailed landscape analysis that we
performed on a number of selected instances for the MC and the MWC prob-
lems. The analysis revealed that there exist significant differences in prob-
lem landscapes for both problems. Based on the observations made from this
analysis, we explained to some extent the behaviour of BLS when different
diversification degrees are introduced into the search.
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