CHAPTER 1

HEURISTIC METHODS FOR
PHYLOGENETIC RECONSTRUCTION
WITH MAXIMUM PARSIMONY

In this chapter we explain how metaheuristics like localrgeagenetic and memetic
algorithms are used for phylogenetic reconstruction usditaximum Parsimony. We
review some of the main concepts used to improve the sealgedd solution which are
inherited from the Operational Research and Combinat@jdimization communities.
—Adrien Gaffon, Jean-Michel Richer and Jin-Kao Hao

1.1 INTRODUCTION

Maximum Parsimony (MP) is a character-based approachefiasron the work of
the german entomologist Willy Hennig (1913-1976). Althbudennig’s work has
generated significant controversy, the principles thaediewhat was later called
cladistics, laid the basis for a convenient and powerfulhoétfor the analysis of
molecular data with the use of computers. For more detaisitathe history of
MP see [9] (p. 136). Cladistics also referred as phylogersststematics can be
viewed as a philosophy of classification that arranges asgasonly by their order
of branching in an evolutionary tree. The leaves of the tre¢edoelled with the OTUs
(Operational Taxonomic Unit) of the problem. Ideally, theets (or cladograms) that
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2 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MAXIMUM PARSIMONY

result from a MP analysis show the evolution of synapomapkderived character
states inherited from the most common ancestor) betweariespeMany different
cladograms can exist for a given set of taxa but the MP ooiteiinposes to chose
the ones with the fewest changes.

1.2 DEFINITIONS, FORMAL BACKGROUND

1.2.1 Parsimony and Maximum Parsimony

With parsimony methods, each position (or site) in the rplétialignment is con-
sidered separately. First note that there are differersip@ny optimality criterion
known as Fitch, Wagner, Camin-Sokal, Dollo or weighted jpaosly. Those criteria
determine the number of changes of a substitution from deeaianother. In the
rest of this chapter we are only interested in Fitch (or ughisd) parsimony for
which all mutations are given the same weight of one unit.

The input of the problem consists of a debf n sequences of the same length
m expressed over an alphabgt whereX = {—, A,C,G,T,?}! is composed of
four nucleotides, the gap symbel(if L is the result of a multiple alignment) and
eventually the missing character symba@l: The second input of the problem is a
binary rooted or unrooted tree whose leaves are labelldu tvé sequences df.
Other nodes of the tree, called internal nodes, have twoeddsmts (see fig. 1.1).
We can then define two problems calledallandlarge parsimony problems.

S, S, S; S, S, S, S; S,

Figure 1.1: Two topologies for a binary rooted tree of 4 seqas

Definition 1 (Small parsimony problem) Given a setl. of n sequences of length
m and a treeT' whose leaves are labelled with sequenced. ofind the score of
parsimony off’

In order to compute the overall cost (or score) of a tree (aisovn adree length,
Fitch’s algorithm [11] gradually moves back from the leaiethe root and computes
hypothetical ancestral taxa. This is often referred to aditht-pass of the algorithm
(see algorithm 1.4 for a more formal description). At eacsifian of an internal node

1itis also possible to use protein sequences with a 20 leitphabet of amino-acids.
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a set of bases is assigned. If two descendaatsdy of an internal node have some
bases in common they are assigned to the internal Aigde L, N L,. Otherwise
all bases of both descendants are assigned to the gareatL, U L, and a cost of
one unitis added to the overall score of the tree (see fig. Tt# second-pass of the
algorithm, which starts from the root and reaches the lea@ables to assign one
nucleotide for a site if many possibilities exist, in ordeobtain a hypothetical tree.
Only the first-pass is necessary to obtain the parsimonygscor

Definition 2 (Large parsimony problem or Maximum Parsimony problem) Given
a setL of n sequences of lengih, find a most parsimonious trég, i.e. a tree with
minimum score.

