
Simultaneous Vehicle and Driver Scheduling:

a Case Study in a Limousine Rental Company

Benôıt Laurent a,b,∗ Jin-Kao Hao b

aPerez Informatique SA

41 avenue Jean Jaurès, 67100 Strasbourg, France

bLERIA, Université d’Angers

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

Accepted in May 2007

Abstract

In this paper, we address a driver-vehicle scheduling problem in a limousine rental
company. Given a set of trips to be covered, the goal consists in finding a driver-
vehicle schedule that serves the maximum workload and optimizes several economic
objectives while satisfying a set of imperative constraints. In this context, we propose
a simultaneous scheduling of drivers and vehicles. The problem is modeled using the
notion of partial consistent assignment. The solution approach is composed of two
phases: the first one is based on constraint programming techniques and leads to
the construction of an initial solution, improved in a second phase by a Simulated
Annealing algorithm. Significant gains on the resulting solutions are systematically
obtained in terms of quality, operational costs and elaboration time, compared to
the current practice in the company.

Key words: Simultaneous Vehicle and Driver Scheduling, Partial Consistent
Assignment, Simulated Annealing, Constraint Handling.

1 Introduction

This paper deals with a real-world driver and vehicle scheduling application
in a limousine rental company. The underlying problem can be informally
described as follows. We are given daily sets of trips, drivers and vehicles,

∗ Corresponding author. Tel.: +33 388449621; Fax:+33 388449601
Email addresses: blaurent@perinfo.com (Benôıt Laurent),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Computers & Industrial Engineering 5 June 2007

with the goal of scheduling resources in order to cover as many as possible of
the trip demands. The quality of service being a crucial issue, a schedule must
comply with a set of imperative constraints, while optimizing some economic
objectives.

In the company organization, the design of the operational timetable is a two-
phase short-term process. Every evening, according to the already booked
trips (on average 70% of the total), a schedule is determined for the day after.
This problem is highly combinatorial since instances can involve more than
200 trips, 105 drivers and 135 vehicles per day. With respect to the given
rules and available resources, the problem also frequently proves to be over-

constrained . A real-time management is then achieved throughout the day,
taking into account any occurring change. Much uncertainty surrounds the
trips: they can be booked, canceled or modified at the last minute according
to the customers’ wishes. Furthermore, the company provides services in the
Paris area where congestion and delays are the daily lot. Hence, our problem
takes place in a dynamic environment.

The need for a computerized solution approach can be justified for several
reasons, made critical by the short-term aspect. First, there is always focus on
cost reduction in the competitive market of transport. Second, the increasing
workload combined with complex labor rules makes the planning process dif-
ficult to realize manually. The last, but not least, issue concerns the quality
of service provided to customers.

Transportation by limousines belongs to the class of paratransit services like
taxis, shuttles or demand-responsive systems (see (13)). Contrary to transit
services, routes and schedules are not planned in advance. One typical example
of paratransit applications is the dial-a-ride problem, denoted DARP (see
(4)). The DARP and the transportation by limousines have in common a
demand-responsive routing scheme. They both provide a door-to-door service.
Nonetheless, the notion of ride-sharing, at the core of the DARP, is strictly
excluded with limousines. The management of fleets of taxis seems to be a
closer application. In (11), a taxi-dispatching problem is modeled as a Pickup
and Delivery Problem with Time Windows and tackled by a steepest descent
algorithm. However, the model focuses on the vehicle resource management,
which is not sufficient for our situation.

In transport scheduling, the fundamental issue is the efficient use of both types
of resources, crews and vehicles. This area has been a subject of continuous re-
search since the 1950’s, as attested by the abundant literature. An overview of
transport scheduling can be found in (20) or (3). The complexity of the prob-
lems addressed depends on different factors. For instance, the consideration of
heterogeneous types of vehicles is usually modeled as a Multiple Depot Vehicle
Scheduling Problem, which was proven NP-hard by (2). The Crew Scheduling

2

Problem is also known to be NP-hard. We refer to (21) and (5) for a presenta-
tion of this problem. On top of that, a recent trend in transportation by bus
consists in simultaneously scheduling vehicles and crews (see (6; 8; 22; 10; 7)
or (12)). In our case, the fact that many drivers keep their vehicle during their
entire duty makes this simultaneous approach relevant. It discloses additional
degrees of freedom but coincidentally increases the complexity of the problem.

In this work, we develop a solution approach for simultaneously scheduling
drivers and vehicles dedicated to the transport by limousines. To the best of
our knowledge, this is the first study for this application field. More precisely,
we first state a new flexible model based on the maximal partial assignment
of vehicle and crew to trips. This constraint based model has the main advan-
tage of being intuitive and adequate to deal with the numerous constraints
encountered in this application. It offers much flexibility in terms of solution
approaches since various metaheuristics can be devised. Then, we propose a
sequential two-phase heuristic algorithm. We use a greedy algorithm com-
bined with constraint programming techniques to build an initial solution.
This initial solution is further improved by an optimization phase based on
Simulated Annealing. Different types of complex neighborhood mechanisms
are compared. Experimentation on a set of 10 instances with up to 200 trips
per day shows that the approach is very flexible and effective.

The paper is organized as follows. The next section is dedicated to the descrip-
tion of the problem under consideration while a formal model based on partial
consistent assignment is described in Section 3. We present in the fourth sec-
tion our resolution technique relying on metaheuristics and advanced move
structures. Section 5 reports computational results on real data sets. The pa-
per ends up with a discussion on the salient aspects of the problem and with
some considerations ensuing the installation of the system in the company.

In the rest of the paper, we assume the reader to be familiar with the ter-
minology of transport. Otherwise, suitable definitions can be found in (8) or
(10).

