
CHAPTER 1

HEURISTIC METHODS FOR
PHYLOGENETIC RECONSTRUCTION
WITH MAXIMUM PARSIMONY

In this chapter we explain how metaheuristics like local search, genetic and memetic
algorithms are used for phylogenetic reconstruction usingMaximum Parsimony. We
review some of the main concepts used to improve the search ofa good solution which are
inherited from the Operational Research and CombinatorialOptimization communities.

—Adrien Göeffon, Jean-Michel Richer and Jin-Kao Hao

1.1 INTRODUCTION

Maximum Parsimony (MP) is a character-based approach that relies on the work of
the german entomologist Willy Hennig (1913-1976). Although Hennig’s work has
generated significant controversy, the principles that underlie what was later called
cladistics, laid the basis for a convenient and powerful method for the analysis of
molecular data with the use of computers. For more details about the history of
MP see [9] (p. 136). Cladistics also referred as phylogenetic systematics can be
viewed as a philosophy of classification that arranges organisms only by their order
of branching in an evolutionary tree. The leaves of the tree are labelled with the OTUs
(Operational Taxonomic Unit) of the problem. Ideally, the trees (or cladograms) that
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2 HEURISTIC METHODS FOR PHYLOGENETIC RECONSTRUCTION WITH MAXIMUM PARSIMONY

result from a MP analysis show the evolution of synapomorphies (derived character
states inherited from the most common ancestor) between species. Many different
cladograms can exist for a given set of taxa but the MP criterion imposes to chose
the ones with the fewest changes.

1.2 DEFINITIONS, FORMAL BACKGROUND

1.2.1 Parsimony and Maximum Parsimony

With parsimony methods, each position (or site) in the multiple alignment is con-
sidered separately. First note that there are different parsimony optimality criterion
known as Fitch, Wagner, Camin-Sokal, Dollo or weighted parsimony. Those criteria
determine the number of changes of a substitution from one site to another. In the
rest of this chapter we are only interested in Fitch (or unweighted) parsimony for
which all mutations are given the same weight of one unit.

The input of the problem consists of a setL of n sequences of the same length
m expressed over an alphabetΣ, whereΣ = {−, A, C, G, T, ?}1 is composed of
four nucleotides, the gap symbol- (if L is the result of a multiple alignment) and
eventually the missing character symbol:?. The second input of the problem is a
binary rooted or unrooted tree whose leaves are labelled with the sequences ofL.
Other nodes of the tree, called internal nodes, have two descendants (see fig. 1.1).
We can then define two problems calledsmallandlargeparsimony problems.

S1 S2 S4S3 S1 S2 S4S3

Figure 1.1: Two topologies for a binary rooted tree of 4 sequences

Definition 1 (Small parsimony problem) Given a setL of n sequences of length
m and a treeT whose leaves are labelled with sequences ofL, find the score of
parsimony ofT

In order to compute the overall cost (or score) of a tree (alsoknown astree length),
Fitch’s algorithm [11] gradually moves back from the leavesto the root and computes
hypothetical ancestral taxa. This is often referred to as the first-pass of the algorithm
(see algorithm 1.4 for a more formal description). At each position of an internal node

1It is also possible to use protein sequences with a 20 lettersalphabet of amino-acids.
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a set of bases is assigned. If two descendantsx andy of an internal nodev have some
bases in common they are assigned to the internal nodeLv = Lx ∩ Ly. Otherwise
all bases of both descendants are assigned to the parentLv = Lx ∪ Ly and a cost of
one unit is added to the overall score of the tree (see fig. 1.2). The second-pass of the
algorithm, which starts from the root and reaches the leaves, enables to assign one
nucleotide for a site if many possibilities exist, in order to obtain a hypothetical tree.
Only the first-pass is necessary to obtain the parsimony score.

Definition 2 (Large parsimony problem or Maximum Parsimony problem) Given
a setL of n sequences of lengthm, find a most parsimonious treeT , i.e. a tree with
minimum score.