The cost of a tree can be computed in polynomial time [11]. éted binary tree
of n leaves has — 1 internal nodes, thus the complexity of the small parsimony
problem isO(n x m). Indeed, we need to compute the hypothetical sequences of
n — 1 internal nodes. However, the search for an optimal tree ispedationally
intractable: the large parsimony problem is extremely diffito solve since it is
equivalent to thé&NP-completeSteiner problem in a hypercube [12]. This is why, as
we shall see later on, heuristics methods constitute the aiérnative in order to
obtain near-optimal trees with reasonable computatioa {2d, 36].

a) first-pass from leaves to root b) second-pass from root to leave

Figure 1.2: First pass and second pass for a tree of scorerafeéd &itch’s optimality
criterion

1.3 METHODS

1.3.1 Combinatorial Optimization

Combinatorial Optimization problems consist in finding thesstobject also called
the optimum or optimal solution in a finite (or possibly caalniy infinite) set of
objects called solutions. This class of problem is gengiii?-complete [15] which
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roughly means that the computing time needed by an algottthfind an optimal
solution would increase exponentially with the size of thelglem to solve. Due
to the importance of these problems, many algorithms haea developed. These
algorithms are of twofold:

e exactalgorithms are guaranteed to find the best solution but nmigat expo-
nential computation time, they try to optimize the searclgmpring configu-
rations that can be identified as inappropriate during thecte

e approximatemethods trade optimality for efficiency by examining an appr
priate subset of the solutions in order to find a good neamgbsolution.

1.3.2 Exact approach

1.3.2.1 exhaustive enumeration The simplest algorithm that can be designed
to find the most parsimonious tree(s) is to generate all plestiees and compute
their parsimony score. However tree searches are extrediféiult because the
number of possible trees grows exponentially with the nurobtaxa (see table 1.1).

Table 1.1: number of unrooted and rooted binary trees

number of taxa number of unrooted trees number of rooted tree
10 2.0e+06 3.4e+07
20 2.2e+20 8.2e+21
30 8.6e+36 4.9e+38
40 1.3e+55 1.0e+57
50 2.8e+74 2.7e+76
80 2.1e+137 3.4e+139
n IT_5(2i —5) [[i_2(2i = 3)

1.3.2.2 branchand bound Afirstalternative to tackle the complexity of MP is
the branch and bound (B&B) algorithm [23]. We first generatea, not necessarily
optimal, and compute its parsimony score which will servarasipper bound. We
then start the construction of a new tree, initially empity add a new taxon at each
iteration. Each new taxon is put on all possible brancheb®frevious trees and
generates a set of new trees which are put in a list. The treefilave a parsimony
score greater than the upper bound are withdrawn from theTliee main drawback
of the B&B algorithm is that the list of trees is too importamorder for the algorithm
to be efficient, that is why the algorithm can only be appliachzset of less than 20
taxa.

1.3.3 Local Search methods

Due to the amount of trees to evaluate and the inefficienckattemethods, it is
preferable to use approximate approaches for inferrirgelahylogenetic trees.
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Local Search (LS) uses iterative improvements to seek flutisas of better
quality [25]. A LS algorithm consists of four essentialstsar

e asearch spacg& composed of a set of candidate solutions

e an evaluation functioif (s) of a solutions € S, also calleditnessfunction, in
order to assess the quality of a solution

e aneighborhoodfunctioiV(s) C S in order to define for each solution a subset
of solutions which can be obtained by slightly modifying therent solution

e atransition strategy to accept or reject a neighboringtsoiu

Typically, a LS algorithm (see algorithm 1.1) starts fromiaitial solution s
and then iteratively replaces the current solution by ateigs’ € N (s) of better
quality, until no improving neighbor can be found. This pes is sometimes called
areplicationin the MP literature and descentor the optimization community. The
replacement of the current solution favors neighbors aebeuality with the intent
to progressively improve the quality of the solution.

Algorithm 1.1

descent (S, f, N)
s := chosse or generate an initial solution € S
for a given number of iterations ¢ do
find s’ € N(s) such that f(s’) < f(s)
s := s
end for
return s
In the case of MP, the search space is the set of all possibéyb{rooted or
unrooted) trees and the fitness function is the parsimomesafa tree. Finding the
most parsimonious tree is thenranimizationproblem. A solutiors; is better than

s2if f(s1) < f(s2) and the solution; is said to be of lower quality thasy .