2 Problem Description

This section describes the context and the basic elements for the general un-
derstanding of the crew and vehicle scheduling process in the company. To
introduce the main constraints and objectives, we state:

• a set T of trips, each being defined by a time and a location for the departure
and the destination, a number of passengers, a set of required driver skills
and a set of vehicle features,

3

• a set D of drivers, each being characterized by a daily allowed time spread,
a set of skills, etc.,
• a set V of vehicles, each being characterized by its capacity and its features.

The problem is to find a daily assignment of driver-vehicle pairs to the trips
that satisfies a set of constraints while optimizing a set of objectives.

Notice that contrary to many studies, drivers are very different from each
other because of their skills.

2.1 Working Area

The rental company covers the Paris city and its suburbs, representing a sur-
face of approximately 12 000 km2. In accordance with the planners, this wide
area has been partitioned in 26 zones. Additionally, major traffic generators,
such as large hotels or airports have been precisely identified. More than 95%
of the places involved in the problem match these specific locations. If it is
not the case, the place is approximated to the zone center it belongs to.

Travel times between all the identified locations have been pre-computed and
stored in the database. In order to avoid a null value within a zone, a threshold
value has been set. Because travel times fluctuate a lot in big cities, we have
introduced possible increases according to the type of day (working/holiday
period) and the time range within the day.

The rental company owns a single depot where all drivers and vehicles are
based. We will assume that changeovers, i.e. the change of vehicle for a driver,
take place only there.

2.2 Planning Process

The planning process in the company is divided in two phases that can be
qualified of ”static” and ”dynamic” respectively.

Every evening for the day after, a timetable is determined according to the
already booked trips and available resources. There is much uncertainty upon
the end time and location of the trips. These data are dependant on cus-
tomers’ wishes and traffic conditions. Some estimations have been computed
taking into account the historical data, by type of delivered service or even by
customer if already registered. A worst-case proposal is then displayed to the
human operator who can modify it according to any additional information at
his/her disposal. This pessimistic policy results in trips often ending slightly

4

before expected and allows improving changes in the schedule afterwards.

The second phase corresponds to a real-time management by the planners who
take into account any events that lead to modifications in the schedule:

• an added, canceled or modified trip,
• an update of travel time (due to traffic jam for instance),
• a breakdown or any other unexpected event.

The number of dynamic requests relative to the total number of requests pro-
vides a basic measure of the degree of dynamism of our system. This ratio
has been employed in the context of dynamic vehicle routing problem (see
(17)). It can be extended to our situation as well. In (15), the author dis-
cerned three categories of routing systems: weakly, moderately and strongly
dynamic. The differences principally hold in the tradeoff between the mini-
mization of response time and the minimization of the costs. The average 30%
value of dynamism (see Subsection 5.1) suggests a moderately dynamic sys-
tem. Indeed, one can notice a balance between these objectives. For quality
purpose, customers should not have to wait but it is not a life or death issue.

2.3 Constraints

To establish the driver and vehicle schedule in accordance with quality re-
quirements and labor rules, a number of hard constraints must be satisfied.
Let us consider any trip t ∈ T , a vehicle v ∈ V and a driver d ∈ D assigned
to t.

Capacity constraints There must be enough seats in v to accommodate all
the passengers.

Category constraints The category of v corresponds to the one required.
Upgrades are possibly allowed as long as they do not exceed a certain limit.
A hierarchy of 7 categories is considered here.

Features constraints The vehicle v must have the equipment, e.g. a dvd
player, asked for by the customer.

Skills constraints d must have all the skills needed by t, for instance a
particular spoken language.

Maximum spreadover constraints The duration between the pick-up time
of the first trip and the drop-down time of the last one must be less than or
equal to the maximum spread time allowed for d.

5

Feasible sequences constraints The drivers and the vehicles must have
enough time between successive trips to move from one to the other.

Pairing constraints Beforehand, human planners specify some pairs, i.e.
associations between drivers and vehicles. A driver bound to a vehicle within
a pair cannot work on another vehicle.

2.4 Objectives

2.4.1 Main objective

It is imperative to meet customers’ trip demands. Nevertheless, the lack of
resources may prevent to satisfy them all. Consequently, the first goal is to
find a schedule covering as many as possible of the trip demands. From the
point of view of the rental company, it is preferable to maximize the sum of the
durations of the assigned trips since long trips are more profitable than short
ones. In addition, the trips starting in an imminent way must be favoured.
Unassigned trips are manually handled afterwards. Human planners can call
additional drivers or forward the services to a subcontractor.

2.4.2 Secondary objectives: running costs

For evident economic reasons, it is desirable to reduce the number of working
drivers and used vehicles. In order to further reduce costs, it is also useful to
minimize the number of upgrades, the time drivers spend waiting and driving
between trips. Notice that drivers do not return to the depot between trips
unless they are obliged to do so for a change of vehicle. They rather stand in
front of some hotel where an attendance must be guaranteed.

In the previous discussion, we have presented in a very general way the con-
cepts that underlie our application. The main goal consists in finding an as-
signment of ”driver-vehicle” pair for each trip which satisfies the stated con-
straints, while minimizing the main and secondary objectives.

In the next section, we show a formal description of the problem.

3 Problem Formulation

In this part, we present a mathematical formulation based on a partial con-
straint satisfaction problem, which itself is a well-known model for its flexibility
and its generality for expressing complex constraints. Notice that this model is

6

not intended for an exact resolution algorithm. Indeed, as we see later in this
section, the complexity of our application (rich constraints, multi-objectives...)
and the practical requirements (relatively short computing times...) prevent
us from applying any time-consuming method (Branch and Bound...). This
point is further discussed in Subsection 6.1.

3.1 Partial Consistent Assignment

The model of partial consistent assignment is described in (1) as a way to
cope with over-constrained problems. The idea behind this model is to assign
as many variables as possible without getting inconsistency, i.e. constraint
violation. Because we seek a solution obtainable within fixed resource bounds
(pre-determined number of vehicles, etc.) and within a short delay, such an
approach is relevant for our application. Notice that in our case, we take into
account other optimization objectives than the cardinality of an assignment.
The following definitions formalize the notion of partial consistent assignment.