The cost of a tree can be computed in polynomial time [11]. A rooted binary tree
of n leaves hasn − 1 internal nodes, thus the complexity of the small parsimony
problem isO(n × m). Indeed, we need to compute the hypothetical sequences of
n − 1 internal nodes. However, the search for an optimal tree is computationally
intractable: the large parsimony problem is extremely difficult to solve since it is
equivalent to theNP-completeSteiner problem in a hypercube [12]. This is why, as
we shall see later on, heuristics methods constitute the main alternative in order to
obtain near-optimal trees with reasonable computation time [21, 36].
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Figure 1.2: First pass and second pass for a tree of score of 3 under Fitch’s optimality
criterion

1.3 METHODS

1.3.1 Combinatorial Optimization

Combinatorial Optimization problems consist in finding thebestobject also called
the optimum or optimal solution in a finite (or possibly countably infinite) set of
objects called solutions. This class of problem is generally NP-complete [15] which
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roughly means that the computing time needed by an algorithmto find an optimal
solution would increase exponentially with the size of the problem to solve. Due
to the importance of these problems, many algorithms have been developed. These
algorithms are of twofold:

• exactalgorithms are guaranteed to find the best solution but mightneed expo-
nential computation time, they try to optimize the search byignoring configu-
rations that can be identified as inappropriate during the search.

• approximatemethods trade optimality for efficiency by examining an appro-
priate subset of the solutions in order to find a good near-optimal solution.

1.3.2 Exact approach

1.3.2.1 exhaustive enumeration The simplest algorithm that can be designed
to find the most parsimonious tree(s) is to generate all possible trees and compute
their parsimony score. However tree searches are extremelydifficult because the
number of possible trees grows exponentially with the number of taxa (see table 1.1).

Table 1.1: number of unrooted and rooted binary trees
number of taxa number of unrooted trees number of rooted trees

10 2.0e+06 3.4e+07
20 2.2e+20 8.2e+21
30 8.6e+36 4.9e+38
40 1.3e+55 1.0e+57
50 2.8e+74 2.7e+76
80 2.1e+137 3.4e+139
n

Q

n

i=3
(2i − 5)

Q

n

i=2
(2i − 3)

1.3.2.2 branch and bound A first alternative to tackle the complexity of MP is
the branch and bound (B&B) algorithm [23]. We first generate atree, not necessarily
optimal, and compute its parsimony score which will serve asan upper bound. We
then start the construction of a new tree, initially empty, and add a new taxon at each
iteration. Each new taxon is put on all possible branches of the previous trees and
generates a set of new trees which are put in a list. The trees which have a parsimony
score greater than the upper bound are withdrawn from the list. The main drawback
of the B&B algorithm is that the list of trees is too importantin order for the algorithm
to be efficient, that is why the algorithm can only be applied on a set of less than 20
taxa.

1.3.3 Local Search methods

Due to the amount of trees to evaluate and the inefficiency of exact methods, it is
preferable to use approximate approaches for inferring large phylogenetic trees.
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Local Search (LS) uses iterative improvements to seek for solutions of better
quality [25]. A LS algorithm consists of four essentials parts:

• a search spaceS composed of a set of candidate solutions

• an evaluation functionf(s) of a solutions ∈ S, also calledfitnessfunction, in
order to assess the quality of a solution

• a neighborhood functionN(s) ⊂ S in order to define for each solution a subset
of solutions which can be obtained by slightly modifying thecurrent solution

• a transition strategy to accept or reject a neighboring solution

Typically, a LS algorithm (see algorithm 1.1) starts from aninitial solution s

and then iteratively replaces the current solution by a neighbors′ ∈ N(s) of better
quality, until no improving neighbor can be found. This process is sometimes called
a replicationin the MP literature and adescentfor the optimization community. The
replacement of the current solution favors neighbors of better quality with the intent
to progressively improve the quality of the solution.

Algorithm 1.1

descent(S, f, N)

s := chosse or generate an initial solution ∈ S

for a given number of iterations i do
find s′ ∈ N(s) such that f(s′) < f(s)
s := s′

end for
return s

In the case of MP, the search space is the set of all possible binary (rooted or
unrooted) trees and the fitness function is the parsimony score of a tree. Finding the
most parsimonious tree is then aminimizationproblem. A solutions1 is better than
s2 if f(s1) < f(s2) and the solutions2 is said to be of lower quality thans1.

1.3.3.1 generation of the initial solution We can generate an initial solution
by two means. We can either generate a solution by randomly selecting taxa that
are put on any branch of the generated tree or use an approximate method called
stepwise addition. The stepwise addition, also known as Wagner trees, is closeto
the B&B algorithm but only keeps track of one most parsimonious tree. Each new
taxon is inserted on all possible branches but only the tree which gives the best score
is retained. The order in which the taxa are successively added plays an important
role and the method will generally produce suboptimal trees. Trees obtained by
B&B generally provide final solutions of better quality thantrees generated through
a random process.

