
Iterated Local Search for the Multiple Depot

Vehicle Scheduling Problem

Benôıt Laurent a,b,∗ Jin-Kao Hao b

aPerinfo SA
41 avenue Jean Jaurès, 67100 Strasbourg, France

bLERIA, Université d’Angers
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

Abstract

The multiple depot vehicle scheduling problem (MDVSP) is a well-known and im-
portant problem arising in public transport. Although many solution approaches
have been published in the literature, algorithms using metaheuristics appeared
only very recently (Large Neighborhood Search and Tabu Search). In this paper,
we introduce an Iterated Local Search algorithm for the MDVSP, incorporating a
neighborhood schema called ”block moves”, based on the notion of ejection chains.
Using a set of benchmark instances, we show empirically that the proposed algo-
rithm performs better than the best metaheuristics implemented so far and obtains
high quality results within short computational times.

Key words: Multi-Depot Vehicle Scheduling, Iterated Local Search.

1 Introduction

Given a set of trips and a set of vehicles housed in several depots of limited
capacity, the multiple depot vehicle scheduling problem (MDVSP) aims at
scheduling the vehicles to cover all the trips such that the resulting schedule
satisfies a set of constraints and minimizes a cost function.

The MDVSP is a key step in the operational planning process of public trans-
port companies. However, it is a challenging problem, shown to be NP-hard

∗ Corresponding author. Tel.: +33 388449621; Fax:+33 388449601
Email addresses: blaurent@perinfo.com (Benôıt Laurent),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Computers & Industrial Engineering 3 December 2008

when two depots at least are considered (1).

The literature offers a range of solution methods developed in the last three
decades. The early works on this problem focus on heuristic algorithms (see
for instance (3; 6; 23)). Two main approaches coexisted essentially. The first
one consists in clustering the trips and assigning them to the depot first, and
then scheduling the vehicles in each depot separately. In the second approach,
the whole fleet is first scheduled as if there were only one depot and then the
resulting schedules are assigned to each depot. This latter idea is still employed
in the construction of our initial solution.

Since the end of the 80’s, several exact algorithms have been proposed. The
models employed belong to one of the three following categories:

• single-commodity flow formulations (e.g. (5; 9)),
• multicommodity flow formulations (e.g. (10; 15; 16; 14)),
• set partitioning formulations (e.g. (22; 13; 20)).

Detailing the different models is beyond the scope of this paper. We refer
interested readers to (19) and (8) for a general presentation of transportation
issues, including vehicle scheduling problems. For a dedicated and up-to-date
survey on vehicle scheduling models, the reader is referred to (4).

Integer linear programming remains undoubtedly the most popular approach
to the MDVSP. Very recently and for the first time, two metaheuristic algo-
rithms based on Large Neighborhood Search (LNS) and Tabu Search (TS)
were reported (21). Using a set of randomly generated instances, the authors
compared these two novel approaches with three existing good performing
heuristics: a heuristically applied CPLEX MIP solver, a Lagrangian heuristic
and a column generation heuristic. They showed a dominance of the column
generation heuristic in terms of solution quality. If a compromise between
quality and computational time is aimed, LNS appears to be the best alter-
native, TS performing rather poorly. It should be noted that both the column
generation heuristic and LNS metaheuristic rely on the GENCOL package
developed and improved for more than 25 years (7).

In this study, we present a new metaheuristic algorithm relying on Iterated
Local Search (ILS) to tackle the MDVSP. The proposed ILS algorithm has
several original features. First, it is based on a natural and high level model.
Second, the ILS algorithm employs a powerful ”block moves” neighborhood
schema. Based on the idea of ejection chain, the ”block moves” neighborhood
aims at passing good properties of a solution on to its neighboring solutions.
Third, the proposed algorithm employs an efficient auction algorithm (11) for
the generation of the initial schedule. Finally, it integrates a two-step pertur-
bation mechanism, which provides the search with a controlled diversification
facility.

2

We assess the performance of the proposed ILS algorithm on the set of the
30 MDVSP instances used in (21). Computational comparisons show that
the ILS algorithm achieves very competitive results and constitutes a viable
alternative to column generation based heuristics.

The remainder of this article is structured as follows. In Sections 2 and 3, we
recall the MDVSP and present a formulation of the problem as a constraint
satisfaction and optimization problem. In Section 4, the main components
of the iterated local search are described. Section 5 is dedicated to compu-
tational experiments and comparison with previous results. The last section
summarizes the main contributions of the work.

2 Multiple Depot Vehicle Scheduling Problem

In this section, we present the MDVSP which has the following input data:

• Trips : a set of n commercial trips, each one being characterized by an origin
and a destination with associated starting and ending times; each trip needs
to be covered by exactly one vehicle. Two commercial trips are said to be
feasible if after serving the first trip, a vehicle has enough transfer time to
begin the second trip. Without loss of generality, we assume that the trips
are ordered by increasing starting time.

• Vehicles and depots : a fleet of p vehicles housed in m depots (1 < m ¿
n) of limited capacity. A vehicle will be assigned a duty, i.e. a sequence
of consecutively feasible trips. In real-world applications, there may exist
requirements on the types of vehicles that can serve a commercial trip. Here,
the fleet is supposed to be homogeneous such that trips can be performed
by any vehicle.

• Transfers without passengers : before or after a commercial trip, a vehicle
may perform a transfer without passengers. The transfer leaving a depot for
reaching the first trip of the duty is called a pull-out trip. Its symmetrical
counterpart is called a pull-in trip. The transfers between consecutive trips
are called deadhead trips.

A valid vehicle schedule must satisfy the following four constraints:

(1) Complete cover constraints: all the trips must be covered by a vehicle.
(2) Feasible sequence constraints: two consecutive trips covered by a

vehicle must be feasible.
(3) Depot attachment constraints: the vehicles return to the depot they

start from.
(4) Depot capacity constraints: the number of vehicles used in each depot

does not exceed the depot capacity.