Let us consider a triplet (X, Dom, Const) where X is a finite set of variables,
Dom a set of associated domains Domi specifying the possible values for each
variable and Const a set of constraints restricting the values of variables.

Definition 1 An assignment σ is a set of pairs (xi, vali) such that xi ∈ X,

vali ∈ Domi and each xi appears at most once in σ. The assignment is consis-

tent if it satisfies the set of given constraints over the instantiated variables.

Definition 2 An assignment σ is partial if there exists at least one variable

of X that does not appear in σ, otherwise, the assignment is complete.

Definition 3 A maximal consistent assignment is a consistent assignment of

the largest cardinality.

A maximal consistent assignment may be partial or complete. If the given
problem is over-constrained, a maximal consistent assignment will be partial.
Before defining the triplet (X, Dom, Const) for our application, some useful
notations are defined in the next section.

3.2 Notations

Recall that T , D and V represent respectively the sets of trips, drivers and
vehicles. Let T, D and V be their associated cardinals, i.e. T = |T |, D = |D|
and V = |V|. Given t ∈ T , d ∈ D, v ∈ V, we state the notations figuring in
Tables 1 and 2.

7

Table 1
Notations

pas(t) number of passengers for t

capa(v) capacity of v

Cat(t) category demanded by t (Cat(t) ∈ N)

cat(v) category of v (cat(v) ∈ N)

st(t), et(t) respectively start and end time of t

Smax(d) maximum spread time allowed for d

Umax maximum upgrade allowed (possibly set to ∞)

dh(tk, tl) deadhead time between trips tk and tl

wt(tk, tl) waiting time between trips tk and tl

A total order ≺ on the set of trips T is defined by:

∀(tk, tl) ∈ T
2, tk ≺ tl ⇔



























st(tk) < st(tl)

∨

(st(tk) = st(tl) ∧ k < l)

We consider a set of skills S and a set of features F to define the binary
relations listed in Table 2.

Table 2
Binary relations

sk(d, s) driver d owns skill s

Sk(t, s) trip t requires skill s

ft(v, f) vehicle v owns feature f

Ft(t, f) trip t demands feature f

p(d, v) driver d and vehicle v are tied within a pair

compat(tk, tl) trips tk and tl can be realized by the same resources

In addition, we introduce the following notations to handle ”driver-vehicle to
trip” assignments:

• wd(d), (resp. vu(v))⇔ d (resp. v) is assigned to at least one trip,
• Seq(d) is the set of pairs (tk, tl) that d ∈ D handles consecutively.

Finally, we define compat′(tk, tl), dh′(tk, tl), wt′(tk, tl) and Seq′(d) that are sim-
ilar to compat(tk, tl), dh(tk, tl), wt(tk, tl) and Seq(d) respectively except that
they take into account a stop at the depot between trips.

8

3.3 Decision Variables and Domains

In our application, we may identify the set of trips T as the set of our decision
variables.

Each tk ∈ T is possibly assigned a value in its domain Ik, which corresponds
to driver-vehicle pairs. Initially, all domains Ik are equal to I = D × V.

The set of constraints is exposed in Subsection 3.4, the pursued objectives in
Subsection 3.5.

3.4 Constraints

We provide hereafter a mathematical definition of the types of constraints
informally described in Subsection 2.3.

Capacity constraints

∀ t ∈ T , ∀ v ∈ V, t = (., v), CAPA(t, v)⇔ pas(t) ≤ capa(v)

Category constraints

∀ t ∈ T , ∀ v ∈ V, t = (., v), CATEGORY (t, v)⇔ 0 ≤ cat(v)− Cat(t) ≤ Umax

Features constraints

∀ t ∈ T , ∀ v ∈ V, t = (., v), ∀ f ∈ F , FEATURE(t, v, f)⇔ ¬Ft(t, f) ∨ ft(v, f)

Skills constraints

∀ t ∈ T , ∀ d ∈ D, t = (d, .), ∀ s ∈ S, SKILLS(t, d, s)⇔ ¬Sk(t, s) ∨ sk(d, s)

Maximum spread time constraints

∀ d ∈ D, ∀ (tk, tl) ∈ T
2, tk = (d, .), tl = (d, .), tk ≺ tl,

MAX SPREAD(tk, tl, d)⇔ (et(tl)− st(tk)) ≤ Smax(d)

Feasible sequences constraints

9

∀ d ∈ D, ∀ (tk, tl) ∈ T
2, tk = (d, .), tl = (d, .), tk ≺ tl,

FEASIBLE D(tk, tl, d)⇔



























compat(tk, tl) ∧ (tk, tl) ∈ Seq(d)

∨

compat′(tk, tl)

Similar constraints exist for the vehicles.

Pairing constraints

∀ t ∈ T , ∀ (d, v) ∈ I, t = (d, v), PAIRING(t, d, v)⇔ ∀v′ ∈ V ¬p(d, v′) ∨ v = v′

3.5 Objectives

The evaluation function is the weighted sum of different criteria described
hereafter. The way in which these objectives are aggregated is explained in
Subsection 4.3.3.

Main objective

Minimizing the total duration of the uncovered trips:

Min
∑

t/∈ σ

(et(t)− st(t)), σ being an assignment

Viewed another way, we aim at finding a maximal weighted consistent assign-
ment, each variable being weighted by its duration.

