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1.1 INTRODUCTION

Microarrays allow measuring the expression level of a large number of genes
under different experimental samples or environmental conditions. The data
generated from them are called gene expression data. The extraction of bio-
logical relevant knowledge from this data is not a trivial task. Gene expression
data are usually represented by a matrix M (see Table 1.1), where the ith row
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represents the ith gene, the jth column represents the jth condition and the
cell mij represents the expression level of the ith gene under the jth condition.

Table 1.1 Gene expression data matrix.

condition1 ... conditionj ... conditionm

Gene1 m11 ... m1j ... m1m

... ... ... ... ... ...

Genei mi1 ... mij ... mim

... ... ... ... ... ...

Genen mn1 ... mnj ... mnm

There are several objectives when analyzing gene expression data such as
grouping subsets of genes that are coexpressed under subsets of conditions or
classifying new genes, given the expression of other genes with known clas-
sification. Discovering such coexpressions can be helpful to uncover genomic
knowledge such as gene networks or gene interactions. That is why, it is of
utmost importance to make a simultaneous clustering of rows (genes) and
columns (conditions) of the data matrix to identify clusters of genes that are
coexpressed under clusters of conditions. This type of clustering is called bi-

clustering [14]. The resulting clusters are called biclusters. A bicluster is a
subset of genes showing similar behavior under a subset of conditions of the
original expression data matrix. Let us note that a gene/condition can belong
to more than one bicluster.

Formally, a bicluster can be defined as follows: Let I={1, 2, . . . , n} be a
set of indices of n genes, J={1, 2, . . . , m} be a set of indices of m conditions
and M(I, J) be a data matrix associated with I and J . A bicluster associated
with the data matrix M(I, J) is a couple (I ′, J ′) such that I ′ ⊆ I and J ′ ⊆ J .

The biclustering problem can be formulated as follows: Given a data matrix
M , construct a group of biclusters Bopt associated with M such that:

f(Bopt) = max
B∈BC(M)

f(B) (1.1)

where f is an objective function measuring the quality, i.e., degree of coher-
ence, of a group of biclusters and BC(M) is the set of all the possible groups
of biclusters associated with M .

Clearly, biclustering is a highly combinatorial problem with a search space
size O(2|I|+|J|). In its general case, biclustering is NP-hard [14, 30].

In this chapter, we make a survey on biclustering of gene expression data.
The rest of the chapter is organized as follows: First, we present the different
types of biclusters and groups of biclusters. Then, we present evaluation
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functions and systematic and stochastic biclustering algorithms. Next, we
discuss biclusters validation. Finally, we present our conclusion.

1.2 TYPES OF BICLUSTERS

A bicluster can be in one of the following cases:

1. Bicluster with constant values: It is a bicluster where all the values are
equal to a constant c:

mij = c (1.2)

2. Bicluster with constant values on rows or columns:

• Bicluster with constant values on rows: It is a bicluster where all
the values can be obtained by using one of the following equations:

mij = c + ai (1.3)

mij = c ∗ ai (1.4)

where c is a constant and ai is the adjustment for the row i, 1 ≤
i ≤ n.

• Bicluster with constant values on columns: It is a bicluster where
all the values can be obtained by using one of the following equa-
tions:

mij = c + bj (1.5)

mij = c ∗ bj (1.6)

where c is a constant and bj is the adjustment for the column j,
1 ≤ j ≤ m.

3. Bicluster with coherent values: It is a bicluster that can be obtained by
using one of the following equations:

mij = c + ai + bj (1.7)

mij = c ∗ ai ∗ bj (1.8)

4. Bicluster with linear coherent values: It is a bicluster where all the
values can be obtained by using the following equation:

mij = c ∗ ai + bj (1.9)

5. Or, bicluster with coherent evolution: It is a bicluster where all the rows
(resp. columns) induce a linear order across a subset of columns (resp.
rows).
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1.3 GROUPS OF BICLUSTERS

A group of biclusters can be in one of the following cases [30]:

1. Single bicluster (Figure 1.1 (a)),

2. Exclusive rows and columns group of biclusters (Figure 1.1 (b)),

3. Non-overlapping group of biclusters with checkerboard structure (Figure
1.1 (c)),

4. Exclusive rows group of biclusters (Figure 1.1 (d)),

5. Exclusive columns group of biclusters (Figure 1.1 (e)),

6. Non-overlapping group of biclusters with tree structure (Figure 1.1 (f )),

7. Non-overlapping non-exclusive group of biclusters (Figure 1.1 (g)),

8. Overlapping group of biclusters with hierarchical structure (Figure 1.1
(h)),

9. Or, arbitrarily positioned overlapping group of biclusters (Figure 1.1
(i)).

A natural way to visualize a group of biclusters consists in assigning a
different color to each bicluster and in reordering the rows and the columns of
the data matrix so that we obtain a data matrix with colored blocks, where
each block represents a bicluster[1].