3

Moreover, a valid vehicle schedule needs to minimize an objective function,
composed of fixed and operational costs.

(1) Fixed cost related to scheduled vehicles: each scheduled vehicle
represents a fixed and important cost P .

(2) Operational costs: these costs are induced by non-commercial trips, i.e.
pull-in, pull-out and deadhead trips.

The cost structure indicates the importance accorded to the minimisation of
the number of vehicles used while it leaves the operational costs as a secondary
objective. For practical reason, P is spread over the costs of the pull-in and
pull-out trips. Consequently, the Multiple Depot Vehicle Scheduling Problem
consists in determining a vehicle schedule that satisfies the set of imperative
constraints 1)-4) while minimizing the fixed and operational costs.

3 Problem Formulation

In this section, a formulation of the MDVSP is proposed. For this purpose, we
first introduce some basic notations.

• n, m, p: the number of trips, depots and vehicles.
• T = {t1, t2, . . . , tn}: the set of n trips, ordered according to the increasing

starting times.
• (si, ei): the starting and ending times of a trip ti ∈ T .
• τij, (i, j) ∈ {1, . . . , n}2, i < j: the transfer time from the end of trip ti to

the start of trip tj.
• H = {n + 1, . . . , n + m}: the set of m depots.
• rh: the capacity of depot h ∈ H.
• V = {1, 2, . . . , p}: the fleet of p vehicles.
• Vh ⊂ V : the subset of vehicles, housed in depot h.
V = V1 ∪ . . . ∪ Vm

V = {1, . . . , rn+1} ∪ . . . ∪ {∑m−1
k=1 rn+k + 1, . . . , p}

• cij, (i, j) ∈ {1, . . . , n}2, i < j: the cost of transfers without passengers.
cij = ∞ if i ≥ j or if ti and tj are not feasible.

• cki, (k, i) ∈ H × {1, . . . , n}: the cost of pull-out trips.
• cjk, (j, k) ∈ {1, . . . , n} ×H: the cost of pull-in trips.
• chk = 0, (h, k) ∈ H2: there is no cost for transfers between depots.

4

3.1 Decision Variables and Solution Representation

In the MDVSP, we aim at scheduling the vehicles to cover all the trips, i.e.
assigning a vehicle to each trip. Thus, we naturally define the set of decision
variables as the set of trips T . Since each trip can be served by any vehicle,
we use the set of vehicles V to define the value domain of each variable (trip)
ti.

Consequently, a candidate solution, i.e. a (feasible or infeasible) vehicle sched-
ule designated by σ, is simply an assignment of a vehicle to each trip, which
can be defined by a function σ: T → V . Such a solution can be represented
by a vector of length n, each element having a value from V .

In our model, constraint 1) (trips coverage) is solved by construction. More-
over, a duty implicitly starts and ends at the depot of the vehicle it is assigned
to, which satisfies constraint 3) (depot attachment). Finally, the depot capaci-
ties (constraint 4) are necessarily respected since each trip is assigned a vehicle
belonging to one of the subset Vh.

3.2 Constraints

As mentioned just previously, constraints 1), 3) and 4) are always satisfied
in our model. Consequently, the only constraints to take into account in the
solution procedure are constraints of type 2 (feasible sequence constraints)
associated to the trips served by a vehicle. Now consider a given trip to vehicle
schedule σ.

(1) Complete cover constraints: satisfied since σ is injective.
(2) Feasible sequence constraints: ∀ v ∈ V , ∀(ti, tj) ∈ T , i < j,

(σ(ti) = σ(tj) = v) ⇒ ei + τij ≤ sj

(3) Depot attachment constraints: satisfied by construction of the duties.
(4) Depot capacity constraints: satisfied by the definition of σ and injec-

tivity.

3.3 Objectives

Given a trip to vehicle assignment σ, we introduce some binary variables xij,
(i, j) ∈ {1, . . . , n, n + 1, . . . , n + m}2 in order to facilitate the computation
of the objective function. The xij are deduced from σ and represent links

5

between trips or between trips and depots. Different cases must be considered
depending on the values of i and j:

• for (i, j) ∈ {1, . . . , n}2, xij = 1 if and only if trip tj immediately follows trip
ti on the same vehicle; xij = 0 otherwise.

• for i ∈ H and j ∈ {1, . . . , n}, xij = 1 indicates that j is the first trip of a
vehicle in H.

• for i ∈ {1, . . . , n} and j ∈ H, xij = 1 means that i is the last trip of a
vehicle in H.

• for (i, j) ∈ H2, xij = 0.

A schedule is optimal if it minimizes the function given by:

f(σ) =
∑

(i,j)∈{1,...,n+m}2
cijxij

where cij represents the operational costs of the deadhead, pull-in and pull-out
trips in σ (see notations at the beginning of Section 3). As indicated in Section
2, the fixed cost of each vehicle is integrated in its pull-in and pull-out trips.

4 Iterated Local Search

This section presents the iterated local search algorithm developed for the
MDVSP. We first provide a general outline of the method and the framework
on which the heuristic is applied, namely the search space and the evaluation
function. The main ingredients of ILS are then detailed.

4.1 General ILS Algorithm

Iterated local search is a neighborhood exploration paradigm that was formally
defined in (17). The idea of ILS consists in exploring the space of local optima,
with respect to a given neighborhood.

To devise an ILS algorithm, four components are needed: a GenerateInitial-
Solution procedure that generates an initial solution s0, a procedure Pertur-
bation, that modifies the current solution s∗ leading to some intermediate
solution s′, a procedure LocalSearch that returns an improved solution s′′,
and an AcceptanceCriterion that decides to which solution the next perturba-
tion is applied. A high level procedural view of ILS is sketched in Algorithm
1.