1.3.3.2 the local optimum problem The main drawback of LS is that it can
often get stuck in alocal optimum: namely, a solution which is not the best but that
is locally better than its neighbors. More formally, a localoptimums⋄ is such that
∀s′ ∈ N(s⋄), f(s⋄) ≤ f(s′) andf(s⋄) > f(s⋆).
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In order to escape from a local optimum several techniques have been designed.
Some techniques allow the selection of neighbors of same or lower quality than the
current solution, while others modify the evaluation function or pertub the current
solution. For example:

1. theside-walk descentallows to chose improvingor equivalent neighborsduring
a certain number of iterations contrary to a pure descent algorithm which only
accepts strictly improving neighbors; this less restrictive condition allows to
escape from a local optimum and provides more randomness to the process,

2. the random walkis a similar process which offers the possibility to accept
deteriorating neighbors (i.e. of lower quality) with a given probability,

3. the well-knownsimulated annealingmethod (see section 1.3.3.4) is a specific
random walk with a non-constant probability to accept neighbors of lower
quality, dependingon the importance of the deterioration as well as the progress
of the search.

The noising techniques can either modify the current solution or modify the fitness
function for a given number of iterations. The modification of the current solution is
known asIterated Local Search(ILS) [29], while the modification of the fitness func-
tion applied to MP is known asParsimony Ratchet[36, 26]. When a local optimum
s⋄ is reached, the Ratchet noises the evaluation function: theweights of a proportion
of the characters (10-15%) can be increased or some characters can be eliminated. A
second descent is performed froms⋄ using the noising evaluation functionf ′. Actu-
ally, s⋄ is generally not a local optimum in(S, f ′), so the configuration is improved
in this new search space (but deteriorated considering the initial fitness function).
The solutions′ obtained from a descent usingf ′ is the starting point for a new LS
process, using the initial score functionf . This process is repeated during a fixed
number of iterations.

1.3.3.3 Neighborhoods In the case of the MP problem different neighbor-
hoods have been conceived which are identified under the termbranch-swapping.
They greatly influence the search for the best solution and are briefly recalled here.

Traditional neighborhoods. Three complementary neighborhoods are tradition-
ally used in phylogenetic reconstruction: NNI, SPR, and TBR(see figure 1.3).
Depending on the context and the community, these acronyms denominate either
the local search algorithm using the related neighborhood or only the neighborhood
function.

• NNI (Nearest Neighbor Interchange) [46] consists in swapping two subtrees
which are separated by a branch. This is a small neighborhoodsince each tree
of n leaves has(2n − 6) NNI neighbors [42] (n − 3 internal branches and
two possible swaps for each branch). An extension to NNI has been proposed
by [13, 14] into a parametric neighborhoodp-ECR which shufflesp adjacent
branches. In particular, 1-ECR is equivalent to NNI.
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Figure 1.3: Traditional neighborhoods: NNI, SPR, TBR

• A SPRmove (Subtree Pruning Regrafting) [45] cuts a branch and leaves two
trees: the clipped tree and the residual tree. The pruned tree can then be
re-grafted on each branch of the residual tree to obtain a newtopology. We
can generate2(n − 3)(2n − 7) SPR rearrangements [1]. A particular case of
SPR which moves only one leave in the tree is called STEP.

• TBR (Tree Bisection Reconnection) [45] is a larger neighborhoodwhich breaks
the tree into two subtrees and reconnects the re-rooted clipped tree to any
branch of the residual tree. The number of TBR neighbors depends on the tree
topology, but it is at least equal to(2n − 3)(n − 3)2.

An important property is that these three neighborhoods areimbricated:NNI ⊆
SPR ⊆ TBR, and have three distinct levels of complexity,respectively: O(n), O(n2)
andO(n3). At least one of these neighborhoods are used in every phylogenetic re-
construction software based on branch-swapping.

The complexity of the LS algorithm thus mainly depends on thecomplexity of the
neighborhood. For example, LS+SPR has a worst complexity ofO(i × n3 × m)2

wherei is the number of iterations of the LS algorithm.