1.4 EVALUATION FUNCTIONS

An evaluation function is an indicator of the performance of a biclustering
algorithm. We distinguish two main classes of evaluation functions: intra-

biclusters evaluation functions and inter-biclusters ones. While the former
are used to quantify the coherence degree within each bicluster, the last are
measures of match scores between two groups of biclusters provided by differ-
ent biclustering strategies and are used to assess the ability of an algorithm
to recover biclusters detected by another one.

There are several intra-biclusters evaluation functions [3, 4, 13, 14, 20,
25, 44]. Most of these functions are particular cases of the AVerage Simi-

larity Score (AVSS) introduced in [29]. Given a bicluster (I ′, J ′), the AVSS
EAV SS(I ′, J ′) is defined as follows:

EAV SS(I ′, J ′) =

∑

i∈I′

∑

j∈J′ sij

|I ′||J ′|
(1.10)
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Figure 1.1 Possible structures of a group of biclusters in a data matrix.
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for some similarity measure sij among elements of the row i and the column
j with others elements belonging to I ′ and J ′.

The most popular intra-biclusters evaluation function is the Mean Squared

Residue (MSR) function, EMSR, proposed in [14] (Equation 1.11). It is used
by several algorithms like [3, 11, 13, 18, 33, 46, 49]. EMSR is given by

EMSR(I ′, J ′) =

∑

i∈I′

∑

j∈J′(mij − miJ′ − mI′j + mI′J′)2

|I ′||J ′|
(1.11)

where:
mI′J′ is the average over the whole bicluster,
mI′j is the average over the column j,
miJ′ is the average over the row i.
Since

∑

i∈I′

∑

j∈J′

(mij − miJ′ − mI′j + mI′J′)2

=
∑

i∈I′

∑

j∈J′

(mij − mI′J′)2 −
∑

i∈I′

∑

j∈J′

(miJ′ − mI′J′)2 −
∑

i∈I′

∑

j∈J′

(mI′j − mI′J′)2 ,

EMSR represents the variation associated with the interaction between the
rows and the columns in the bicluster.

A low (resp. high) EMSR value, i.e., close to 0 (resp. higher than a fixed
threshold), indicates that the bicluster is strongly (resp. weakly) coherent.
If a bicluster has a value of EMSR lower than a given threshold δ then it
is called δ − bicluster. However, the EMSR function is inadequate to assess
certain types of biclusters [1, 37, 44].

Angiulli et al. [3] and Divina and Aguilar-Ruiz [20] propose to use EMSR,
the average row variance, EARV , and the volume (or size), EV , of a bicluster.
The average row variance (EARV ) is defined as follows:

EARV (I ′, J ′) =

∑

i∈I′

∑

j∈J′(mij − miJ′)2

|I ′||J ′|
(1.12)

Let’s note that

EARV (I ′, J ′) =

∑

i∈I′,Variance of the row i

|I ′|
(1.13)

Biclusters that contain individuals (rows) with large changes in their values for
different attributes (columns) are characterized by high values of variance per
individual (row). It follows that average row variance can be used to guarantee
that a bicluster captures individuals exhibiting coherent trends under some
subset of attributes. Let’s note that both EMSR and EARV are EAV SS :
Equation 1.10 coincides with Equation 1.11 when sij = (mij −miJ′ −mI′j +
mI′J′)2, and Equation 1.10 coincides with Equation 1.12 when sij = (mij −
miJ′)2.
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The volume EV (I ′, J ′) of a bicluster (I ′, J ′) is used to maximize the size
of this bicluster. It is defined by:

EV (I ′, J ′) = |I ′||J ′| (1.14)

Das et al. [16] propose to find the maximum-sized bicluster that does not
exceed a certain coherence value. The coherence is expressed as a MSR score.
Hence, Das et al. try to maximize the volume EV (I ′, J ′) (Equation 1.14) and
find biclusters with a value of EMSR lower than a given threshold δ, for some
δ ≥ 0 (Equation 1.11).

Teng and Chan [44] propose the Average Correlation Value (ACV) func-
tion, EACV , to evaluate the homogeneity of a bicluster. It is defined by the
following equation:

EACV (I ′, J ′) = max

{
∑

i∈I′

∑

j∈I′

|rij | − |I ′|

|I′|(|I′|−1) ,

∑

k∈J′

∑

l∈J′

|rkl| − |J ′|

|J′|(|J′|−1)

}

(1.15)
where:

rij (i 6= j) is the Pearson’s correlation coefficient associated with the row
indices i and j in the bicluster (I ′, J ′) [35],

rkl (k 6= l) is the Pearson’s correlation coefficient associated with the col-
umn indices k and l in the bicluster (I ′, J ′).