Secondary objectives

Minimizing the number of working drivers and vehicles in use:

Min(
∑

d∈D

wd(d) +
∑

v∈V

vu(v))

Minimizing upgrades:

Min
∑

t∈σ ∧ v∈V ∧ t=(.,v)

(cat(v)− Cat(t))

10

Minimizing deadheads:

Min
∑

d∈D





∑

(tk ,tl)∈ Seq(d)

dh(tk, tl) +
∑

(tk ,tl)∈Seq′(d)

dh′(tk, tl)





Minimizing the total waiting time:

Min
∑

d∈D





∑

(tk ,tl)∈ Seq(d)

wt(tk, tl) +
∑

(tk ,tl)∈Seq′(d)

wt′(tk, tl)





4 Solution Approach

Our solution method consists in a two-phase algorithm. The first step relies
on constraint programming techniques and leads to the construction of an
initial solution. This solution is then improved by a Simulated Annealing (SA)
algorithm. A particular attention has been payed to the definition and the
assessment of powerful neighborhood exploration mechanisms.

4.1 Constraint based pre-processing

The number of potential assignments is exponential subject to the cardinality
of the set of decision variables and to the cardinality of the domains. To reduce
this number, we borrow filtering techniques from constraint programming (19).
The node consistency property allows to remove from domains all values that
are inconsistent with at least one constraint. Let us consider, for example, the
PAIRING constraints:

∀ tk ∈ T , ∀ (d, v) ∈ I, (∃ v′ ∈ V, v′ 6= v, p(d, v′)) ⇒ (d, v) /∈ Ik

If a driver is bound to a vehicle within a pair, the values corresponding to this
driver associated with any other vehicle will be removed from the domain of
all variables.

4.2 Initial Schedule

Two ways of constructing the initial solution exist.

The day before, the initial solution is built from scratch by a constructive
greedy heuristic sketched hereafter. The strategy employed recalls the Best

11

Fit Decreasing Strategy introduced in (18) to tackle the Bin Packing Prob-
lem. The variables (the trips) are sorted in decreasing order of duration, sub-
sequently labelled one by one by a driver-vehicle pair that can handle it.
Already employed resources are of course privileged. After each assignment, a
forward checking procedure is applied to prevent future conflicts. It performs
arc consistency between the currently instantiated variable and the not-yet
instantiated ones. Considering the MAX SPREAD constraints for example,
once a driver-vehicle (dk, vk) has been assigned to a variable tk, all pairs in-
cluding dk are removed from the domain of the variables bound to tk within
constraints of type MAX SPREAD.

∀ tj ∈ T , tj ≺ tk, (et(tk)− st(tj) ≥ Smax(dk)) ⇒ ∀v ∈ V, (dk, v) /∈ Ij
1

The construction procedure stops either when a complete assignment is ob-
tained or when no additional assignment can be made without violating con-
straints.

Algorithm 1: Initial schedule construction (day before)

Data : T the set of variables, Ik the sets of associated domains

Result: Initial configuration

begin

/* Sort variables by decreasing order of duration */
sort decreasing(T)
/* Unlabelled variables */
Unlab← T
/* Iterate through unlabelled variables */
for tk ∈ Unlab do

if Ik 6= ∅ then

/* Provide best pair driver-vehicle */
tk ← best value(Ik)
Unlab← Unlab − tk
/* Apply forward checking procedure on unlabelled variables */
forward checking(tk , Unlab)

end

end

end

In the real-time management, the current schedule is loaded as initial solution
with possibly slight alterations. Indeed, some variables may be unassigned to
avoid broken constraints. Violations can happen for instance when a delay in
a trip causes infeasible sequences.

1 We imposed tj ≺ tk to simplify the formula but the symmetric case is similar.

12

The initial solution is then improved by a Simulated Annealing algorithm (see
(14)) which main components are exposed in the next section.

4.3 Simulated Annealing

4.3.1 General algorithm

The main ingredients of SA are: an initial temperature, a rule for accepting
a damaging move, another for decrementing the temperature, a maximum
number of neighboring solutions that can be generated at each temperature
and a stop criterion. The initial temperature t0 is set according to the pre-
sumed quality of the initial solution. Here, the acceptance of damaging moves
is controlled by the Metropolis rule and the cooling schedule by a geometri-
cal scheme (tk = αtk−1). At each temperature threshold, two parameters can
trigger a decrementation:

• the number of accepted states,
• the number of visited states.

Finally, different criteria may stop the algorithm: a maximum duration, a pre-
defined number of thresholds without improvement or a temperature close to
zero.

4.3.2 Search space

A configuration σ is a consistent assignment, not necessarily complete, of
”driver-vehicle” pairs in I to trips in T (see Figure 1).

T − 10

(5,34) (4,12) (5,23) (0,3)

1

...

32 4

(1, 12) (5,23)

Fig. 1. Configuration representation

The search space Ω is then defined as the set of all such assignments. Hence,
Ω may contain partial assignments but no infeasible solutions.

Notice that our representation remedies in essence, i.e. without any additional
constraint, some drawbacks raised by set partitioning or set covering models
largely used for the Crew Scheduling Problem. The former is rather hard to
solve and is often relaxed in the set covering formulation. However, the latter
can lead to over-covered trips (see (12) for instance).

13

4.3.3 Evaluation function

In order to guide the algorithm to visit the search space, one needs a function
to evaluate the configurations. The quality of a configuration σ is estimated
through a weighted aggregation of the different objectives.

∀σ ∈ Ω, eval(σ) =
∑

o∈O

wo × fo(σ)

with:

• O the set of objectives,
• wo > 0 the weight associated to the oth objective function,
• fo the value of oth objective function on σ.

The difficulty here lies in the combination of diverse objectives, different in
nature and scale. Normalizing them on the interval [0, 1] would have required
the knowledge of the lower and upper bounds, which are hard to estimate.
Instead, we record the results per criterion obtained on the previous runs
relative to the number of trips. The mean mo on each criterion is sent as a
parameter for a new run. The weight associated to the oth objective function
is computed in this way:

wo = αo ×
1

mo × T
αo being specified by the user

We thus obtain a value 1
mo×T

× fo(σ) close to 1.