2the complexity of the construction of a tree isO(n × m) and the complexity of SPR isO(n2).
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Variable neighborhoods. A neighborhood affects two main factors of a LS algo-
rithm: the quality of the solutions found and the computation time. Small complexity
neighborhoods like NNI enable to perform a quick search and are time scalable with
the size of instances. When the number of taxa is increased, the size of the search
space only grows linearly. The main drawback is that the current solution does not
undergo enough modifications and there is a high probabilityto observe a premature
convergence to a local optimum. For a large size neighborhood like TBR, the number
of neighbors to evaluate makes the search more computationally intensive but the
improvements can be important. It follows that SPR, as a medium size neighborhood,
is often used by descent algorithms as it permits to obtain solutions of better quality
than NNI and with less computation time than TBR.

Based on the observation that the size of a neighborhoodinfluences the search, [32]
have introduced the notion ofVariable Neighborhood Search(VNS). The principle
of the VNS metaheuristics is to successively use different neighborhoods during a
descent by starting from a small size neighborhood and once the search is stuck in
a local optimum, one uses a neighborhood of larger size in order to allow important
modifications of the current solution.

For example, an application of VNS to MP was proprosed by Ribeiro and Vianna
[40] with the use of two neighborhoods: SPR and 2-SPR (wherel-SPR is the
composition ofl SPR transformations). The algorithm starts with a SPR descent and
switches to 2-SPR when a local optimum is found. It obtains good results despite
an important computation time. In practice,l does not exceed 2 since thel-SPR
neighborhood, with a size ofO(n2

l

) is rapidly too large.

Progressive neighborhood. Based on the observation that only important topo-
logical modifications of the tree are performed at the beginning of the descent, we
have proposed aProgressive Neighborhood(PN) [19], which contrary to VNS starts
with a medium size neighborhood (SPR) and is iteratively reduced to NNI. Results
show that PN needs a smaller number of iterations than traditional SPR searches
to obtain solutions of the same quality by limiting the evaluation of non pertinent
configurations. Recently PN has been used by [37] to find consensus trees of high
quality.

In order to make the neighborhood evolve,a topological distance on trees is defined
in [19] that enables to build a distance matrix for a set of taxa given a tree topology.
This distance is also used to control the size of the neighborhood (i.e. the distance
between a pruned edge and its inserted edge is at most equal toa given distance).

Definition 3 (Topological distance) Let i andj be two taxa of a treeT . The topo-
logical distanceδT (i, j) betweeni and j is defined as the number of edges of the
path between parents ofi andj, minus 1 if the path contains the root of the tree.

For example, on figure 1.4,A andB have the same parentf , soδT (A, B) = 0, and
δT (A, D) = 3, because the number of edges betweenf andg is 4 (f → k → j →
h → g), and as we pass through the root nodek, we decrease the value by one unit.
Note that for the topological distance, we consider trees asunrooted, this is why we
remove one unit when passing through the root node. The progressive neighbohood
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based on the topological distance was implemented in the software Hydra [19]. The
reduction process used in Hydra takes into account a parameterM which corresponds
to a maximum number of LS iterations. A parameterd is introduced to control the
size of the neighborhood and is defined as the distance between a pruned edge and
the edge where it is reinserted (i.e. distanceδ between their two descendant nodes).
As such, changingd leads to neighborhoods of different sizes which are explored
with a descent algorithm.

1.3.3.4 Other LS algorithms Several other LS algorithms can be used to solve
the MP problem. Among them, we can distinguish:

Tabu Search(TS) [17] is a kind of descent-ascendant method for which a neighbor
can be chosen to replace the current solution even if it does not improve the fitness
function. To avoid the problem of possible cycling and to allow the search to
overcome the local optimum problem, TS introduces the notion of Tabu list, a short
term memory that maintains a selective history of previously encountered solutions.
The size of the Tabu listtt, called Tabu tenure, prevents a solution to be reconsidered
for the nexttt iterations. [48] has applied TS to solve MP.

Simulated Annealing (SA) [27, 5] like TS accepts suboptimalsolutions but with
a certain probability. The principle of SA is inspired from annealing in metallurgy:
a technique that involves heating and controlled cooling ofa material to increase the
size of its crystals and reduce their defects. By analogy with this physical process,
at each iteration the current solution is replaced by a random neighbor chosen with
a probability that depends on the difference between the fitness function value and a
global parameter T (called the temperature). The temperature is gradually decreased
during the process such that the current solution changes almost randomly at the
beginning of the search. The software LVB [4] is an application of SA to MP.