Let us note that the values of EACV belong to [0, 1]. A high (resp. low)
EACV value, i.e., close to 1 (resp. close to 0), indicates that the bicluster
is strongly (resp. weakly) coherent. However, the performance of the EACV

function decreases when noise exists in the data matrix [13]. Some examples
are illustrated to assess the EACV evaluation function [44].

Cheng et al. [13] propose to use the EACV and EMSR functions. A bicluster
with a high coherence has a low EMSR value and a high EACV value.

Ayadi et al. propose three evaluation functions:
(i) The first one is the Average Spearman’s Rho function [4], EASR. It is

defined by the following equation:

EASR(I ′, J ′) = 2 max

{
∑

i∈I′

∑

j∈I′,j≥i+1

ρij

|I′|(|I′|−1) ,

∑

k∈J′

∑

l∈J′,l≥k+1

ρkl

|J′|(|J′|−1)

}

(1.16)

where:
ρij (i 6= j) is the Spearman’s rank correlation associated with the row

indices i and j in the bicluster (I ′, J ′) [27],
ρkl (k 6= l) is the Spearman’s rank correlation associated with the column

indices k and l in the bicluster (I ′, J ′).
Let us note that the values of Spearman’s rank correlation belong to [−1..1].

A high (resp. low) Spearman’s rank correlation value, i.e., close to 1 (resp.
close to -1), indicates that the two vectors are strongly (resp. weakly) coherent
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[27]. So, the values of the EASR function belong also to [-1..1]. Hence, a high
(resp. low) EASR value, i.e., close to 1 (resp. close to -1), indicates that the
bicluster is strongly (resp. weakly) coherent. Furthermore, it has been shown
that Spearman’s rank correlation is less sensitive to the presence of noise in
data. Since the EASR function is based on Spearman’s rank correlation, EASR

is also less sensitive to the presence of noise in data.
(ii) The second one is the Average Correspondence Similarity Index [8],

EACSI . In order to calculate EACSI , we first discretize the initial data matrix
M(I, J) = [mi,j ], I={1, 2, . . . , n} and J={1, 2, . . . , m}, into a matrix M ′ =
[m′

i,l] defined as follows:

m′
i,l =







1 if mi,l < mi,l+1

−1 if mi,l > mi,l+1

0 if mi,l = mi,l+1

(1.17)

with i ∈ {1, 2, . . . , n} and l ∈ {1, 2, . . . , m − 1}.
Let the Correspondence Similarity List (CSL) between genei and genej

(i < j), denoted by CSLi,j , be the list of all the columns l ∈ {1, 2, . . . , m− 1}
such that m′

i,l = m′
j,l. Let NumCSLi,j be the number of elements belong-

ing to CSLi,j and MaxCSLi = max {NumCSLi,i+1, NumCSLi,i+2, . . . ,
NumCSLi,n}. Let T be a indicator function defined by T (exp)=1 when exp
is true, and T (exp)=0 otherwise. We define the Correspondence Similarity

Index (ECSI) as follows:

ECSI(i, j, k) =

m−1
∑

l=1

T (m′
i,l = m′

j,l = m′
k,l)

MaxCSLi

(1.18)

with i ∈ {1, 2, . . . , n − 2}, j ∈ {2, . . . , n − 1}, k ∈ {3, . . . , n} and i < j < k.
ECSI(i, j, k) indicates the proportion of trues, i.e., the change in the same

direction that exists between rows i, j and k in the same set of columns.
This enables to see how genes genei, genej and genek behave over a subset
of conditions.

Finally, for the whole bicluster, we define the Average Correspondence Sim-

ilarity Index (EACSI) for the row i (i ∈ I ′ and i < j < k):

EACSIi
(I ′, J ′) = 2

∑

j∈I′;j≥i+1

∑

k∈I′;k≥j+1

ECSI(i, j, k)

(|I ′| − 1)(|I ′| − 2)
(1.19)

(iii) The last one is the ES evaluation function [7]. In order to calculate
ES , we first discretize the initial data matrix M (I, J)=[mi,j ], I={1, 2, . . . , n}
and J={1, 2, . . . , m}, into a matrix M ′ = [m′

i,l] defined as follows:

m′
i,l =







1 if mi,k < mi,q

−1 if mi,k > mi,q

0 if mi,k = mi,q

(1.20)
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with i ∈ {1,2,..,n}, l ∈{1,2,..,m(m − 1)/2}, k ∈{1,2,..,m − 1}, q ∈{2,3,..,m}
and q ≥ k + 1.