6

Algorithm 1 Pseudocode of an iterated local search procedure

s0 ← GenerateInitialSolution()
s∗ ← LocalSearch(s0)
repeat

s′ ← Perturbation(s∗)
s′′ ← LocalSearch(s′)
s∗ ← AcceptanceCriterion(s∗, s′′)

until termination criterion met.

4.2 Search Space and Evaluation Function

A candidate solution (or configuration) is an assignment of trips in T to
vehicles in V which can be simply represented as a vector of integers.

σ = (σ(t1), σ(t2), . . . , σ(tn)) (σ ∈ Vn)

The search space composed of all the feasible and infeasible solutions can be
defined by:

Σ = {σ | T → V}

As mentioned in Section 3.2, constraints 1), 3) and 4) are satisfied by construc-
tion. We thus define the constrained (or feasible) search space Ω comprising
all the solutions of Σ that additionally satisfy constraint 2. The quality of a
candidate solution σ ∈ Ω is assessed by means of the objective function f
defined in Section 3.3.

In the next section, we show a procedure that generates initial solutions in Ω
(as long as the problem is feasible). Then, the rest of the algorithm consistently
maintains the exploration of the solutions within this subspace.

4.3 Initial Solution

Like all neighborhood search algorithms, ILS needs an initial solution. This
one is theoretically of little influence on long runs but its quality can be cru-
cial when solutions of good quality are to be reached quickly (see (17)). For
this reason, we devise a heuristic which is a slightly improved version of the
algorithm introduced in (3), also employed in (21).

First, the MDVSP is transformed into a single-depot vehicle scheduling prob-
lem (SDVSP) by replacing all the depots h ∈ H by a single fictitious de-
pot. We recall that the SDVSP is polynomial-time solvable. Costs for pull-in

7

and pull-out trips in the relaxed formulation are equal to the cheapest costs
among the different depots in the original problem. To solve the SDVSP, we
implemented an efficient auction algorithm proposed in (11). This first phase
guarantees finding a minimum number of vehicles to cover all the trips in T .
It provides a set of duties that must be assigned a vehicle in the second phase.

The assignment of the duties is solved using a greedy procedure: each one is
assigned a free vehicle yielding the least cost, regarding the costs of the pull-in
and pull-out trips. We added a third phase in which a SDVSP is solved for
each depot.

The complexity of the procedure mainly lies in the auction algorithm. The
computational analysis performed in (24) indicates a complexity of O(n2 log(n))
for a forward auction algorithm for the linear assignment problem. However,
our procedure integrates a combined version which alternates between for-
ward and backward auctions (see (2)). Computational results carried out in
that paper indicate that the combined version is considerably faster than the
forward version alone.

Applied to the instances of (21), the initial heuristic rapidly produces feasible
solutions.

4.4 Local Search and Neighborhood Structures

Our local search procedure performs a descent from the initial solution until
it reaches a local minimum. Its strength lies in the employed neighborhood
and in the way it is explored.

To show the effectiveness of the ”block-moves” neighborhood, we first describe
and analyze the two previous neighborhoods, Nshift and Nswap, embedded in
the Tabu Search algorithm described in (21). Then, we define our ”block-
moves” mechanism which is based on the notion of ejection chains. In the
rest of the paper, σ designates the current configuration, σ′ a neighboring
configuration taken from a given neighborhood.

4.4.1 Existing Neighborhoods

In the shift neighborhood Nshift, a neighboring configuration is obtained by
transferring a trip of a vehicle to another vehicle. In the swap neighborhood
Nswap, the underlying move implies two trips ti and tj, run by two different
vehicles v and v′. It consists in exchanging the two vehicles of the two trips.
The respective size of Nshift and Nswap is O(np) and O(n2). When a change
concerns the first or the last trip of a vehicle, one checks if a transfer of the

8

entire sequence of trips to an available vehicle of another depot would be
profitable.

4.4.2 Block-Moves Neighborhood

Recent studies have shown that compound neighborhood structures, which
encompass successions of interdependent moves, have advantages over simple
neighborhoods. In our case, we propose a neighborhood structure based on
a form of ejection chains. This new neighborhood structure will allow us to
explore the solution space more extensively and effectively.

The principle of ejection chain was introduced in (12) and defined in a very
general way. An ejection chain is initiated by selecting a set of elements to
undergo a change of state. The result of this change leads to identifying a
collection of other sets, with the property that at least one of the elements
must be ”ejected from” their current state.

Our neighborhood mechanism, called bl moves, consists in shifting bl consec-
utive trips run by the same vehicle v, to another vehicle v′. The generated
compound moves are thus represented by a sequence of triplets (t, v, v′). The
block to be shifted is randomly selected according to a uniform distribution.
These ejection moves often cause constraints violations that will trigger re-
pair attempts. For each conflicting trip previously handled by v′, we scan the
vehicles that may receive it and retain the best one regarding the objective
function. Unresolved conflicts are not allowed. As a last resort, the trips in-
volved in a conflict after the repairing step are assigned a free vehicle. If no
free vehicle is available, the movement is abandoned. As in Nshift and Nswap,
complete transfers of the trips to vehicles belonging to other depots are eval-
uated. Such transfers imply triplets to be added to the set of atomic moves.
Algorithm 2 describes the generation of a neighbor while Figure 1 shows an
illustrative example. From a given configuration (step 1), a block of two trips
handled by vehicle 3 is randomly selected (step 2). Moving the block to vehi-
cle 1 causes conflicts (steps 3 and 4). The trips involved in these conflicts are
moved to vehicles 2 and 3 (steps 5 and 6).