Figure 2 shows the sequence mo over 60 runs on different instances for the
number of drivers criterion. The curve stabilizes over time. Indeed, the system
benefits from past experiences and has the potential to estimate the number
of required drivers.

The vector of weights α may vary according to each user’s appreciation of the
relative importance of the criteria. In Table 3, a combination empirically de-
termined for the tests is presented. The value for the unassigned work reflects
the importance of this objective.

Table 3
α weights

unassigned work drivers vehicles upgrades deadheads waiting time

100 1 1 0.1 0.01 0.005

4.3.4 Neighborhood operators

It is well known that the neighborhood is one of the most important compo-
nent of any SA algorithm. For this reason, we have defined and experimented

14

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

D
riv

er
s

pe
r

tr
ip

 r
at

io

Number of runs of the algorithm

Fig. 2. Average number of drivers per trip on different runs

different neighborhood operators ranging from simple to complex compound
moves.

1 change It affects one variable. The step from one configuration to another
is achieved in this way:

(1) pick a variable (already instantiated or not) at random,
(2) pick a new value within its domain,
(3) if assigning the value to the variable does not create any

conflict, the assignment becomes effective, otherwise go
to step 1.

Depending on the case, 1 change might correspond in reality to:

• a change of driver,
• a change of vehicle,
• a change affecting both resources.

Swap This neighborhood mechanism is quite intuitive:

(1) pick two variables, one at least being assigned,
(2) exchange their values if consistency is preserved, other-

wise go to step 1.

This neighborhood mechanism can be seen as two particular simultaneous
applications of 1 change.

15

1 change & re-assigns This neighborhood mechanism derives from 1 change.
The sketch of a move is outlined below:

(1) pick a variable (already instantiated or not) at random,
(2) pick a new value within its domain,
(3) if assigning the value to the variable does not create any

conflict, the assignment becomes effective and the ancient
value of the variable is stored, otherwise go to step 1.

(4) loop through unassigned variables and try to assign them
the value previously recorded.

The strength of this neighborhood mechanism lies in the fourth step. Remem-
ber that in the initial schedule, no additional variable can be assigned without
constraint violation. Transposed to the reality, it means that the resources
are all unavailable or can not be used because of some constraints. Applying
1 change may release some resources that can be assigned to another trip.

Ejection chain The ejection chains were introduced by (9) who defined
them in a very general way. An ejection chain is initiated by selecting a set
of elements to undergo a change of state. The result of this change leads to
identifying a collection of other sets, with the property that the elements of
at least one must be ”ejected from” their current state. We stated an ejection
chain in our context as follows:

(1) pick a variable (already instantiated or not) at random,
(2) pick a new value within its domain,
(3) if assigning the value to the variable does not create any

conflict, the assignment becomes effective, otherwise, a
new value is assigned to all the variables in conflict if a
consistent assignment is possible. As a last resort, these
variables are unassigned.

This powerful neighborhood operator may generate some conflicts that it im-
mediately repairs. However, like 1 change, it suffers from the weakness of not
maintaining the full employment of the resources.

Ejection chain & re-assigns Ejection chain & re-assigns merges the two
former neighborhood operators. It overcomes their weaknesses and takes ad-
vantage of their respective strengths. It works as follows:

16

(1) pick a variable (already instantiated or not) at random,
(2) pick a new value within its domain and store the ancient

value,
(3) if assigning the value to the variable does not create any

conflict, the assignment becomes effective, otherwise, a
new value is assigned to all the variables in conflict if a
consistent assignment is possible. As a last resort, these
variables are unassigned.

(4) loop through unassigned variables and try to assign them
the value previously recorded.

5 Experimentations and Results

5.1 Data and Experimental Settings

Computational experiments were conducted on 10 instances coming from the
limousine rental company and representing different workloads. Table 4 pro-
vides some characteristics of these instances, namely, the problem size, the
number of scheduled trips, their average duration, the available drivers and
vehicles, the number of specified ”driver-vehicle” pairs, and eventually the
degree of dynamism (see Subsection 2.2).

Table 4
Characteristics of the instances

Problem Trips Average Drivers Vehicles Pairs Degree of

size duration specified dynamism

(hh:mm) (%)

08 05 05 749791 91 1:28 51 147 35 28.6

10 05 05 10720125 125 1:48 80 134 63 27.2

18 05 05 12555153 153 2:57 93 135 64 30.1

19 05 05 12015163 163 3:05 89 135 71 26.4

23 05 05 14175202 202 2:15 105 135 70 27.7

07 01 06 5194117 117 2:39 49 106 42 30.7

08 01 06 4558108 108 2:33 43 106 35 33.3

09 01 06 5130130 130 1:57 57 90 50 30

10 01 06 5187135 135 2:01 57 91 52 25.9

11 01 06 5673159 159 2:23 61 93 57 39

Our search procedures were coded in C++, compiled with gcc 3.4.2 (flag -03),
on a PC running Windows XP (1Go RAM, 2.8Ghz). Due to the incomplete
and non-deterministic nature of the methods, 20 independent runs were carried
out on each instance with different random seeds. A maximum CPU time

17

of 10 minutes is defined as stop condition. These rules prevail for all the
experimentations.

5.2 Results of the Pre-Processing Phase

The goal here is to show the effects of the pre-processing phase, described in
Subsection 4.1.

In Table 5, we indicate the problem size after the pre-processing phase, the
average (avg) and the standard deviation (sd) for the number of possible
drivers, vehicles and pairs per trip. The last column shows the number of
empty domains.

These computations underline the importance of this pre-processing phase
in the drastic reduction of the initial search space. The number of matching
resources per trip is rather high on average but the standard deviation, figuring
into brackets, reveals a considerable disparity between trips. The number of
non-assignable trips confirms the over-constrained nature of the problem.