The matrix M ′ is constructed progressively by merging pairs of columns
(conditions) from the input data matrix M . Since M has n rows and m
columns, there are m(m − 1)/2 distinct combinations.

Given a bicluster b = (I ′, J ′), the quality of b is assessed via the following
evaluation function ES(b):

ES(b) =

∑

i∈I′

∑

j∈I′,j≥i+1

Fij

|I ′|(|I ′| − 1)/2
(1.21)

with Fij being defined by:

Fij =

∑

l∈J′

T (m′
i,l = m′

j,l)

|J ′|
(1.22)

where i ∈ I ′, j ∈ I ′ and j ≥ i + 1.
Let us note that 0 ≤ Fij ≤ 1. A high (resp. low) Fij value, close to 1

(resp. close to 0), indicates that the genes genei and genej (under the given
conditions) are strongly (resp. weakly) correlated [7]. Likewise for ES , a
high (resp. low) ES(b) value, close to 1 (resp. close to 0), indicates that the
bicluster b is strongly (resp. weakly) correlated.

Regarding inter-biclusters evaluation functions, [38] introduced the so-called
Gene Match Score (GMS) given by:

EGMS(B1, B2) =
1

|B1|

∑

(I1,J1)∈B1

max
(I2,J2)∈B2

|I1 ∩ I2|

|I1 ∪ I2|
, (1.23)

where B1, B2 are two groups of biclusters. Thereafter, more similar measures
of match scores have been introduced [2, 13, 22, 29, 36]. For instance, the
evaluation functions, herein called Row and Column Match Scores, ERCMS1

and ERCMS2
, are proposed in [29] and [22], respectively. ERCMS1

is given by:

ERCMS1
(B1, B2) =

1

|B1|

∑

(I1,J1)∈B1

max
(I2,J2)∈B2

|I1 ∩ I2| + |J1 ∩ J2|

|I1 ∪ I2| + |J1 ∪ J2|
, (1.24)

and ERCMS2
is given by:

ERCMS2
(B1, B2) =

1

|B1|

∑

(I1,J1)∈B1

max
(I2,J2)∈B2

|I1 ∩ I2| + |J1 ∩ J2|

|I1| + |J1|
(1.25)

All these measures of match score are used to assess the accuracy of an algo-
rithm to recover known biclusters and reveal true ones. Both ERCMS1

and
ERCMS2

have the advantage of reflecting, simultaneously, the match of the row
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and column dimensions between biclusters as opposed to EGMS that doesn’t
take into account column match. They vary between 0 and 1 (the higher the
better the accuracy). Let Bopt denote the set of true implanted biclusters in
the data matrix M and B the set of the output biclusters of a biclustering al-
gorithm. Thus, EGMS(Bopt, B) and ERCMS1

(Bopt, B) express how well each
of the true biclusters are detected by the algorithm under consideration.

ERCMS2
(BX , BY ), where BX (resp. BY ) denotes the set of biclusters de-

tected by the algorithm X (resp. algorithm Y ), has the particularity to allow
the quantification of how well each bicluster identified by the algorithm X is
contained into some bicluster detected by the algorithm Y .

All the evaluation functions above are deterministic in the sense that no
statistical significance is provided for the degree of coherence of any bicluster
detected by a biclustering algorithm. When a biclustering algorithm is applied
on microarray datasets, enrichment analysis with respect to Gene Ontology

(GO) annotations, or other specific biological networks like metabolic and
protein-protein interaction networks, have usually been applied to check the
biological significance of each found bicluster [29, 38, 42]. On a general data
matrix M (not necessarily microarray data), Freitas et al. [22] recently pre-
sented a useful proposal to assign the statistical significance of biclusters. It
is given in terms of how ”unusually dense” a bicluster is, comparatively, with
M . Concretely, the initial data matrix M is transformed into a binary matrix
Mb = [bij ] through a discretization defined by

bij =

{

1 , mij ∈ C
0 , otherwise

(1.26)

where C is a set of real numbers satisfying the criterion that depends on
the strategy defined by the biclustering algorithm. An example of C applied
for the Iterative Signature Algorithm (ISA) can be found in [22]. Assuming
that the binary matrix Mb contains k 1’s, a bicluster B will be considered
as potentially significant, if its observed number of 1’s is significantly greater
than the real proportion p = k/(|I| ∗ |J |) of 1’s in M . For this statistical
testing, the p−value is calculated in the following way:

p-valueB = 1 − φ
( |1B|/|B| − p

√

p(1−p)
|B|

)

, (1.27)

where φ is the standard normal distribution function and |1B| represents the
number of 1’s in the bicluster B. Thus, when p-valueB < α, B will be classi-
fied as a bicluster potentially significant at a level of significance α.
Some biclustering methods identify no more than one bicluster for each ap-
plication. With this evaluation strategy one can execute several times the
biclustering algorithm upon M , and assign for each time a statistical signifi-
cance for the identified bicluster.
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1.5 SYSTEMATIC AND STOCHASTIC BICLUSTERING

ALGORITHMS

As we mentioned in the introduction of this chapter, the biclustering problem
is NP-hard [14, 30]. Consequently, heuristic search algorithms are typically
used to approximate the problem by finding sub-optimal solutions.