The GRASP metaheuristic (Greedy Randomized Adaptative Search Procedure)
[10, 38] can be considered as an hybridization between a greedy construction method
(here stepwise addition) and a LS mechanism. Everyp iterations,GRASP reconsiders
previous choices by improving the current (and incomplete)tree by Local Search. If
p = 1, then a LS operation follows each taxon insertion. Generally, these LS stages
are relatively short, and a complete LS is done at the end of the procedure (when all
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the taxa are inserted). Moreover, LS stages allow to consider more randomness in
the greedy part. [40] applied a GRASP+VNS heuristic and could obtain results of
good quality on a set of benchmarks [2, 40].

1.3.4 Evolutionary metaheuristics and genetic algorithms

Evolutionary Algorithms (EA) [24, 31] represent another family of metaheuristics.
Among them,Genetic Algorithms(GA) are based on a population of constant size
of candidate solutions which undergo an evolution process with the use of operators
named crossover, mutation and selection. The aim of the population is to explore
different interesting areas of the search space in order to diversify the search. The
crossover operators aims to create new candidate solutions(offspring) by combining
two or more solutions (parents). The mutation operator locally alters offsprings by
introducing randomness and consequently favoring diversity. A small number of
LS steps with pure random selection (blind search) is a commonly used example of
mutation. Finally, the selection operator determines which offspring will survive and
reproduce. There exist different selection strategies like the roulette-wheel selection
[3] or the tournament selection [20] for which the best individual is chosen after
randomly pickingn individuals. If an offspring survives it replaces one of the
individuals of the population.

Algorithm 1.2

Genetic-Algorithm (S, f, N)

P := { chose or generate n individuals ∈ S }
for a given number of crossovers x do

p, q := select-parents(P)
r := crossover(p, q) // r is the offspring of p and q

mutation(r)
if selection(r) then

replace(P, r)

end if
end for

1.3.4.1 GA related problems It is now widely acknowledged that genetic
operators like crossover and mutation should be tailored tothe target problem in
order to integrate problem-specific constraints and thus improve the search.

The literature describes several evolutionary algorithmsfor phylogenetic recon-
struction: for instance [30, 28] for the Maximum Likelyhoodproblem, [33, 6, 7, 39]
for the MP problem and [8] for distance-based phylogenetic approaches. Note that
conventional subtree crossover operators used in tree-based genetic programming are
not directly applicable here.

Most of these tree crossover operators follow thesubtree cutting and regrafting
strategy. More precisely, given two parents, a subtree is first selected from one parent
(the donor). Then the leaves of this subtree are deleted fromthe other parent (the
receiver), leading to an intermediate tree. The final child tree is obtained by regrafting
the subtree from the donor on a merge point of the intermediate tree. Obviously,
exchanging the donor and receiver allows to obtain a second child. Figure 1.5 shows
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an example with 6 species, where the subtree(A, C) is removed from the donor and
re-inserted in the receiver.

A B C D E F A C B D E F

B D A C E F

donorreceiver

B D E F

child

1. cut

2. remove leaves A, C
3. regraft

Figure 1.5: Cut and regraft example

One can observe that with such a crossover strategy, only partial information
is transmitted from parents to offspring. In the example given in Figure 1.5, a
subtree with 2 leaves (out of 6) of the donor tree is passed on to the child. In one
sense, only a small portion of information of the donor is transmitted while a larger
portion of information related to the 4 other species of the donor tree is lost during the
crossover operation. To ensure a global combination and transmission of information
during crossover operations, [18] introduce a specific operator based on the notion
of topological distancebetween two leaves. The two parents are transformed into
distance matrices, which are combined by using arithmetic operators in order to
obtain an offspring matrix. From the offspring matrix a treeis generated using a
distance method (for example UPGMA or NJ). This operator named DiBIP will be
describe in the next section.

The Tree-Fusing [22] is an other example of crossover operation. Given two
parent trees, this technique selects an improving tree among the population of valid
trees constituted by exchanging subtrees between the parents.