Table 5
Results of the pre-processing phase

Problem Drivers per trip Vehicles per trip Pairs per trip Trips

size avg (sd) avg (sd) avg (sd) N/A

08 05 05 126591 32.6 (11.6) 66.5 (36.0) 614.8 (389.4) 0

10 05 05 1138125 45.0 (16.9) 58.3 (35.8) 504.6 (345.5) 1

18 05 05 1923153 42.4 (20.9) 64.0 (33.7) 881.7 (709.8) 2

19 05 05 1158163 43.1 (20.2) 64.8 (33.7) 558.9 (413.7) 0

23 05 05 1776202 48.9 (22.6) 70.8 (32.7) 885.6 (564.1) 2

07 01 06 402117 14.6 (8.4) 31.0 (14.5) 79.0 (71.2) 2

08 01 06 432108 13.5 (9.4) 35.6 (21.4) 103.8 (136.8) 5

09 01 06 305130 16.6 (12.1) 32.8 (16.4) 77.9 (98.3) 4

10 01 06 203135 18.5 (11.7) 33.5 (16.8) 72.2 (68.3) 3

11 01 06 260159 22.4 (14.5) 31.8 (14.5) 57.7 (67.1) 10

5.3 Neighborhood Comparison

In this section, we compare the respective efficiency of the five neighborhood
operators described in Subsection 4.3.4 by observing their effect on the com-
bined objective function during the search.

For these experimentations, we decided to use a simple but pure Hill Climbing
algorithm. Despite its tendency to fall into local optima and its incapacity to
escape from them, Hill Climbing is a neutral algorithm, requiring almost no

18

tuning of parameters, and thus, particularly adequate for comparing different
neighborhoods. Apart from the maximum duration of 10 minutes, another
stop criterion is used based on the number of iterations elapsed from the last
strict improvement. Otherwise, the search might loop among a restricted set of
neighbors. 200 * T iterations without improvement indicate that the algorithm
stagnates on a local optimum. Remember that T is the number of decision
variables.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000 140000 160000 180000 200000

%
 o

f i
ni

tia
l c

os
t

Iterations

Swap
1_change

Ejection_chain
1_change_&_re-assigns

Ejection_chain_&_re-assigns

Fig. 3. Evaluation function curves by neighborhood mechanism (instance 19 05 05)

Figure 3 shows the evolution of the objective function averaged over 20 runs
for each neighborhood mechanism. The values are provided as a percentage of
the initial cost. The tested instance was arbitrarily chosen since all diagrams
present an similar shape. The obtained ranking is always the same, variations
between curves being just more or less pronounced.

¿From Figure 3, it can be observed that the swap mechanism behaves very
poorly and is quickly trapped in a local minimum. The reason for this is
that the evaluation function is dominated by the weighted number of assigned
variables. The swap mechanism leaves this number unchanged and thus, can
not improve the objective function for long. 1 change modifies the value of a
variable without creating conflicts. Its results outperform those of the swap

neighborhood but still remain unsatisfactory. Again, the algorithm rapidly falls
into a local minimum. Furthermore, the decrease is too slow to be employed in
a real-time context. With its aggressive search strategy, Ejection chain over-
comes the first difficulty encountered by 1 change. The curve of 1 change & re-

assigns delineates a rapid decrease since this neighborhood constantly seeks a
maximal consistent assignment. Eventually, Ejection chain & re-assigns com-
bines the respective strengths of the two previous neighborhoods and provides
the best results.

19

5.4 Comparison between Manual Scheduling and Simulated Annealing

In the previous paragraph, Ejection chain & re-assigns emerged as the most
powerful neighborhood mechanism. It was therefore embedded in a Simulated
Annealing algorithm to be compared to the manually obtained results.

5.4.1 Parameter tuning

The tuning process of the SA algorithm is a delicate issue. For each parameter
evoked in Subsection 4.3.1, we empirically determined an interval of reasonable
size. Different combinations were tested on a sample of 20 runs resulting in
the following set of parameters:

• an initial temperature of 10−5,
• a cooling rate of 0.95,
• a number of accepted states equal to T,
• a number of attempted configurations on each threshold of 100 * T.

Apart from the maximum duration of 10 minutes, the algorithm stops either
if the current temperature is low enough, or when it ceases to make progress.
Three consecutive threshold diminutions without any acceptance indicate a
frozen situation.

5.4.2 Computational results

The manually generated timetables (see Table 6) constitute our references for
comparison. Table 7 shows the average results obtained with our approach
relying on SA, on 20 independent runs for each instance. We recall that the
rules slightly differ between manual and computed schedules: in the second
case, broken constraints are strictly forbidden but unassigned trips are allowed
and manually handled afterwards. Hence, the column indicating the number
of broken constraints in Table 6 is replaced by the one of assigned work in
Table 7. The remaining columns are common to both tables and report the
numbers of required drivers and vehicles, the total number of upgrades, the
total durations of deadheads and idle time.

Applying strict comparison criteria between both sets of solutions is rather
difficult. All the same, computerized solutions are considered profitable if they
fulfill the following conditions:

• at least 80% of the workload is automatically assigned,
• the constraints are all satisfied,
• the operational costs are reduced,

20

• the solution is displayed within a short amount of time (10 min).