We distinguish two main classes of biclustering algorithms: systematic

search algorithms and stochastic search algorithms, also called metaheuris-

tic algorithms.

1.5.1 SYSTEMATIC BICLUSTERING ALGORITHMS

Systematic search algorithms are based on one of the following general ap-
proaches.

1. Divide-And-Conquer (DAC) approach: Generally, this approach divides
repeatedly the problem into smaller subproblems with similar structures
to the original problem, until these subproblems become smaller enough
to be solved directly. The solutions to the subproblems are then com-
bined to create a solution to the original problem. With this approach,
we start by a bicluster representing the whole data matrix then we
partition this matrix in two submatrices to obtain two biclusters. We
reiterate recursively this process until we obtain a certain number of bi-
clusters verifying a specific set of properties. For instance, Prelic et al.

[38] partition the data matrix M ′ (M ′ is a discretization of a data matrix
M which contains only binary values where a cell mij contains 1 if genei

is expressed under conditionj and 0 otherwise) into three submatrices,
one of which contains only 0-cells. The algorithm is then recursively
applied to the remaining two submatrices, and ends if the current ma-
trix represents a bicluster which contains only 1’s. The advantage of
this approach is that it is fast, however, its biggest disadvantage is that
it may ignore good biclusters by partitioning them before identifying
them. Representative examples of algorithms adopting this approach
are given by Dufiy and Quiroz [21], Hartigan [25] and Prelic et al. [38].

2. Greedy Iterative Search (GIS) approach: This approach constructs a so-
lution in a step-by-step way using a given quality criterion. Decisions
made at each step are based on information at hand without worrying
about the effect these decisions may have in the future. Moreover, once
a decision is taken, it becomes irreversible and is never reconsidered.
By applying this approach to the biclustering problem, at each itera-
tion, we construct submatrices of the data matrix by adding/removing
a row/column to/from the current submatrix that maximizes/minimizes
a certain function. We reiterate this process until no other row/column
can be added/removed to/from any submatrix. For instance, the al-
gorithm Maximum Similarity Biclusters [29] starts by constructing a
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similarity matrix based on a reference gene. A greedy strategy of re-
moving rows/columns iteratively is employed to provide the maximum
similarity bicluster in polynomial time. Shabalin et al. [40] extract large
average submatrices according to a Bonferroni-based significance score.
Several graph-theoretical approaches have also been proposed. Another
recent work was reported by Ayadi et al. [8] which constructs a Directed

Acyclic Graph (DAG) to combine a subset of genes under a subset of
conditions iteratively, by adopting the evaluation functions EACSI and
EASR.

This approach presents the similar advantage and disadvantage of the
DAC one. Representative examples of algorithms based on this approach
are given by Ben-Dor et al. [10], Cheng et al. [13], Ihmels et al. [26],
Liu and Wang [29], Shabalin et al. [40], Teng and Chan [44], Yang et

al. [46, 48] and Ayadi et al. [8].

3. Biclusters Enumeration (BE) approach: This approach tries to enumer-
ate (explicitly or implicitly) all the solutions for an original problem.
The enumeration process is generally represented by a search tree.

By applying this approach to the biclustering problem, we identify all
the possible groups of biclusters in order to keep the best one. Ayadi et

al. [4] use a Bicluster Enumeration Tree (BET) to find all the biclusters
(nodes) of interest, reachable from the root of the BET, by adopting to
the EASR evaluation function. To reduce the size of the BET, a quality
threshold is employed to cut branches that cannot lead to biclusters of
desired quality.

This approach has the advantage of being able to obtain the best so-
lutions. Its disadvantage is that it is costly in computing time and in
memory space. Representative examples of algorithms adopting this ap-
proach are given by Liu and Wang [28], Tanay et al. [42] and Ayadi et

al. [4, 5].

1.5.2 STOCHASTIC BICLUSTERING ALGORITHMS

Stochastic search algorithm are based on one of the following general ap-
proaches.