1.3.3.1 generation of the initial solution We can generate an initial solution
by two means. We can either generate a solution by randortégtsey taxa that
are put on any branch of the generated tree or use an apptexinethod called
stepwise addition The stepwise addition, also known as Wagner trees, is ttose
the B&B algorithm but only keeps track of one most parsimasitree. Each new
taxon is inserted on all possible branches but only the ttdetwgives the best score
is retained. The order in which the taxa are successivelg@gthys an important
role and the method will generally produce suboptimal treésees obtained by
B&B generally provide final solutions of better quality thinees generated through
a random process.

1.3.3.2 the local optimum problem The main drawback of LS is that it can
often get stuck in docal optimum namely, a solution which is not the best but that
is locally better than its neighbors. More formally, a loogtimums® is such that
Vs' € N(s°), f(s°) < f(s') and f(s°) > f(s*).
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In order to escape from a local optimum several technigues been designed.
Some techniques allow the selection of neighbors of samewariquality than the
current solution, while others modify the evaluation fuotor pertub the current
solution. For example:

1. theside-walk descerlows to chose improving or equivalent neighbors during
a certain number of iterations contrary to a pure desceoti#tign which only
accepts strictly improving neighbors; this less restreetondition allows to
escape from a local optimum and provides more randomnehe frdcess,

2. therandom walkis a similar process which offers the possibility to accept
deteriorating neighbors (i.e. of lower quality) with a giverobability,

3. the well-knowrsimulated annealingnethod (see section 1.3.3.4) is a specific
random walk with a non-constant probability to accept neayk of lower
quality, depending on the importance of the deterioratfonall as the progress
of the search.

The noising techniques can either modify the current smhuti- modify the fitness
function for a given number of iterations. The modificatidnte current solution is
known adterated Local SearcfiLS) [29], while the modification of the fitness func-
tion applied to MP is known aBarsimony Ratchg86, 26]. When a local optimum
s® is reached, the Ratchet noises the evaluation functionvéights of a proportion
of the characters (10-15%) can be increased or some chiaraatebe eliminated. A
second descent is performed frafhusing the noising evaluation functigi. Actu-
ally, s° is generally not a local optimum iff, /), so the configuration is improved
in this new search space (but deteriorated consideringnitial ifitness function).
The solutions’ obtained from a descent usirfg is the starting point for a new LS
process, using the initial score functigh This process is repeated during a fixed
number of iterations.

1.3.3.3 Neighborhoods In the case of the MP problem different neighbor-
hoods have been conceived which are identified under the heanth-swapping
They greatly influence the search for the best solution aathaefly recalled here.

Traditional neighborhoods. Three complementary neighborhoods are tradition-
ally used in phylogenetic reconstruction: NNI, SPR, and T@Re figure 1.3).
Depending on the context and the community, these acronymesrdinate either
the local search algorithm using the related neighborheauhly the neighborhood
function.

e NNI (Nearest Neighbor Interchanlf6] consists in swapping two subtrees
which are separated by a branch. This is a small neighborsinod each tree
of n leaves hag2n — 6) NNI neighbors [42] . — 3 internal branches and
two possible swaps for each branch). An extension to NNI keas Iproposed
by [13, 14] into a parametric neighborhop<¢ECR which shufflep adjacent
branches. In particular, 1-ECR is equivalent to NNI.



METHODS 7
A D A B A B
}< NN }< }<
E—
B C D C C D
insert —*
root
SPR A C
insert —*
re—root
_TBR_ >‘LA C‘H;

Figure 1.3: Traditional neighborhoods: NNI, SPR, TBR

e A SPRmove Subtree Pruning Regrafting45] cuts a branch and leaves two
trees: the clipped tree and the residual tree. The prunedcaa then be
re-grafted on each branch of the residual tree to obtain atopalogy. We
can generate(n — 3)(2n — 7) SPR rearrangements [1]. A particular case of
SPR which moves only one leave in the tree is called STEP.

e TBR (Tree Bisection ReconnectigAb] is a larger neighborhood which breaks
the tree into two subtrees and reconnects the re-rootepetlipree to any
branch of the residual tree. The number of TBR neighborsmidpen the tree
topology, but it is at least equal t@n — 3)(n — 3).

An important property is that these three neighborhoodgabecated: N N1 C
SPR C TBR, and have three distinct levels of complexity, respecfivél(n), O(n?)
andO(n?). At least one of these neighborhoods are used in every peyédg re-
construction software based on branch-swapping.