Table 6
Results of manual scheduling

Date broken drivers vehicles upgrades deadheads waiting time

constraints (hh:mm) (hh:mm)

08 05 05 27 44 52 55 26:45 121:44

10 05 05 48 65 70 60 27:50 190:27

18 05 05 47 74 74 84 31:59 208:35

19 05 05 48 79 77 87 33:12 176:13

23 05 05 79 84 81 96 40:25 270:02

07 01 06 53 47 50 70 76:12 123:51

08 01 06 72 43 44 55 66:59 80:23

09 01 06 48 58 57 72 96:45 168:58

10 01 06 57 54 54 87 88:54 197:06

11 01 06 50 60 64 80 105:54 172:08

Table 7
Results of Simulated Annealing

Date assigned work drivers vehicles upgrades deadheads waiting time

(%) (hh:mm) (hh:mm)

08 05 05 100 31.60 33 5.4 55:16 38:01

10 05 05 99.44 42.20 44.4 12.4 69:47 48:44

18 05 05 96.55 66.10 63.2 14.3 84:44 70:10

19 05 05 100 67.2 66.4 27.1 85:14 72:59

23 05 05 84.22 73.2 68.4 11.7 107:38 90:23

07 01 06 81.47 46.3 45.8 57.1 78:49 63:05

08 01 06 76.71 41.3 41.3 51.8 70:23 52:04

09 01 06 84:48 45.1 44.2 43.9 86:50 86:27

10 01 06 91.53 49.1 49.8 55.1 91:15 90:02

11 01 06 78.60 52.2 51.9 39.3 106:33 83:28

Figures in Table 7 indicate that the two first goals are attained. Most of
the work is covered without breaking any constraint. Instances 08 01 06 and
11 01 06 must be considered separately: at the end of the pre-processing phase,
the numbers of non-assignable trips detected were 5 and 10 respectively (see
Table 5). In other words, it was not possible to satisfy all the customers’
requirements in those instances with the available resources.

Our algorithm also yields significant gains in the operational costs. The com-
parison may appear tendentious as the trips are rarely all covered in comput-
erized solutions. However, the numbers of used resources, upgrades and total
waiting time are so dramatically reduced that they remain in fine far below
the values of the manual timetables. Completely covered instances confirm
this allegation. Notice that the constraint satisfaction has a price in terms of
deadheads. Drivers are sometimes required to cover more distance to reach the
start of a trip they possess the skills for. Globally speaking, the savings pro-
cured by the system are very satisfactory. Such a gap between the two sets of

21

solutions can be explained by the following reason: the workload for schedulers
was so high that costs reduction represented only a secondary concern.

This leads to the other major contribution of our work: the time spent to
elaborate a timetable is drastically decreased. Whereas people spent up to
4 hours elaborating an operational timetable, our program only takes a few
minutes to produce a better quality schedule.

6 Discussions

In this section, we discuss the difficult aspects of our application that explain
some of our choices. We also relate the installation of the software in the
company.

6.1 Problem Analysis

This problem combines different aspects that make it difficult to solve.

First, the complexity of the constraints in this real-world problem leads us to
opt for a natural modeling in terms of Partial Constraint Satisfaction Problem.
The number of non-assignable trips in Table 5 underlines the over-constrained
nature of the problem, or at least, highlights an inadequacy of the resources
with the tasks to be accomplished.

The second difficulty is directly related to the computational time. In this
study, we performed an a posteriori treatment that cannot render the urgency
atmosphere sometimes reigning in real-life conditions (see Subsection 2.2). We
thus preferred local search approaches over exact methods for their ability to
produce solutions, even partial, within a short amount of time.

The results reported in Section 5 show a superiority of the computed solutions
over the manually generated ones. However, the estimation of good lower
bounds could give a better insight of the quality of the solutions. Since the
main objective is the minimization of used resources, we first attempted to
compute a lower bound on the number of vehicles, independently of the crews.
The problem restricted to its vehicle aspect was modeled as a multi-commodity
flow formulation (see e.g. (16)) and subsequently solved with a Branch &
Bound algorithm. Unfortunately, this methodology did not furnish relevant
results. For example, we obtained on the 07 01 06 instance a lower bound of
32 vehicles against an average value of 45.8 in our solutions and of 50 in the
manual scheduling. Such a gap comes from the constraints binding drivers and
vehicles. In the optimal solution of the vehicle problem, many trips have to be

22

transferred to other vehicles since the driver that they are bound to does not
possess the appropriate skills. The presence of several optimization objectives
makes the task of computing lower bounds even more difficult.

The last issue was out of the scope of this study but deserves to be mentioned.
In the planning process of the company, duties generated are directly assigned
to drivers day after day without any crew rostering phase. One could be con-
cerned with the respect of long-term labor rules. This question can be partly
taken into account through the Smax(d) value (see 1). A driver who nearly
reaches its time limit per week or per month, will work less by the end of
these periods. However, this solution is not satisfactory in practice. The issue
is still manually handled at the present time.

6.2 Installation

The solution approach described in this paper has been integrated into the
decision support system of the company.

The software matches well the organization of the company described in Sub-
section 2.2. Each evening for the next day, it is launched for 10 minutes using
known data to get a rough timetable. The next day, the schedule is refined
whenever a new event arises. The planners usually let the system search for 1
minute, which corresponds to about 15 000 iterations depending on the ma-
chine. This duration constitutes an acceptable tradeoff between the response-
time and the quality of the solution. The computerized timetable may undergo
some alterations before application in practice. These manual modifications
aim at integrating exceptional considerations not taken into account in the so-
lution approach such as the preferences of a customer for a particular driver.

The decision support system has significantly lightened the labor of the human
planners and allows them to greatly increase their productivity. Moreover,
their job becomes less stressful and more accessible to unexperienced planners.

7 Conclusion

In this paper, we proposed a simultaneous approach for a driver and vehicle
scheduling problem in an original context. To the best of our knowledge, the
work reported here would be the first study in the targeted field.

The formulation as partial constraint satisfaction problem reveals to be ade-
quate for this overconstrained problem. The non-instantiated variables disclose

23

the hard part of the problem. Subsequently, the user can take the appropri-
ate decisions - calling some additional drivers, choosing the constraints to be
violated - thanks to his perception of the current situation.