The size of Nbl moves(σ) depends on the distribution of the trips over the
vehicles in the current configuration σ. Let Mσ be the maximum number of
trips handled by a vehicle in σ. Let nbvσ be the function that associates to
each block size bl, the number of vehicles running bl trips exactly. With these
notations, the size of Nbl moves(σ) is computed in this way:

|Nbl moves(σ)| =
[

Mσ∑

k=1

k(k + 1)

2
× nbvσ(k)

]
× (p− 1)

9

The part of the formula between square-brackets deals with the number of
blocks, each one having p−1 possible new values. Even if the size ofNbl moves(σ)
varies during the search, this variation is rather limited.

Algorithm 2 Pseudocode for the random neighbor selection in Nbl moves(σ)

Require: Configuration σ
Ensure: M 6= ∅ {Set of atomic moves represented by triplets (t, v, v′), where

t is a trip, v its vehicle in σ and v′ its vehicle in the neighboring configuration
σ′}
M← ∅
(v, T ′) ← rd sel bl(σ) {Select a sequence of trips handled by vehicle v}
v′ ← rand(p) {Select a new vehicle at random}
for all t ∈ T ′ do
M←M∪ {(t, v, v′)}

end for

T ′′ ← detect conflicts(σ, T ′, v′) {Already assigned trips to v′ in conflict are
added to T ′′}
if T ′′ 6= ∅ then

for all t ∈ T ′′ do
Vpot ← potential(σ, t) {Set of vehicles that can handle trip t}
vmin ← best(σ, t) {Select the best new vehicle for t}
M←M∪ {(t, v′, vmin)}

end for
end if

{Check the pertinency of changes of depots: those are represented by atomic
moves added to M}
change depots(σ,M)

The ideas underlying the definition of the bl move neighborhood structure are
the following. First, it prevents the search from being stuck in local optima
because of some conflicts that could be repaired as soon as they arise. Second,
behind the notion of ”block moves”, we aim at preserving the good properties
of the configuration, typically the trips that fit well together.

4.4.3 Neighborhood Sampling

In a random descent algorithm, one neighbor of the current configuration is
randomly selected (with a uniform probability distribution or not) and evalu-
ated at each step. The neighbor is accepted if its cost is smaller than or equal
to the cost of the current solution. A drawback of the random descent is that
potentially high quality neighbors can be definitively missed.

10

Step 1 : initial situation Step 2 : block selection

Step 3 : block move Step 4 : conflicts identification

Step 5 : corrections Step 6 : final situation

Fig. 1. Example of a block move with corrections

A steepest descent algorithm evaluates instead all the neighbors of the current
configuration in order to select a best improving neighbor. Such descent al-
gorithm ensures a more intensive search at the price of higher computational
efforts.

An intermediate technique consists in examining a fraction of the whole neigh-
borhood of the current configuration. In our case, a predefined number of
neighbors are randomly generated at each step. The best one in this subset
is retained after evaluation. All the question then lies in the balance between
quality and computational effort. In our algorithm, the neighborhood size is
computed after the construction of the initial solution. A parameter, denoted
α (α ∈ [0, 1]) is introduced to determine the portion of the whole neighborhood
examined at each iteration.

11

4.4.4 Stopping Criterion for Local Search

In the local search phase, when the number of iterations without strict im-
provement exceeds nidle = β

α
× |Nbl moves(σ)|, the search is considered as stag-

nating on a local optimum and is subsequently halted. Note that nidle takes
into account the sample size.

4.5 Perturbation Mechanisms

In order to escape from local optima and to explore new regions of the search
space, ILS applies perturbations to the best local minimum. A crucial issue
concerns the strength of the perturbation. If it is too strong, ILS may behave
like a random restart resulting in a very low probability of finding better
solutions. On the other hand, if the perturbation is not strong enough, the
local search procedure will rapidly go back to a previous local optimum.

We defined two types of perturbation mechanisms that are sequentially ap-
plied in our ILS procedure. The first one consists in carrying out η moves
independently of their effect on the evaluation function as long as they do not
increase the number of used vehicles. Thanks to the neighborhood sampling
mechanism, we attain a double objective: achieving strong perturbations with-
out deteriorating too much the configuration. The nature of the perturbation
is also an important issue. If it is too weak, it will be undone during the local
search phase. Our second perturbation mechanism performs a reorganization
of the trips in each depot. More precisely, all the trips handled by the vehicles
from one particular depot are first unassigned. Then, a SDVSP is solved to
optimally reassign these trips. Being more complex than the block moves, such
a perturbation is difficult to reverse by the local search phase. Furthermore,
it optimizes some subparts of the configuration, resulting in better quality
solutions.

4.6 Acceptance Criterion

The acceptance criterion plays a role in the balance between intensification
and diversification. Our acceptance criterion clearly privileges intensification
since the best solution resulting from a local search phase is accepted if and
only if it improves the local minimum encountered so far.

12

4.7 Termination Criterion

Various conditions may be used to stop the algorithm : maximal number of
iterations, lower bound, etc. Since our algorithm will be compared to other
heuristics (see Section 5), the stopping criterion is the computational time
here.

5 Computational Experiments

5.1 Benchmarks and Settings

The experiments that we carried out rely on the benchmarks 1 proposed
in (21). These test problems aim at simulating real-world situations. The
way they were generated has been originally described in (5) and recalled
in (10; 9). This set of benchmarks contains six categories (m ∈ {4, 8} and
n ∈ {500, 1000, 1500}). Within each category, five instances are defined, lead-
ing to a total of 30 instances.

Our ILS algorithm was coded in C++, compiled with VC++ 8.0 (flag -O3),
on a laptop equipped with a 2 Ghz T7200 Intel Core and 2Gb RAM running
Windows XP.