1. Neighborhood Search(NS) approach: Neighborhood search, also called
local search, is based on the notion of neighborhood and a strategy
exploiting this neighborhood. A neighborhood search algorithm starts
with an initial solution s and then moves iteratively to a neighboring so-
lution thanks to the neighborhood exploitation strategy. A neighboring
solution is generally generated by applying a transformation operator,
also called move operator, to the current solution. At each iteration,
the neighborhood exploitation strategy decides the neighboring solution
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to be selected to become the new current solution. For instance, the
basic hill-climbing strategy replaces the current solution by a neighbor-
ing solution of better quality while other strategies based on simulated

annealing and tabu search may substitute the current solution with a
worse neighboring solution.

By applying this approach to the biclustering problem, we start by an
initial solution which can be a cluster, a bicluster or the whole ma-
trix. Then, at each iteration, we try to improve this solution by adding
and/or removing some genes/conditions to minimize/maximize a cer-
tain function. The difference with the greedy search algorithms is that
if we delete, for example, one gene/condition, we can later add this
gene/condition to the solution.

Cheng and Church [14] are probably the first to apply this concept to
the biclustering problem. Their goal is to find biclusters with a EMSR

value lower than a fixed threshold. Hence, they proposed a local search
procedure which deletes/adds genes/conditions to the biclusters. The
multiple node deletion method removes all genes and conditions with
a EMSR score lower than a fixed threshold. The single node deletion
method iteratively removes the gene or column that has low quality
according to EMSR. Finally, the node addition method adds genes and
conditions that do not decrease the quality of the actual bicluster. In
order to find a given number of biclusters, this approach is iteratively
executed on the remaining genes and conditions that are not present in
the previous obtained biclusters.

The move operator used by Ayadi et al. [7] is based on the drop/add op-
eration which removes a genei where i ∈ I ′ from the bicluster b=(I ′, J ′)
and adds one genev, where v 6∈ I ′, or various genev,. . . ,genew, where
v 6∈ I ′, . . . , w 6∈ I ′, to b. The move operator can be defined as follows: we
first choose a pair of genes {genei, genej} from b which have a bad qual-
ity according to an evaluation function. Such a pair of genes contribute
negatively to the quality of the bicluster b. Then we look for other pairs
of genes {genej, gener1

}, {genej, gener2
}, . . ., {genej, genern

}, where
r1 6∈ I ′, . . . , rn 6∈ I ′ which have a good quality according to the evalua-
tion function. Hence, genej contributes positively to the quality of the
bicluster when it is associated with gener1

. . . genern
. Finally, we replace

genei in b by gener1, gener2,..., genern. In Das and Idicula [17], the
authors generate initial solutions using a K-means clustering algorithm.
These solutions are then extended by adding more rows and columns
using a cardinality based greedy randomized adaptive search procedure.
Their greedy strategy makes a choice that optimizes a local gain in the
hope that this choice will lead to a globally good solution.

The advantage of this approach lies in the ability to explore large search
spaces. This approach also offers the possibility of trade-off between
solution quality and running time. Indeed, when the quality of a solution
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tends to improve gradually over time, the user can stop the execution
at a chosen time. The disadvantage of this approach is that the search
lead to sub-optimal solutions (local maxima). Representative examples
of algorithms adopting this approach are given by Bryan et al. [12],
Cheng and Church [14], Dharan and Nair [18], Das and Idicula [17] and
Ayadi et al. [7, 6].

2. Evolutionary Computation (EC) approach:

The evolutionary computation approach is based on the natural evo-
lutionary process such as population, reproduction, mutation, recom-
bination, and selection. Candidate solutions of the given problem are
sampled by a set of individuals in a population. An evaluation mecha-
nism (fitness evaluation) is established to assess the quality of each in-
dividual. Evolution operators eliminate some (less fit) individuals and
produce new individuals from selected individuals.

By applying this approach to the biclustering problem, we start from
an initial population of solutions, i.e., clusters, biclusters or the whole
matrix, then, we measure the quality of each solution of the population
by the fitness function. We select a number of solutions to produce
new solutions by recombination and mutation operators. This process
ends when a prefixed stop condition is verified. For instance, Divina
and Aguilar-Ruiz [19] generate a population representing biclusters of
dimension one because these biclusters have a high EMSR score. From
this population, selection, crossover and mutation are repeatedly applied
to the population. A number of biclusters are selected for reproduction
with a tournament selection operator. In other words, a certain number
of biclusters are first selected randomly, and the best one according
to EMSR is chosen. Each selected pair of parents is recombined by a
crossover operator. For this, three crossover (one point, two points and
uniform) operators are applied, with equal probability. The resulting
offspring is mutated by using three mutation operators: the standard
mutation operator, a mutation operator that adds a row and a column to
the bicluster. Since mutation is a highly random operation, it is applied
with a low probability. The process is repeated with the new generation
of offspring, until a maximum number of generations is reached.