Another important point to keep in mind is the diversification of the population.
If the individuals aretoo closethe search will only focus on one area of the search
space. Generally, solutions of CO problems are representedas vectors of values, but
in the case of MP the solutions are trees: while it is quite easy to compare vectors, it
is less obvious to compare trees.

1.3.4.2 Distance-Based Information Preservation Crossov er The Distance-
Based Information Preservation (DiBIP) crossover is basedon the notion oftopolog-
ical distance(see definition 3) and aims to preservescommonproperties of parents
in terms of topological distance between species. By commonwe mean that two
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species that are close (resp. far) in both parents should stay close (resp. far) in the
child.

The general approach (see Algorithm 1.3) can be summarized as follows: (1)
calculate a distance matrix for each parent tree, (2) combine the matrices of the two
parents to get a third matrix, and (3) create a child tree fromthis new matrix. T1

andT2 represent the input trees (parents),∆ : T → D is a tree-to-distance operator
that allows to obtain a distance matrix from a tree,⊕ : D × D → D is a matrix
operator that allows to combine two distance matrices to produce a new distance
matrix, andΛ : D → T is a distance-to-tree operator that allows to construct a tree
given a distance matrix. The three operators∆, ⊕ andΛ represent the three steps
to transform two parent trees into one child which preserve topological properties
shared by both parents.

Algorithm 1.3

function DiBIP(T1, T2, δT , ∆, ⊕, Λ)
D1 = ∆(Ti) for (i=1,2)

D∗: D∗ = D1 ⊕ D2

T ∗ = Λ(D∗)
return T ∗

Parent 1 :T1 Parent 2 :T2
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Figure 1.6: Example of input treesT1 andT2 for the DiBIP crossover

This general scheme gives rise to several comments: first, the distance measure
should ideally be correlated to the evolutionary changes between species. For in-
stance, two species separated by a small number of evolutionary changes should have
a smaller distance than two species separated by a large number of changes. The
Hamming distanceis not appropriate here because this metric is totally independent
of tree topologies.

Second, in order to preserve common properties of the parents during the crossover
operation, a valid matrix operator⊕ should meet some specific requirements mean-
ingful to the MP problem in order to help transmit propertiesshared by both parents to
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D1 A B C D E F G H I J K L M N

A - B
B 6 - C
C 5 3 - D
D 1 5 4 - E
E 5 5 4 4 - F
F 5 5 4 4 2 - G
G 5 3 0 4 4 4 - H
H 5 5 4 4 0 2 4 - I
I 0 6 5 1 5 5 5 5 - J
J 5 1 2 4 4 4 2 4 5 - K
K 2 4 3 1 3 3 3 3 2 3 - L
L 7 1 4 6 6 6 4 6 7 2 5 - M
M 5 5 4 4 2 0 4 2 5 4 3 6 - N
N 7 1 4 6 6 6 4 6 7 2 5 0 6 -

D2 A B C D E F G H I J K L M N

A - B
B 8 - C
C 4 6 - D
D 1 7 3 - E
E 0 8 4 1 - F
F 9 1 7 8 9 - G
G 4 6 0 3 4 7 - H
H 2 6 2 1 2 7 2 - I
I 6 4 4 5 6 5 4 4 - J
J 7 1 5 6 7 2 5 5 3 - K
K 4 4 2 3 4 5 2 2 2 3 - L
L 9 1 7 8 9 0 7 7 5 2 5 - M
M 6 2 4 5 6 3 4 4 2 1 2 3 - N
N 6 4 4 5 6 5 4 4 0 3 2 5 2 -

Figure 1.7: Topological distance matrices ofT1 andT2

the child. For instance, if a pair of species(A, B) is closer than another pair(C, D) in
both parents, then this property should be conserved by the crossover process and be
transmitted to the resulting child. The arithmetic mean is asimple valid operator, even
if it is possible to favor closeness or distant relations with the parametric operator given
by(D1⊕D2)(i, j) = α. min{D1(i, j), D2(i, j)}+(1−α). max{D1(i, j), D2(i, j)}
with α ∈ [0, 1].

While the resulting distance matrix is made with topological distances and not
evolutionary ones, a simple clustering algorithm like UPGMA is well-adapted to
provide a child tree. It ensures to aggregate taxa which are close in parents (depending
on the selected⊕ operator instantiation).