The complexity of the LS algorithm thus mainly depends orctiraplexity of the
neighborhood. For example, LS+SPR has a worst complexity(ofx n® x m)?
wherei is the number of iterations of the LS algorithm.

2the complexity of the construction of a tree@n x m) and the complexity of SPR i9(n?).
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Variable neighborhoods. A neighborhood affects two main factors of a LS algo-
rithm: the quality of the solutions found and the computatime. Small complexity
neighborhoods like NNI enable to perform a quick search aedime scalable with
the size of instances. When the number of taxa is increaBedsize of the search
space only grows linearly. The main drawback is that theenursolution does not
undergo enough modifications and there is a high probabdlibbserve a premature
convergence to a local optimum. For a large size neighbatlik®TBR, the number
of neighbors to evaluate makes the search more computhyiagmnsive but the
improvements can be important. It follows that SPR, as a umdize neighborhood,
is often used by descent algorithms as it permits to obtdutieas of better quality
than NNI and with less computation time than TBR.

Based on the observation that the size of a neighborhooeéindks the search, [32]
have introduced the notion &ariable Neighborhood SeardvNS). The principle
of the VNS metaheuristics is to successively use differeigborhoods during a
descent by starting from a small size neighborhood and dresédarch is stuck in
a local optimum, one uses a neighborhood of larger size iardgodallow important
modifications of the current solution.

For example, an application of VNS to MP was proprosed by iritend Vianna
[40] with the use of two neighborhoods: SPR and 2-SPR (wheéER is the
composition of SPR transformations). The algorithm starts with a SPR desoel
switches to 2-SPR when a local optimum is found. It obtainsdgeesults despite
an important computation time. In practidedoes not exceed 2 since th&PR
neighborhood, with a size @(an) is rapidly too large.

Progressive neighborhood. Based on the observation that only important topo-
logical modifications of the tree are performed at the begmof the descent, we
have proposed Brogressive Neighborhod@N) [19], which contrary to VNS starts
with a medium size neighborhood (SPR) and is iterativelyiced to NNI. Results
show that PN needs a smaller number of iterations than imadit SPR searches
to obtain solutions of the same quality by limiting the ewian of non pertinent
configurations. Recently PN has been used by [37] to find cmusetrees of high
quality.

In order to make the neighborhood evolve, a topologicahdist on trees is defined
in [19] that enables to build a distance matrix for a set ohtgiven a tree topology.
This distance is also used to control the size of the neididmat (i.e. the distance
between a pruned edge and its inserted edge is at most equgivien distance).

Definition 3 (Topological distance) Leti and j be two taxa of a tred”. The topo-
logical distancedr (4, j) betweeni and j is defined as the number of edges of the
path between parents éfind j, minus 1 if the path contains the root of the tree.

For example, on figure 1.4, andB have the same parefitsodr (A, B) = 0, and
or(A, D) = 3, because the number of edges betwgemdg is 4 (f — k — j —
h — g), and as we pass through the root nédeve decrease the value by one unit.
Note that for the topological distance, we consider treagasoted, this is why we
remove one unit when passing through the root node. The @ssiye neighbohood
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Figure 1.4: Example of topological distange

based on the topological distance was implemented in theaf Hydra [19]. The
reduction process used in Hydra takes into account a pagaiewhich corresponds
to a maximum number of LS iterations. A parametes introduced to control the
size of the neighborhood and is defined as the distance betavpeuned edge and
the edge where it is reinserted (i.e. distandmtween their two descendant nodes).
As such, changing leads to neighborhoods of different sizes which are exglore
with a descent algorithm.

1.3.3.4 OtherLS algorithms  Several other LS algorithms can be used to solve
the MP problem. Among them, we can distinguish:

Tabu SearcliTS) [17] is a kind of descent-ascendant method for whichighier
can be chosen to replace the current solution even if it doesnprove the fithess
function. To avoid the problem of possible cycling and toowallthe search to
overcome the local optimum problem, TS introduces the natforabu list, a short
term memory that maintains a selective history of previpasicountered solutions.
The size of the Tabu ligt, called Tabu tenure, prevents a solution to be reconsidered
for the nextt iterations. [48] has applied TS to solve MP.