This approach shares the similar advantages and disadvantages with
the neighborhood search approach. Few evolutionary algorithms are
reported in the literature for the biclustering problem. Two example
are given by Divina and Aguilar-Ruiz [19, 20].

3. Hybrid (H) approach: The hybrid approach, also called memetic ap-

proach, tries to combine both the neighborhood search and the evolu-
tionary approaches. This hybrid approach is known to be quite success-
ful in solving many hard combinatorial search problems. The purpose
of such an approach is to take advantage of the complementary nature
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of the evolutionary and neighborhood search methods. Indeed, it is gen-
erally believed that the evolutionary framework offers more facilities for
exploration, while neighborhood search has more capability for exploita-
tion. Combining them may offer a better balance between exploitation
and exploration which is highly desirable for an effective search.

Mitra and Banka [33] present a Multi-Objective Evolutionary Algorithm

(MOEA) based on Pareto dominancy. The authors try to find biclusters
with maximum size and homogeneity by using a multi-objetive genetic
algorithm called NSGA-II (Nondominated sorting genetic algorithm) in
combination with the local search procedure. Gallo et al. [23] present
another hybrid algorithm based on MOEA combined with a local search
strategy. They extract biclusters with multiple criteria like maximum
rows, columns, homogeneity and row variance. A mechanism for re-
orienting the search in terms of row variance and size is provided. The
mutation operator is performed when the individual needs to be mu-
tated by means of the probability assigned to the operator. Hence, the
gene/condition of the bicluster is mutated at a random position. The
crossover operator is applied over both the genes and the conditions.
Hence, when both children are obtained by combining at the end and
at the center each of the two parents, the individual to select as the
only descendant is the non-dominated one. If both are non-dominated,
one of them is chosen at random. The authors apply the local search
procedure, based on Cheng and Church [14] one, on all the individuals
in the resulting population of each generation.

Representative examples of algorithms adopting this approach are given
by Bleuler et al. [11], Gallo et al. [23] and Mitra and Banka [33].

Table 1.2 shows microarray datasets used to evaluate biclustering algo-
rithms. Let us note that some datasets contain missing values. To deal with
this problem, Cheng and Church [14] propose to replace the missing values by
random ones. Unfortunately, these random values can affect the discovery of
coherent biclusters [47]. Another method to deal with missing values, consists
in removing the genes/conditions that contain such values [32]. Unfortunately,
the removed genes/conditions can affect the discovery of coherent biclusters.

Now, we briefly present some biclustering tools that are publicly available
for microarray data analysis.

1. GEMS [45] is a web server for biclustering of microarray data. It is
based on a Gibbs sampling paradigm [41]. GEMS is available at:
http://genomics10.bu.edu/terrence/gems/

2. BicAT [9] is a biclustering analysis toolbox that is mostly used by the
community and contains several implementations of biclustering algo-
rithms like the Order Preserving SubMatrix (OPSM) algorithm [10],
Cheng and Church’s algorithm [14], the Iterative Signature Algorithm
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Table 1.2 Microarray datasets used to evaluate biclustering algorithms.

Dataset Nbr. genes Nbr. conditions Web site

Arabidopsis Thaliana 734 69 http://www.tik.ethz.ch/
sop/bimax/

Colon Rectal Cancer 2000 62 http://microarray.princeton.edu/
oncology/affydata/index.html

Human B-cell Lymphoma 4026 96 http://arep.med.harvard.edu/
biclustering/

Leukemia 7129 72 http://sdmc.lit.org.sg/
GEDatasets/Datasets.html

Lung Cancer 12,533 181 http://sdmc.lit.org.sg/
GEDatasets/Datasets.html

Ovarian Cancer Tumour 15,154 253 http://sdmc.lit.org.sg/
GEDatasets/Datasets.html

Prostate Cancer 12,600 136 http://sdmc.lit.org.sg/
GEDatasets/Datasets.html

Saccharomyces Cerevisiae 2993 173 http://www.tik.ethz.ch/
sop/bimax/

Yeast Cell Cycle 2884 17 http://arep.med.harvard.edu/
biclustering/
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(ISA) [26], the xMotif algorithm [34] and the Bimax algorithm [38]. Bi-
cAT is available at:
http://www.tik.ee.ethz.ch/sop/bicat

3. BiVisu [13] is a biclustering algorithm based on Parallel Coordinate

(PC) formulation. It can visualize the detected biclusters in a 2D setting
by using PC plots. BiVisu is available at :
http://www.eie.polyu.edu.hk/nflaw/Biclustering/index.html

4. Bayesian BiClustering model (BBC) [24] is a biclustering algorithm
based on Monte Carlo procedure. BBC is available at:
http://www.people.fas.harvard.edu/junliu/BBC/