In the rest of this section, the results often refer to the gap of a solution found
by an algorithm to the best known solution (values available at the web site
of the problem instances). As proposed in (5), the solution values are purged
of the additional cost P for the vehicles (P is set to 10000), in order to get
more discriminating gaps:

Gap =
f(σ)− f(σbest)

f(σbest)− P × nbvehi(σbest)

5.2 Comparison of Neighborhoods

The purpose of the first experiment is to compare Nbl moves with the two
existing neighborhoods Nshift and Nswap on the 30 problem instances. For
this purpose, we embed each of these neighborhoods into a random descent
algorithm (see Section 4.4.3).

1 available for download at http://people.few.eur.nl/huisman/instances.htm

13

Due to their stochastic nature, the algorithms are executed 20 times on each
instance. The stop criterion for each run is set to 5, 15 and 30 seconds for
instances containing 500, 1000 and 1500 trips respectively. For each problem
instances, we first calculated the average gaps (see Section 5.1) of the 20 local
optima found by the independent runs. The average is further realized on the
five instances within a common instance type. Table 1 shows the gaps and
the standard deviations obtained by the three descent algorithms for the six
categories of problem instances.

From this table, it can be observed that the descent algorithm embedding
Nbl moves obtains far better results than the two others. Standard deviations
also show a greater robustness for our block-moves neighborhoodNbl moves. For
instance, for the category of 8 depots and 1000 trips, Nbl moves leads to a gap of
7.92 which is approximately the half of the gap obtained with Nswap and only
one third of the the gap obtained withNshift. Moreover, the standard deviation
of 1.60 is much smaller than those produced by the two other neighborhoods
(2.70 and 3.88 respectively for Nswap and Nshift). This experimentation also
confirms thatNswap performs better than the simple shift-based neighborhood.

Depots 4 8

Trips 500 1000 1500 500 1000 1500

shift 13.62 2.99 10.86 3.49 11.98 2.64 20.10 1.86 19.19 3.88 21.95 6.57

swap 11.32 1.81 8.22 2.16 9.82 1.93 15.65 1.46 15.70 2.70 16.83 4.62

bl moves 4.55 1.07 3.94 1.48 5.65 1.40 7.25 1.00 7.92 1.60 10.05 2.84

Table 1
Average gaps to the best known solutions and standard deviation (%)

To complement the results of Table 1, we show in Figure 2 the evolution of the
cost function during the descent search process with the three neighborhoods.
The curves represent the average values for each neighborhood over the 5 in-
stances of 8 depots and 1500 trips. One clearly observes that the ”block-moves”
neighborhood allows the descent process to always reach better solutions from
the first iterations to the end of the search.

Finally, to confirm the practical advantage of Nbl moves over Nswap and Nshift,
we replicated the same experiments with our ILS algorithm and observed quite
similar results.

5.3 Quantitative and Qualitative Analysis

In order to have a deeper understanding of the behavior differences, we perform
a qualitative and quantitative analysis of the three types of neighborhood. We
focus on the evolution of two important indicators pertaining to neighborhoods
during a search process: the number of improving and plateau neighbors and
the quality (or strength) of improvement. For these investigations, we used an

14

 10

 12

 14

 16

 18

 20

 22

 24

 26

 28

 30

 0 5 10 15 20 25 30

G
ap

 to
 th

e
be

st
 k

no
w

n
so

lu
tio

ns
 (

%
)

Time (seconds)

Neighborhood comparison - 8 depots, 1500-trip instances

shift
swap

bl_move

Fig. 2. Evolution of the cost function during the search according to the employed
neighborhood

instance with 8 depots and 1000 trips (instance m8n1000s0), since it represents
a test problem of reasonable size and difficulty.

In a preamble of these experimentations, the descent algorithm equipped with
Nbl moves was executed 20 times (in order to make the analysis statistically
sound). The configurations encountered when the evaluation function reaches
predefined thresholds (from 24% to 8%, at every 2% step) were recorded for
two post-analysis.

In the first experiment, we consider the previously collected configurations and
compute the average number of improving, plateau and deteriorating neigh-
bors. In Figure 3, we represented the improving neighbors (in terms of percent-
age regarding the neighborhood size) according to the type of neighborhood. It
is clearly observed that the ”block-moves” neighborhood leads always higher
percentages of improving neighbors during a descent, thus offering many more
opportunities for improving the current solution at each iteration. Also notice
that when improving neighbors begin to vanish with Nshift and Nswap, the
”block-moves” neighborhood Nbl moves continues to offer improving solutions.
We can conclude that the descent with Nbl moves has much more chances to
improve its solutions at each iteration and for a longer time than with Nshift

and Nswap.

In the second experiment, we examine another important factor of a neighbor-
hood, namely the quality of the improvement, measured by the absolute cost
difference ∆f = |f(σ′)− f(σ)|, σ being a solution and σ′ an improving neigh-
bor. Figure 4 represents the results obtained on instance m8n1000s0 in form
of boxplots for the three neighborhoods at the 8% threshold. The boxplots
provide a convenient way for graphically depicting numerical data through
their five-number summaries (the smallest observation, lower quartile (Q1),

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

24 22 20 18 16 14 12 10 8

Im
pr

ov
in

g
m

ov
es

 (
%

)

Gap to the best known solutions (%)

Evolution of the improving moves during search - m8n1000s0 instance

bl_moves
swap
shift

Fig. 3. Evolution of the percentage of improving neighbors during search -
m8n1000s0 instance

bl_moves shift swap

0
10

0
20

0
30

0
40

0

m8n1000s0 instance − 0.08 threshold

A
bs

ol
ut

e
va

lu
e

of
 im

pr
ov

in
g

m
ov

es

Fig. 4. Quality of improving neighbors according to the three neighborhoods -
m8n1000s0 instance

median (Q2), upper quartile (Q3), and largest observation).