To illustratre this technique, we provide an example with two parents (see Fig. 1.6)
for which we compute topological matricesD1 andD2 (see Fig. 1.7). For simplicity’s
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D∗ = D1 + D2

A B C D E F G H I J K L M N

A - B
B 14 - C
C 9 9 - D
D 2 12 7 - E
E 5 13 8 5 - F
F 14 6 11 12 11 - G
G 9 9 0 7 8 11 - H
H 7 11 6 5 2 9 6 - I
I 6 10 9 6 11 10 9 9 - J
J 12 2 7 10 11 6 7 9 8 - K
K 6 8 5 4 7 8 5 5 4 6 - L
L 16 2 11 14 15 6 11 13 12 4 10 - M
M 11 7 8 9 8 3 8 6 7 5 5 9 - N
N 13 5 8 11 12 11 8 10 7 5 7 5 8 -

Child : T ∗ = Λ(D∗)

M

F

B

L

J

N

H

E

D

A

K

I

C

G

 

Figure 1.8: Topological distance matrix of child and tree that results from UPGMA
for the DiBIP crossover

sake, we used the addition operator to combine the two parentmatrices into the child
matrixD∗ (see Fig. 1.8).

1.3.5 Memetic methods

A memetic or hydrid algorithm (MA) is the combination of a GA helped by a LS
improver [34]. Each time a new individual is generated by theGA, it is submitted
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to a LS improvement. In algorithm 1.2, the mutation is then followed by a descent
that starts withr. MA alternates intensification (Local Search) and diversification
(crossover) stages. Despite the fact that MA are more computationally intensive they
tend to provide solutions of better quality than GA.

1.3.6 Problem-specific improvements

Different techniques which are specific to MP have been developed in order to
improve the search or decrease the computation time needed to obtain a tree of
minimum score.

1.3.6.1 Divide and conquer methods For example, Sectorial Search (SS)
[22] is a special kind of tree rearrangement that focuses on sectors (subtrees) of a
tree. SS is based on the divide and conquer principle where subtrees can be analyzed
more quickly than the overall tree. Sectors are analyzed separately and if a better
configuration is found it will replace the previous one. Three different kinds of
SS have been defined in [22]:random for which sectors are selected randomly,
consensus-basedandmixed. Experiments show that a sector should have between 35
and 55 nodes in order to obtain significant improvements. Another family of divide
and conquer methods are the disc-covering methods (DCM) [35, 44]: DCM1 can be
considered as an attempt to produce overlapping clusters tominimize the intracluster
diameter and produces good subproblems. Nevertheless, thestructure induced by the
decomposition is often poor. DCM2 improves DCM1, but the subproblems obtained
tend to be too large. Finally, DCM3 uses a dynamically updated guide tree in order
to direct the decomposition. It then enables to focus the search on thebestparts of
the search space.

1.3.6.2 Multi-character optimization The most time consuming function in
a search algorithm is the function of Fitch (see algorithm 1.4). This function takes as
input two taxat1 andt2. The output is the hypothetical taxont3 and the number of
changes returned by the function. Remember that the sum of all the changes of the
overall tree constitutes the parsimony score.

Algorithm 1.4

function fitch(t1, t2, t3 : array[1..m] of char) : integer
changes := 0
for i := 1 to m do

t3[i] := t1[i] ∩ t2[i]
if (t3[i] == 0) then

t3[i] := t1[i] ∪ t2[i]
changes := changes + 1

end if
end for
return changes

We can implement this function by taking full advantage of some relevant features
offered by modernx86 processors. More precisely, the core of modern x86 processors
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has a SSE (SIMD Streaming Extension) unit which enables tovectorizethe code. The
vectorization of the code means the application of the same operation on different
data at the same time. Intel and AMD processors offer a set of 8SSE registers of 128
bits long on a 32 bits architecture. If we represent a nucleotide with one byte then a
SSE register can store and handle 16 bytes (nucleotides) at atime.