5. BicOverlapper [39] is a visual framework that supports:
- Simultaneous visualization of one or more sets of biclusters,
- Visualization of microarray data matrices as heatmaps and PC,
- Visualization of transcription regulatory networks,
- And, linkage of different visualizations and data to achieve a broader
analysis of an experiment results.
BicOverlapper is available at:
http://vis.usal.es/bicoverlapper/

6. e-CCC-Biclustering [31] is a biclustering algorithm that can find and
report all maximal contiguous column coherent biclusters with approx-
imate expression patterns. e-CCC-Biclustering is available at:
http://kdbio.inesc-id.pt/software/e-ccc-biclustering

1.6 BICLUSTERS VALIDATION

Biological validation can qualitatively evaluate the capacity of an algorithm
to extract meaningful biclusters from a biological point of view. Assessing the
biological meaning of the results of a biclustering algorithm is not a trivial
task because there do not exist general guidelines in the literature on how
to achieve this task. Several authors use artificial datasets to validate their
approaches. However, artificial scenario is inevitably biased regarding the
underlying model and only reflects certain aspects of biological reality.

One possible validation concerns the coverage of biclusters. In fact, in the
biclustering domain, it is interesting to have a good compromise between the
size and the coherence of a bicluster. However, this is not enough to have a
good group of biclusters. It is very important that the final group of biclusters
provides good coverage of the dataset. A large coverage of the dataset is very
important in several applications that employ biclusters. Indeed, the higher
the number of highlighted correlations is, the greater the amount of extracted
information is.

To assess the biclusters biologically, we can use Gene Ontology (GO) an-
notation [15]. In GO, genes are assigned to three structured, controlled vo-
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cabularies, i.e., ontologies, that describe genes products in terms of associated
biological processes, cellular components and molecular functions in a species-
independent manner. Users measure the degree of enrichment, i.e., p-value,
by using a cumulative hypergeometric distribution that involves the proba-
bility of observing the number of genes from a particular GO category, i.e.,
biological processes, cellular components and molecular functions, within each
bicluster. Statistical significance is evaluated for the genes in each bicluster
by computing p-values which indicate how well they match with the different
GO categories. Let us note that a smaller p-value, close to 0, is indicative of
a better match [43].

The Gene Ontology Consortium (GOC) [15] (http://www.geneontology.org)
is involved in the development and application of the GO. In the following,
we present examples of web-tools related to GOC.

1. GO Term Finder (http://db.yeastgenome.org/cgi-bin/GO/goTermFinder)
searches for significant shared GO terms, or parents of GO terms, used
to annotate genes products in a given list.

2. FuncAssociate (http://llama.med.harvard.edu/cgi/func/funcassociate) is
a web-based tool that accepts as input a list of genes and returns a list
of GO attributes that are over/under-represented among the genes of
the input list. Only those over/under-represented genes are reported.

3. GENECODIS (http://genecodis.dacya.ucm.es/) is a web-based tool for
the functional analysis of a list of genes. It integrates different sources
of information to search for annotations that frequently co-occur in a
list of genes and rank them according to their statistical significance.

4. GeneBrowser (http://bioinformatics.ua.pt/genebrowser2/) is a web-based
tool that, for a given list of genes, combines data from several public
databases with visualisation and analysis methods to help identify the
most relevant and common biological characteristics. The functionalities
provided include the following: a central point with the most relevant
biological information for each inserted gene; a list of the most related
papers in PubMed1 and gene expression studies in ArrayExpress ; and
an extended approach to functional analysis applied to GO, homologies,
gene chromosomal localisation and pathways.

The microarray datasets presented in Table 1.2 are such that each exper-
imental condition corresponds to a patient presenting a kind of pathology.
For example, the Leukemia dataset discriminates patients affected by either
Lymphoblastic or Myeloid leukemia. Thus, we do not know the biological co-
herence between genes, while we know the medical classification of conditions.
In this case, we can evaluate the ability of an algorithm to separate the sam-
ples according to their known classification. To this end, we can compute the

1http://www.ncbi.nlm.nih.gov/pubmed
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number of columns labelled with the same class and belonging to the same
bicluster. Obviously, the higher the number of columns in a bicluster labelled
with the same class label is, the higher its biological quality is. In fact, this
means that many patients with the same diagnosis are grouped together with
respect to a subset of genes, thus we could induce that those genes proba-
bly have similar functional category and characterize the majority class of
patients.

1.7 CONCLUSION

The biclustering of microarray data has been the subject of a large research,
no one of the existing biclustering algorithms is perfect and the construction
of biologically significant groups of biclusters for large microarray data is still
a problem that requires a continuous work.

Biological validation of biclusters of microarray data is one of the most
important open issues. So far, there are no general guidelines in the literature
on how to validate biologically such biclusters.
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