The differences between medians (24.0 for bl moves, 9.0 for shift and 20.0
for swap) already discriminate Nshift from the two other neighborhoods. Con-
cerning Nbl moves, we notice many outliers occurrences, which are observations
numerically distant from the rest of the data. In the present case, these out-
liers correspond to very appealing movements. Improving neighbors appear
not only more numerous in Nbl moves than in Nshift and Nswap, but they also
are of much better quality, permitting more important cost improvements.

This set of experiments leads us to conclude that the ”block-moves” neighbor-
hood allows the descent algorithm to explore more intensively and effectively
its search space and obtain better solutions than with Nshift and Nswap.

16

−1.0 0.0 1.0

3.
0

3.
4

3.
8

Sample size α

G
ap

 to
 th

e
be

st
 k

no
w

n
so

lu
tio

n
(%

)

−1.0 0.0 1.0

3.
0

3.
4

3.
8

Idle iterations β

−1.0 0.0 1.0

3.
0

3.
4

3.
8

Perturbation moves η

Fig. 5. Effect of the parameters on the ILS algorithm’s response

Given this observation, we retainNbl moves for integration in our ILS algorithm.

5.4 Iterated Local Search Parametrization

In our ILS algorithm, three parameters (see sections: 4.4.3, 4.4.4, 4.5) need to
be tuned:

• α, the portion of neighborhood considered at each iteration,
• β, used to compute the number of idle iterations elapsed before the inter-

ruption of the local search phase,
• η, the number of accepted moves during the perturbation.

The best values for these parameters are of course interdependent. For this
reason, we use a 2-level full factorial experiment in order to determine the
significant parameters affecting the response of ILS (Figure 5). We refer the
reader to the book of (18) for a survey on the design of experiments. The levels
of the parameters are indicated in Table 2.

low level high level

α 0 0.01

β 0.1 0.5

η 10 1000
Table 2
Parameter levels (%)

Observing Figure 5, α appears to be a significant factor. A Student t-test
rejected the null-hypothesis at a 0.05 threshold confirming the graphical im-
pression. The performance of the ILS algorithm seems less sensitive to the

17

0.000 0.002 0.004 0.006 0.008 0.010

2.
6

2.
8

3.
0

3.
2

3.
4

3.
6

3.
8

Sample size

G
ap

 to
 th

e
be

st
 k

no
w

n
so

lu
tio

n
(%

)

Fig. 6. Tuning of the α parameter

values of β and η. Interactions between factors do not appear to be signifi-
cant.

Now setting β = 0.5 and η = 1000, we further study the influence of α in the
range [0,0.01]. The results of these experiments are depicted in Figure 6.

Based on these results, we decided to retain the triplet (0.002, 0.5, 1000) for
α, β and η. Other values for β and η did not yield significant differences.

5.5 Comparative Results

In this section, we compare ILS with 4 state-of-the-art algorithms presented
in (21) using the same set of benchmarks. The studied heuristics were the
following:

• a GENCOL based column generation heuristic, prematurely halted when
the solution improvement is getting slow,

• a Lagrangian relaxation,
• a Large Neighborhood Search algorithm, also based on the GENCOL pack-

age to reconstruct a solution,
• and a Tabu Search algorithm using the Nshift and Nswap neighborhoods.

A heuristic MIP solver was also addressed in (21) but is not considered here.
Suffering from high computational time requirements, this heuristic even failed

18

to solve one of the largest instances within the allocated 10 hours.

To have a fair comparison, each algorithm should ideally be coded by the
same expert programmer and run on the same environment. In the present
case, gathering such experimental conditions is impossible.

Still a comparison is necessary and interesting to assess the performance of
our ILS algorithm. The computing times indicated in (21) were set in function
of column generation: they correspond to the minimum amount of time for
this algorithm to yield good quality results. The paper indicates that it would
be difficult to substantially reduce the computational time needed by column
generation without significantly deteriorating solution quality. Since the Intel
Xeon 2.66 GHz workstation used in (21) is slightly faster in term of CPU
speed than our laptop, we decide to apply a 1.33 ratio to the computing times
indicated in this paper for each instance. We use the following time limits:

• 110, 930, and 3060 seconds for the 4 depots 500-, 1000- and 1500-trips
instances.

• 165, 1200, and 4260 seconds for the 8 depots 500-, 1000- and 1500-trips
instances.

Depots 4 8

Trips 500 1000 1500 500 1000 1500

Best known 1278050.80 2478517.20 3602756.40 1285485.80 2495899.80 3625731.80

Column generation 1278107.60 2478739.00 3603044.00 1285575.40 2496005.60 3625731.80

ILS 1279113.70 2479968.80 3605525.42 1286904.80 2498216.02 3629198.40

LNS 1279275.70 2480065.30 3605551.30 1286820.90 2498458.90 3629288.80

Lagrangian heuristic 1279816.90 2483082.40 3610871.40 1287924.10 2501648.90 3637341.80

Tabu search 1284342.80 2488500.30 3618857.80 1293769.60 2514100.80 3650643.00

Table 3
Comparison of the ILS algorithm with four best performing heuristic algorithms
with respect to the best known solutions

Table 3 presents the comparative results of ILS and the four mentioned al-
gorithms, taken from (21). We also show the best known results, available at
the above website. To report the results of ILS, this algorithm is run 10 times
on each instance. The displayed results correspond to an average of averages
over the 5 instances in each category (m ∈ {4, 8}, n ∈ {500, 1000, 1500}).

From the table, one observes that the proposed ILS algorithm ranks second
after the Column generation heuristic and surpasses the other heuristics. In
particular, on 5 out of 6 problem categories, ILS obtains better solutions than
LNS which is the best performing metaheuristic implemented so far (and which
is based on the GENCOL package). Moreover, it clearly dominates TS and
Lagrangian heuristic. Given its simplicity, the implemented ILS algorithm can
be considered as a credible alternative to Column generation based heuristics.