Simulated Annealing (SA) [27, 5] like TS accepts suboptis@ltions but with
a certain probability. The principle of SA is inspired fromreealing in metallurgy:
a technique that involves heating and controlled cooling wfaterial to increase the
size of its crystals and reduce their defects. By analogl thils physical process,
at each iteration the current solution is replaced by a randeighbor chosen with
a probability that depends on the difference between thesitfunction value and a
global parameter T (called the temperature). The temperatgradually decreased
during the process such that the current solution changegsalrandomly at the
beginning of the search. The software LVB [4] is an applmatf SA to MP.

The GRASP metaheuristic (Greedy Randomized AdaptativecBdrocedure)
[10, 38] can be considered as an hybridization between algnstruction method
(here stepwise addition) and a LS mechanism. Epérations, GRASP reconsiders
previous choices by improving the current (and incomple&s by Local Search. If
p = 1, then a LS operation follows each taxon insertion. Gengrilese LS stages
are relatively short, and a complete LS is done at the endegbtbcedure (when all
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the taxa are inserted). Moreover, LS stages allow to consmbge randomness in
the greedy part. [40] applied a GRASP+VNS heuristic and dobitain results of
good quality on a set of benchmarks [2, 40].

1.3.4 Evolutionary metaheuristics and genetic algorithms

Evolutionary Algorithms (EA) [24, 31] represent anothemfly of metaheuristics.
Among themGenetic AlgorithmgGA) are based on a population of constant size
of candidate solutions which undergo an evolution procegstive use of operators
named crossover, mutation and selection. The aim of thelptuo is to explore
different interesting areas of the search space in ordeivargify the search. The
crossover operators aims to create new candidate soloéfapring) by combining
two or more solutions (parents). The mutation operatorllpedters offsprings by
introducing randomness and consequently favoring ditsergh small number of
LS steps with pure random selection (blind search) is a contynesed example of
mutation. Finally, the selection operator determines wiitspring will survive and
reproduce. There exist different selection strategiestlile roulette-wheel selection
[3] or the tournament selection [20] for which the best indibal is chosen after
randomly pickingn individuals. If an offspring survives it replaces one of the
individuals of the population.

Algorithm 1.2

Genetic-Algorithm (S, f, N)

P := { chose or generate m individuals € S }

for a given number of crossovers z do
p,q := select-parentsP)
r := crossovefp, q) // r is the offspring of p and q
mutation(r)
if selection(r) then

replace( P, )

end if

end for

1.3.4.1 GA related problems It is now widely acknowledged that genetic
operators like crossover and mutation should be tailorethéotarget problem in
order to integrate problem-specific constraints and thysadre the search.

The literature describes several evolutionary algoritfimngphylogenetic recon-
struction: for instance [30, 28] for the Maximum Likelyhopobblem, [33, 6, 7, 39]
for the MP problem and [8] for distance-based phylogengifraaches. Note that
conventional subtree crossover operators used in tresdlggenetic programming are
not directly applicable here.

Most of these tree crossover operators follow shbtree cutting and regrafting
strategy. More precisely, given two parents, a subtreesissalected from one parent
(the donor). Then the leaves of this subtree are deleted tinenother parent (the
receiver), leading to an intermediate tree. The final cinéd ts obtained by regrafting
the subtree from the donor on a merge point of the intermediae. Obviously,
exchanging the donor and receiver allows to obtain a sedoifdi &-igure 1.5 shows
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an example with 6 species, where the subfrég’') is removed from the donor and
re-inserted in the receiver.

receiver donor

Figure 1.5: Cut and regraft example

One can observe that with such a crossover strategy, ontiaparformation
is transmitted from parents to offspring. In the exampleegiin Figure 1.5, a
subtree with 2 leaves (out of 6) of the donor tree is passea diet child. In one
sense, only a small portion of information of the donor is$raitted while a larger
portion of information related to the 4 other species of theat tree is lost during the
crossover operation. To ensure a global combination andnassion of information
during crossover operations, [18] introduce a specific ajpetbased on the notion
of topological distancédetween two leaves. The two parents are transformed into
distance matrices, which are combined by using arithmeigrators in order to
obtain an offspring matrix. From the offspring matrix a tieegenerated using a
distance method (for example UPGMA or NJ). This operatorechiiBIP will be
describe in the next section.