We applied a sequential two-phase algorithm to our model: a pre-processing
phase leading to the construction of an initial solution is followed by an opti-
mization phase using Simulated Annealing. Different neighborhood functions
have been developed and assessed. The study carried out confirmed that pow-
erful neighborhood mechanisms are essential to reach good performance in
local search.

Finally, results obtained on real data sets show a significant improvement
compared with the actual practice. Within a short time, the software supplies
very good quality schedules in which the major part of the trips is assigned.
The constraints are all satisfied whereas the operational costs, including the
number of resources, the number of upgrades and the total idle time are re-
duced. Our approach also proves to be flexible. It unifies the treatment of the
static and dynamic parts of this problem in a single framework. The decision
support system based on this research is operating in the company and proves
to be extremely useful.

Let us give a last comment to conclude the paper. This paper deals with a
real-world driver and vehicle scheduling problem in a particular application
context. Even if some aspects are specific, others are general ones. In par-
ticular, the notion of simultaneous scheduling of drivers and vehicles is quite
general and relevant to many other scheduling applications. For instance, we
have successfully transposed the basic constraint-based model and some solu-
tion techniques of the current work to the domain of transportation by bus in
rural areas.

Acknowledgements

This research was partially supported by the French Ministry for Research
and Education through a CIFRE contract (number 176/2004). The reviewers
of the paper are greatly acknowledged for their comments that contributed to
improve this paper. Finally, we would like to thank Frédéric Lardeux, Valérie
Guihaire and Christopher Ineson for various constructive discussions.

References

[1] Barták, R. and Müller, T. and Rudová, H., 2003. A New Approach
to Modeling and Solving Minimal Perturbation Problems. In: Recent

24

Advances in constraints, Lecture Notes in Artificial Intelligence 3010,
Springer Verlag, 223-249.

[2] Bertossi, A.A. and Carraresi, P. and Gallo, G., 1987. On Some Matching
Problems Arising in Vehicle Scheduling Models. Networks, 17, 271–281.

[3] Ceder, A., 2002. Urban Transit Scheduling: Framework, Review and Ex-
amples. Journal of Urban Planning and Development, 128 (4), 225–244.

[4] Cordeau, J.-F. and Laporte, G., 2003. The Dial-a-Ride Problem (DARP):
Variants, Modeling Issues and Algorithms. 4OR, 1 (2), 89–101.

[5] Fores, S. and Proll, L. G. and Wren, A., 1999. An improved ILP system
for driver scheduling. Computer-Aided Transit Scheduling, In: Wilson,
N. H. M. (Ed.), Springer Verlag, Berlin, 43–62.

[6] Freling, R. and Boender, G. and Paixão, J. M. P., 1995. An integrated
approach to vehicle and crew scheduling. 9503/A, Economie Institute,
Erasmus University Rotterdam, Rotterdam.

[7] Freling, R. and Huisman, D. and Wagelmans, A. P. M, 2003. Models and
Algorithms for Integration of Vehicle and Crew Scheduling. Journal of
Scheduling, 6 (1), 63–85.

[8] Gaffi, A. and Nonato, M., 1999. An Integrated Approach to the Extra-
Urban Crew and Vehicle Scheduling Problem. Computer-Aided Transit
Scheduling, In: Wilson, N. H. M. (Ed.), Springer Verlag, Berlin, 103–128.

[9] Glover, F., 1996. Ejection Chains, Reference Structures and Alternat-
ing Path Methods for Traveling Salesman Problems. Discrete Applied
Mathematics, 65 (1-3), 223–253.

[10] Haase, K. and Desaulniers, G. and Desrosiers, J., 2001. Simultaneous
Vehicle and Crew Scheduling in Urban Mass Transit Systems. Trans-
portation Science, 35 (3), 286–303.

[11] Horn, Mark E. T., 2002. Fleet Scheduling and Dispatching for Demand-
Responsive Passenger Services. Transportation Research part C, 10 (1),
35–63.

[12] Huisman, D., 2004. Integrated and Dynamic Vehicle and Crew Schedul-
ing. Tinbergen Institute, Erasmus University Rotterdam.

[13] Jayakrishnan, R. and Cortés, C. E. and Lavanya, R. and Pagès, L.,
2003. Simulation of Urban Transportation Networks with Multiple Vehi-
cle Classes and Services. In: 82th Transportation Research Board Annual
Meeting, Washington D.C..

[14] Kirkpatrick, S. and Gelatt, C. D. and Vecchi, M. P., 1983. Optimisation
by simulated annealing. Science, 220, 671–680.

[15] Larsen, A., 2000. The Dynamic Vehicle Routing Problem. Department
of MathematicalModelling, Technical University of Denmark.

[16] Löbel, A., 1998. Vehicle Scheduling in Public Transit and Lagrangian
Pricing. Management Science, 44, 1637-1649.

[17] Lund, K. and Madsen, O. B. G. and Rygaard, J. M., 1996. Vehicle Rout-
ing Problems with Varying Degrees of Dynamism. Tech. rep., The De-
partment of Mathematical Modelling, Technical University of Denmark.

[18] Martello, S. and Toth, P., 1990. Knapsack Problems: Algorithms and

25

Computer Implementations. Wiley, New-York.
[19] Tsang, E, 1993. Foundations of Constraint Satisfaction. Academic Press.
[20] Wren, A., 1998. Heuristics Ancient and Modern: Transport Scheduling

Through the Ages. Journal of Heuristics, 4 (1), 87–100.
[21] Wren, A. and Fores, S. and Kwan, A. S. K. and Kwan, R. S. K. and

Parker, M. and Proll, L. G., 2003. A Flexible System for Scheduling
Drivers. Journal of Scheduling, 6 (5), 437–455.

[22] Wren, A. and Gualda, N. D. F., 1999. Integrated Scheduling of Buses
and Drivers. Computer-Aided Transit Scheduling, In: Wilson, N. H. M.
(Ed.), Springer Verlag, Berlin, 155–176.

26