19

5.6 Detailed Results

While Table 3 presents a synthetic view of the results obtained by the different
algorithms, we expose in Table 4 some statistics computed over the set of ILS
runs.

The first column of Table 4 indicates the instance name. The next five columns
are related to the distance to the best known solutions. They show respectively
the average values over the 10 runs (Avg), the standard deviation (Sd), the
median (Med), the minimum (Min) and the maximum (Max) values. The
column entitled ”Vehicles” informs about the number of vehicles. The next
two columns contain absolute costs, namely the average costs obtained by ILS
(Avg) and the best known cost (Best known). The last column (Opt) indicates
whether the instance has been solved to optimality by CPLEX or not.

It can be observed that as other heuristics, ILS easily attains the minimum
number of vehicles (main objective). In addition, its results over different runs
remain quite stable for most of the instances. If the best solutions (”Min”
column) are considered, one observes that for 10 instances over 30, the gap to
the best known one is less than 1.2%.

5.7 Variations on Computational Time

In this section, we are interested in the behavior of the ILS heuristic when
shorter or longer computational time is provided. For this purpose, we halved
the initial cutoff time allocated to ILS in a first experiment and multiplied it
by five in a second experiment. The results are gathered in Table 5 (averaged
over 5 runs).

This table first shows that ILS still furnishes good quality solutions within
short computational times. Compared to the reference runs, we observe a loss
always inferior to 0.5 %. This is an interesting feature in practical situations
where the algorithm can be halted at any moment. This also constitutes an
important advantage with respect to the Column Generation based heuristics
whose solution quality may significantly deteriorate if the allowed computa-
tional time is reduced (21).

On the other hand, this table also confirms that ILS benefits from more com-
putational time. Indeed, long runs lead always to solutions of better quality.
The improvement is even important for most problem categories. Notice that
it may be possible to accelerate the running speed of the ILS algorithm by
code optimization techniques.

20

Distance to the best known result (%) Vehicles Absolute costs Opt

Avg Sd Med Min Max Avg Best known

m4n500s0 1.36 0.36 1.27 1.06 2.27 123 1289917.20 1289114 *

m4n500s1 1.53 0.38 1.50 1.02 2.42 118 1242560.30 1241618 *

m4n500s2 2.67 0.27 2.68 2.18 3.13 123 1285245.10 1283811 *

m4n500s3 2.14 0.30 2.19 1.41 2.50 120 1259889 1258634 *

m4n500s4 1.54 0.38 1.39 1.22 2.54 126 1317956.90 1317077 *

m4n1000s0 2.01 0.21 2.02 1.56 2.27 241 2518377.30 2516247

m4n1000s1 1.31 0.15 1.27 1.11 1.54 229 2415008 2413393

m4n1000s2 0.91 0.14 0.88 0.69 1.11 233 2454022.40 2452905

m4n1000s3 1.05 0.14 1.07 0.81 1.25 237 2492083.40 2490812

m4n1000s4 0.81 0.14 0.75 0.67 1.06 238 2520352.90 2519229

m4n1500s0 1.93 0.22 1.87 1.68 2.21 368 3833821.10 3830912

m4n1500s1 0.93 0.12 0.93 0.80 1.10 338 3560843.60 3559176

m4n1500s2 1.40 0.19 1.41 1.10 1.70 350 3651846.70 3649757

m4n1500s3 2.38 0.18 2.42 2.13 2.66 326 3410310.50 3406815

m4n1500s4 2.69 0.29 2.64 2.26 3.16 343 3570805.20 3567122

m8n500s0 2.49 0.45 2.36 1.94 3.08 124 1293718.50 1292411

m8n500s1 3.02 0.41 3.16 2.33 3.58 123 1278336.50 1276919 *

m8n500s2 3.11 0.43 3.15 2.62 3.85 126 1305625.90 1304251 *

m8n500s3 3.63 0.62 3.61 2.72 4.50 123 1279573.90 1277838

m8n500s4 2.74 0.49 2.70 2.18 3.74 123 1277269.20 1276010 *

m8n1000s0 1.77 0.22 1.78 1.46 2.18 232 2423915 2422112

m8n1000s1 3.13 0.17 3.14 2.77 3.33 244 2526928.80 2524293

m8n1000s2 3.06 0.26 3.03 2.65 3.64 247 2558958.10 2556313

m8n1000s3 1.71 0.28 1.64 1.48 2.39 237 2480250.40 2478393

m8n1000s4 2.68 0.22 2.64 2.38 3.12 240 2501027.80 2498388

m8n1500s0 3.08 0.43 2.99 2.66 3.98 337 3504165 3500160

m8n1500s1 1.28 0.21 1.25 0.93 1.70 366 3804471.40 3802650

m8n1500s2 3.41 0.36 3.43 2.85 3.94 349 3609013 3605094

m8n1500s3 2.72 0.27 2.71 2.30 3.07 338 3519494.80 3515802

m8n1500s4 3.71 0.41 3.77 3 4.41 360 3708847.80 3704953

Table 4
Detailed results of the ILS runs

6 Conclusion

The Multiple Depot Vehicle Scheduling Problem is of paramount importance
in the operational planning process of public transport systems. Although
various solution approaches have been proposed in the last three decades, the

21

Depots 4 8

Trips 500 1000 1500 500 1000 1500

Short runs 2.14 1.46 2.06 3.49 2.93 3.30

Normal runs 1.85 1.22 1.86 3.00 2.47 2.84

Long runs 1.23 1.03 1.52 1.98 1.89 2.21
Table 5
Results of ILS with varying computational times - Gap to the best solutions (%)

first metaheuristics to deal with the MDVSP appeared only very recently.