The Tree-Fusing [22] is an other example of crossover ojperatGiven two
parent trees, this technigue selects an improving tree gritenpopulation of valid
trees constituted by exchanging subtrees between thetparen

Another important point to keep in mind is the diversificatiof the population.

If the individuals areoo closethe search will only focus on one area of the search
space. Generally, solutions of CO problems are represasteectors of values, but
in the case of MP the solutions are trees: while it is quitgy é@sompare vectors, it

is less obvious to compare trees.

1.3.4.2 Distance-Based Information Preservation Crossov ~ er The Distance-
Based Information Preservation (DiBIP) crossover is baseithe notion ofopolog-

ical distance(see definition 3) and aims to preseneasnmorproperties of parents

in terms of topological distance between species. By comm@mean that two
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species that are close (resp. far) in both parents shoulctkise (resp. far) in the
child.

The general approach (see Algorithm 1.3) can be summarizddilaws: (1)
calculate a distance matrix for each parent tree, (2) coenthi@a matrices of the two
parents to get a third matrix, and (3) create a child tree ftloisinew matrix. 7
andT> represent the input trees (parents); 7 — D is a tree-to-distance operator
that allows to obtain a distance matrix from a tree; D x D — D is a matrix
operator that allows to combine two distance matrices talypece a new distance
matrix, andA : D — 7 is a distance-to-tree operator that allows to construce tr
given a distance matrix. The three operatdrsd and A represent the three steps
to transform two parent trees into one child which preseopmliogical properties
shared by both parents.

Algorithm 1.3

function DiBIP(T1, T, 67, A, &, A)
Dy = A(T;) for (i=1,2)
D*: D*= Dy ® D2

T* = A(D*)
return T
Parent 1 :T Parent 2 :T5

I m T O O zZ ©~ ®W <« X » — O
z - @@ O r uom>» X <« © T O

Figure 1.6: Example of input tred§ andTx; for the DiBIP crossover

This general scheme gives rise to several comments: fiestliftance measure
should ideally be correlated to the evolutionary changewéden species. For in-
stance, two species separated by a small number of evadugichanges should have
a smaller distance than two species separated by a largeemwhbhanges. The
Hamming distancé not appropriate here because this metric is totally irddpnt
of tree topologies.

Second, in order to preserve common properties of the padening the crossover
operation, a valid matrix operatar should meet some specific requirements mean-
ingfulto the MP problem in order to help transmit propertibared by both parents to
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D1|ABCDEFGHIJKLMN
A |- B

B |6 - C

c|5 3 - D

D|1 5 4 - E

E|5 5 4 4 - F

F|5 5 4 4 2 - G

G|5 3 0 4 4 4 - H

H|5 5 4 4 0 2 4 - |

I {0 6 5 1 5 5 5 &5 -7

J|5 1 2 4 4 4 2 4 5 - K
K12 4 3 1 3 3 3 3 2 3 - 1L
L7 1 4 6 6 6 4 6 7 2 5 - M
M|{5 5 4 4 2 0 4 2 5 4 3 6 - N
N|7 1 4 6 6 6 4 6 7 2 5 0 6 -
D2|ABCDEFGHIJKLMN
Al - B

B |8 - C

cl|4 6 - D

bD|1 7 3 - E

E|O0O 8 4 1 - F

F{9 1 7 8 9 - G

G|4 6 0 3 4 7 - H

H|l2 6 2 1 2 7 2 - |

Il |6 4 4 5 6 5 4 4 -1

J|7 1 5 6 7 2 5 5 3 -K
K14 4 2 3 4 5 2 2 2 3 - 1L
L9 127 8 9 0 7 7 5 2 5 - M
M|6 2 4 5 6 3 4 4 2 1 2 3 - N
N|6 4 4 5 6 5 4 4 0 3 2 5 2 -

Figure 1.7: Topological distance matricesigfand5

the child. For instance, if a pair of specie$, B) is closer than another pdi€’, D) in
both parents, then this property should be conserved byrtissaver process and be
transmitted to the resulting child. The arithmetic mearsisrgple valid operator, even
ifitis possible to favor closeness or distant relation$whie parametric operator given
by(D1®D2)(ZaJ) = . mln{Dl(ZaJ)a D2(Za‘7)}+(1ia) maX{Dl(Zv.])v DQ(Zv.])}
with o € [0, 1].