In order to efficiently perform the union and intersection ofalgorithm 1.4, each
character is represented by a power of 2, from20 = 1 (−) to 24 = 16 (T ), except
for ? which can represent any other character and is then coded by the value31 =
1 + 2 + · · · + 16. The union can be performed by the binary-OR (|) and the
intersection by the binary-AND (&). The vectorization of Fitch’s function gives a
90% improvementon Intel Core 2 Duo processors, while other architectures (pentium
II/III/4, pentium-M, Athlon 64, Sempron) provide 70 to 80% improvement. This
improvement then enables to divide the overall computationtime of a program by
a factor of 3 to 4. A first pseudo-code was given by [43] for PowerPC processors
and recently [41] released the code for Intel and AMD processors. Finally, note
that the most recent processors (Intel Core i5 or i7, AMD Phenom) introduce the
SSE4.2 instruction set that contains the POPCNT function which counts the number
of bits set to one in a register. This function is used essentially to determine the
number of changes that occur when one performs the union betweent1[i:i+15]
and t2[i:i+15]. By replacing the implementation of POPCNT by the native
SSE4.2 instruction we can see an overall improvement of 95% (on an Intel Core i7
860 processor) compared to the basic implementation.

1.3.6.3 Fast character optimization techniques A set of methods [21, 16,
43, 47] fall into the category offast character optimizationtechniques, i.e. a set of
shortcuts that helps decrease the computation time by not recalculating the whole tree
each time a SPR or TBR modification is applied. Those techniques are particularly
effective when an important number of SPR or TBR neighbors has to be evaluated. In
the case of Fitch’s parsimony, characters are considered asunordered and multistate:
they can transform from one state to another independently.As a consequence, an
unrooted tree may be rooted on any branch with no modificationof the parsimony
score, which means there is a potential root node for any branch.

In [21], Goloboff proposed a method for indirect calculation of the parsimony
score which uses two passes. This method needs only to compare the root of the
clipped tree with the potential root of the target tree to obtain the score of a potential
new tree for a SPR search. Gladstein [16] also proposed an algorithm which is
exact and correct. In [47] a two passes algorithm is described which has the same
complexity of Goloboff’s and is faster than the incrementalmethod of Gladstein.

1.4 CONCLUSION

Due to its inherent complex structure, the resolution of thelarge maximum parsimony
problem can be efficiently achieved by means of optimizationtechniques.

Table 1.2 gives an overview of the complexity of the different methods described
through out this chapter:n represents the number of taxa andm the number of sites
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Method Complexity

exhaustive O(nn
× m)

branch and bound O(nn
× m)

stepwise O(n3
× m) or O(n4

× m)
LS+NNI O(i × n2

× m)
LS+SPR O(i × n3

× m)
LS+TBR O(i × n4

× m)
GA O(p × n × m) + X × (cross + mut + sel)
MA O(p × n × m) + X × (cross + mut + sel + LS)

Table 1.2: Complexity of methods

of each taxa. For Local Search,i represents the number of iterations of the search.
For Genetic Algorithms,p is the size of the population,X is the number of crossovers
andcross, mut, sel are respectively the complexity of the crossover, mutationand
selection operations. The last termLS is the complexity of the LS method used to
improve a solution.

Local Search methods are the standard resolvers for the Maximum Parsimony
problem and are widely used. Genetic Algorithms can obtain results of better quality
than LS only if the crossover, mutation and selection operators are tailored to the
problem. Finally, Memetic Algorithms, as a combination of GA and LS are the meth-
ods that can achieve results of very good quality but they sometimes lack efficiency
compared to LS. A lot of other techniques like the Ratchetingtechnique or Sectorial
Search are also very useful to escape from local optimum or tolocally improve the
overall tree.

New tools like the topological distance and the DiBiP crossover show that new
approaches can help designclever techniques to help solve the MP problem more
efficiently and reach solutions of higher quality.
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19. A. Göeffon, J.M. Richer, and J.K. Hao. Progressive tree neighborhood applied to the
maximum parsimony problem.IEEE/ACM Transactions on Computational Biology and
Bioinformatics, 5(1):136–145, 2008.

20. D.E. Goldberg and K. Deb.A comparative analysis of selection schemes used in genetic
algorithms, pages 69–93. Morgan Kaufmann Publishers, 1991.

21. P.A. Goloboff. Character optimization and calculationof tree lengths.Cladistics, 9:433–
436, 1993.

22. P.A. Goloboff. Analyzing large data sets in reasonable times: solutions for composite
optima.Cladistics, 15:415–428, 1999.

23. M.D. Hendy and D. Penny. Branch and bound algorithms to determine minimal evolu-
tionary trees.Mathematical Biosciences, 59:277–290, 1982.

24. J.H. Holland.Adaptation in natural and artificial systems. The University of Michigan
Press, 1975.
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