This article introduced an Iterated Local Search algorithm for the MDVSP.
This algorithm integrates some key features that have a great impact on the
heuristic search:

• an effective auction algorithm that allows the fast construction of good
quality initial solutions,

• a powerful ”block-moves” neighborhood schema which maintains the good
properties of the configuration and repairs conflicts as soon as they arise,

• a neighborhood sampling technique that provides a good trade-off between
the computational time and the quality of the selected neighbors,

• two efficient perturbations mechanisms sequentially applied.

We have assessed the practical effectiveness of ILS by extensive experimenta-
tions using a set of 30 benchmark instances from the literature. Computational
results have showed that ILS is able to furnish high quality solutions in very
short computational time. Indeed, even if the column generation heuristic
algorithm remains the best solution approach, ILS dominates the two best
existing metaheuristic algorithms (Tabu Search and column generation-based
Large Neighborhood Search). Furthermore, we have observed that still better
solutions can be obtained when the cutoff time is increased. The ILS algorithm
is also robust since the quality of its solutions varies little across different runs.

We have also carried out an analysis of the ”block-moves” neighborhood and
the existing neighborhood structures. Based on this analysis, we have put for-
ward the advantage of the ”block-moves” neighborhood and showed why it
provides the search procedure with more search capacity.

Acknowledgments: This work was partially supported by the French Min-
istry for Research and Education through a CIFRE contract (number 176/2004).
Finally, we would like to thank Valérie Guihaire for various constructive dis-
cussions. The reviewers of the paper are greatly acknowledged for their helpful
comments.

22

References

[1] A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems
arising in vehicle scheduling models. Networks, 17(3):271–281, 1987.

[2] D.P. Bertsekas. Linear Network Optimization: Algorithms and Codes.
MIT Press, Cambridge, MA.

[3] L. Bodin, A. Golden, and M. Ball. Routing and scheduling of vehicles and
crews: The state of the art. Computers & Operations Research, 10(2):63–
211, 1983.

[4] S. Bunte, N. Kliewer, and L. Suhl. An overview on vehicle scheduling
models in public transport. In Computer-Aided Scheduling of Public
Transport, Leeds UK, 2006. Springer Verlag.

[5] G. Carpaneto, M. Dell’Amico, M. Fischetti, and P. Toth. A branch and
bound algorihm for the multiple depot vehicle scheduling problem. Net-
works, 19(5):531–548, 1989.

[6] P. Carraresi and G. Gallo. A multi-level bottleneck assignment approach
to the bus drivers’ rostering problem. European Journal of Operational
Research, 16(2):163–173, 1984.

[7] J. Desrosiers, F. Soumis and M. Desrochers. Routing with time windows
by column generation. Networks, 14(4):545–565, 1984.

[8] G. Desaulniers and M. Hickman. Public transit. Handbooks in Operations
Research and Management Science, pages 69–120, 2007.

[9] M. Fischetti, A. Lodi, S. Martello, and P. Toth. A polyhedral approach
to simplified crew and vehicle scheduling problems. Management Science,
47(6):833–850, 2001.

[10] M. Forbes, J. Holt, and A. Watts. An exact algorithm for multiple depot
bus scheduling. European Journal of Operational Research, 72(1):115–
124, 1994.

[11] R. Freling, A. Wagelmans, and J.M.P. Paixão. Models and algorithms for
single-depot vehicle scheduling. Transportation Science, 35(2):165–180,
2001.

[12] F. Glover. Ejection chains, reference structures and alternating path
methods for traveling salesman problems. Discrete Applied Mathematics,
65(1-3):223–253, 1996.

[13] A. Hadjar, O. Marcotte, and F. Soumis. A branch-and-cut algorithm
for the multiple depot vehicle scheduling problem. Operations Research,
54(1):130–149, 2006.

[14] N. Kliewer, T. Mellouli, and L. Suhl. A timespace network based exact
optimization model for multi-depot bus scheduling. European Journal of
Operational Research, 175(3):1616–1627, 2006.

[15] A. Löbel. Optimal Vehicle Scheduling in Public Transit, November 1997.
PhD thesis, Technische Universität, Berlin, 1997.

[16] A. Löbel. Vehicle scheduling in public transit and lagrangian pricing.
Management Science, 44:1637–1649, 1998.

[17] H. Lourenço, O. Martin, and T. Stützle. Iterated local search. pages

23

321–353. Kluwer Academic Publishers, Norwell, MA, 2002.
[18] D.C. Montgomery. Design and Analysis of Experiments. 6th edition,

John Wiley & Sons, 660 p., New-York, USA, 2004.
[19] A. R. Odoni, J.-M. Rousseau, and N. H. Wilson. Models in urban and

air transportation. Handbooks in Operations Research and Management
Science volume 6, pages 107–150. Elsevier Science, North-Holland, Ams-
terdam, 1994.

[20] A. Oukil, H. Ben Amor, J. Desrosiers, and H. Gueddari. Stabilized col-
umn generation for highly degenerate multiple-depot vehicle scheduling
problem. Computers & Operations Research, 3(34):817–834, 2007.

[21] A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. Comparison of
heuristic approaches for the multiple vehicle scheduling problem. Journal
of Scheduling (In press), 2008.

[22] C. Ribeiro and F. Soumis. A column generation approach to the multiple-
depot vehicle scheduling problem. Operations Research, 42(1):41–53,
1994.

[23] J.-M. Rousseau, D. Lessard, and A. Désilets. Aliages: A system for the
assignment of bus routes to garages. In Computer-Aided Scheduling of
Public Transport, pages 8–14, Berlin, 1988. Springer Verlag.

[24] B.L. Schwarz. A computational analysis of the auction algorithm. Euro-
pean Journal of Operational Research, 74(1):161–169, 1994.

24