While the resulting distance matrix is made with topologitiatances and not
evolutionary ones, a simple clustering algorithm like UP&N well-adapted to
provide a child tree. It ensuresto aggregate taxa whichase i parents (depending
on the selected operator instantiation).

To illustratre this technique, we provide an example witb parents (see Fig. 1.6)
for which we compute topological matric€g andD- (see Fig. 1.7). For simplicity’s
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D* =D+ Do
A B C D E F G H | J K L M N
A - B
B|l14 - C
CcC| 9 9 - D
D 2 12 7 - E
E|5 13 8 5 - F
Fl14 6 11 12 11 - G
G| 9 9 0 7 8 11 - H
Hl7 11 6 5 2 9 6 - |
| 6 10 9 6 11 10 9 9 - J
J |12 2 7 10 11 6 7 9 8 - K
K 6 8 5 4 7 8 5 5 4 6 L
L{16 2 11 14 15 6 11 13 12 4 10 -M
M |11 7 8 9 8 3 8 6 7 5 5 9 - N
N |13 5 8§ 11 12 11 8 10 7 5 7 5 8 -
Child : T* = A(D*)
M
F
B
L
J
N
H
E
D
A
K
|
C
G

Figure 1.8: Topological distance matrix of child and treatttesults from UPGMA
for the DiBIP crossover

sake, we used the addition operator to combine the two parainices into the child
matrix D* (see Fig. 1.8).
1.3.5 Memetic methods

A memetic or hydrid algorithm (MA) is the combination of a GA&lped by a LS
improver [34]. Each time a new individual is generated by ®&#g, it is submitted
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to a LS improvement. In algorithm 1.2, the mutation is thellofeed by a descent
that starts with-. MA alternates intensification (Local Search) and diveratfon
(crossover) stages. Despite the fact that MA are more caatipnglly intensive they
tend to provide solutions of better quality than GA.

1.3.6 Problem-specific improvements

Different techniques which are specific to MP have been dgezl in order to
improve the search or decrease the computation time needebtain a tree of
minimum score.

1.3.6.1 Divide and conquer methods For example, Sectorial Search (SS)
[22] is a special kind of tree rearrangement that focusesectoss (subtrees) of a
tree. SSis based on the divide and conquer principle whétesgs can be analyzed
more quickly than the overall tree. Sectors are analyzedraggly and if a better
configuration is found it will replace the previous one. Tdifferent kinds of
SS have been defined in [22fandomfor which sectors are selected randomly,
consensus-basethdmixed Experiments show that a sector should have between 35
and 55 nodes in order to obtain significant improvements.tiAerdfamily of divide
and conquer methods are the disc-covering methods (DCMY@E5 DCM1 can be
considered as an attempt to produce overlapping clustengiimize the intracluster
diameter and produces good subproblems. Neverthelesgrtioéure induced by the
decomposition is often poor. DCM2 improves DCM1, but thegoblems obtained
tend to be too large. Finally, DCM3 uses a dynamically updigtgde tree in order
to direct the decomposition. It then enables to focus thechaan thebestparts of
the search space.

1.3.6.2 Multi-character optimization The most time consuming function in
a search algorithm is the function of Fitch (see algorith#).1This function takes as
input two taxat1 andt2. The output is the hypothetical taxe$ and the number of
changes returned by the function. Remember that the sunh thieathanges of the
overall tree constitutes the parsimony score.

Algorithm 1.4

function fitch (¢1,¢2,¢3 : array[l..m] of chan : integer
changes := 0
for i := 1 tom do
t3[i] :=t1[s] N t2[5]
if (t3[i] ==0) then
t3[i] :=t1[s] U t2[5]
changes := changes + 1
end if
end for
return changes

We can implement this function by taking full advantage ahsaelevant features
offered by modern x86 processors. More precisely, the dor®dern x86 processors
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has a SSE (SIMD Streaming Extension) unit which enablescttorizehe code. The
vectorization of the code means the application of the sapegadion on different
data at the same time. Intel and AMD processors offer a se5&Bregisters of 128
bits long on a 32 bits architecture. If we represent a nuitleatith one byte then a
SSE register can store and handle 16 bytes (nucleotidesina¢ a

In order to efficiently perform the union and intersectioratgorithm 1.4, each
character is represented by a power of 2, figfim= 1 () to 2* = 16 (T'), except
for 7 which can represent any other character and is then coddtebyatue31 =
142+ -.-416. The union can be performed by the binary-OR &nd the
intersection by the binary-AND&). The vectorization of Fitch’s function gives a
90% improvementon Intel Core 2 Duo processors, while otteigectures (pentium
I/11I/4, pentium-M, Athlon 64, Sempron) provide 70 to 80%provement. This
improvement then enables to divide the overall computaiioe of a program by
a factor of 3 to 4. A first pseudo-code was given by [43] for Pd® processors
and recently [41] released the code for Intel and AMD prooess Finally, note
that the most recent processors (Intel Core i5 or i7, AMD Bh&nintroduce the
SSE4.2 instruction set that contains the POPCNT functiciclhwtounts the number
of bits set to one in a register. This function is used esalytio determine the
number of changes that occur when one performs the unioneleaiwit [i:i+15]
and t2[i:i+15]. By replacing the implementation of POPCNT by the native
SSEA4.2 instruction we can see an overall improvement of S%a6 Intel Core i7
860 processor) compared to the basic implementation.

1.3.6.3 Fast character optimization techniques A set of methods [21, 16,
43, 47] fall into the category dhast character optimizatiotechniques, i.e. a set of
shortcuts that helps decrease the computation time by calttdating the whole tree
each time a SPR or TBR modification is applied. Those teclasigue particularly
effective when an important number of SPR or TBR neighbossthe evaluated. In
the case of Fitch’s parsimony, characters are considened@asdered and multistate:
they can transform from one state to another independeftlya consequence, an
unrooted tree may be rooted on any branch with no modificatfdhe parsimony
score, which means there is a potential root node for anychran

In [21], Goloboff proposed a method for indirect calculatiof the parsimony
score which uses two passes. This method needs only to cerimaroot of the
clipped tree with the potential root of the target tree taadbthe score of a potential
new tree for a SPR search. Gladstein [16] also proposed amithlgp which is
exact and correct. In [47] a two passes algorithm is desgntdgich has the same
complexity of Goloboff's and is faster than the incrememathod of Gladstein.

1.4 CONCLUSION

Dueto its inherent complex structure, the resolution ofdinge maximum parsimony
problem can be efficiently achieved by means of optimizatohniques.

Table 1.2 gives an overview of the complexity of the diffénerethods described
through out this chaptern represents the number of taxa andhe number of sites
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Method Complexity

exhaustive O(n™ x m)

branch and bound o(n™ x m)

stepwise O(n® x m) or O(n* x m)

LS+NNI O(i x n? x m)

LS+SPR O(i x n® x m)

LS+TBR O(i x n* x m)

GA O(p x n xm)+ X X (cross + mut + sel)
MA O(p x n x m) + X X (cross + mut + sel + LS)

Table 1.2: Complexity of methods

of each taxa. For Local Searchrepresents the number of iterations of the search.
For Genetic Algorithmgp is the size of the populatiolX is the number of crossovers
andcross, mut, sel are respectively the complexity of the crossover, mutagiod
selection operations. The last tef® is the complexity of the LS method used to
improve a solution.

Local Search methods are the standard resolvers for thenMamwiParsimony
problem and are widely used. Genetic Algorithms can ob&snlts of better quality
than LS only if the crossover, mutation and selection opesadre tailored to the
problem. Finally, Memetic Algorithms, as a combination & &nd LS are the meth-
ods that can achieve results of very good quality but theyesiones lack efficiency
compared to LS. A lot of other techniques like the Ratchet@atpnique or Sectorial
Search are also very useful to escape from local optimum lacedly improve the
overall tree.

New tools like the topological distance and the DiBiP cressshow that new
approaches can help desiglevertechniques to help solve the MP problem more
efficiently and reach solutions of higher quality.
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