
A study of Breakout Local Search for the
minimum sum coloring problem

Una Benlic and Jin-Kao Hao
email: {benlic,hao}@info.univ-angers.fr

LERIA, Université d’Angers, 2 Bd Lavoisier, 49045 Angers Cedex 01, France

Abstract. Given an undirected graph G = (V,E), the minimum sum
coloring problem (MSCP) is to find a legal assignment of colors (rep-
resented by natural numbers) to each vertex of G such that the total
sum of the colors assigned to the vertices is minimized. In this paper, we
present Breakout Local Search (BLS) for MSCP which combines some
essential features of several well-established metaheuristics. BLS explores
the search space by a joint use of local search and adaptive perturbation
strategies. Tested on 27 commonly used benchmark instances, our algo-
rithm shows competitive performance with respect to recently proposed
heuristics and is able to find new record-breaking results for 4 instances.

Keywords: minimum sum coloring, adaptive perturbation strategy, heuris-
tic, combinatorial optimization

1 Introduction

Let G = (V,E) be an undirected graph with vertex set V and edge set E,
a legal k-coloring of G is a mapping C : V → {1, ..., k} such that ∀{v, u} ∈
E,C(v) 6= C(u), i.e., no two adjacent vertices are assigned the same color label.
A legal k-coloring C can also be represented as a partition of vertex set V into
k mutually disjoint independent sets (also called color classes) {S1, ..., Sk} such
that

⋃
i Si = V and v ∈ Si if C(v) = i (v receives color label i). The well-

known NP-hard graph coloring problem (GCP) is to determine a legal k-coloring
with the minimum value k. A related problem to the GCP is the minimum
sum coloring problem (MSCP) which consists in finding a legal coloring C =
{S1, ..., Sk} such that the following total sum of color labels is minimized:

Sum(C) =

k∑
i=1

i · |Si| (1)

where |S1| ≥ ... ≥ |Sk| and |Si| is the size of Si (i.e., number of vertices in Si).
The MSCP is known to be NP-hard with several practical applications in-

cluding VLSI design, scheduling, and distributed resource allocation (see [12] for
a list of references). Over the past two decades, it has been studied mainly from
a theoretical point of view. Only recently, several heuristics have been proposed
for the practical solving of the general MSCP [3, 4, 6, 9, 10, 13].

2 Una Benlic and Jin-Kao Hao

In this work, we introduce the Breakout Local Search (BLS) for the MSCP.
BLS follows the basic scheme of iterated local search [11] and combines features
from other well-known methods including tabu search [5] and simulated anneal-
ing [8]. The basic idea of BLS is to use descent-based local search to discover
local optima and employ adaptive perturbations to continually move from one
attractor to another in the search space. Based on the information on the state
of search, the perturbation strategy of BLS introduces a varying degree of di-
versification by dynamically determining the number of moves for perturbation
and by adaptively selecting between several types of dedicated moves.

We evaluate the performance of BLS on 27 benchmark graphs which are
commonly used in the literature to test MSCP algorithms. Despite its simplicity,
BLS shows competitive results with respect to the most recent MSCP heuristics.

2 Breakout Local Search (BLS) for the MSCP

2.1 General BLS procedure

Recall that a local optimum with respect to a given neighborhood N is a so-
lution s∗ such that ∀s ∈ N(s∗), f(s∗) ≤ f(s), where f is the objective func-
tion to be minimized. A basin of attraction of a local optimum l is the set
Bl of solutions that lead the local search to the given local optimum l, i.e.,
Bl = {s ∈ S|LocalSearch(s) = l}. Since a local optimum l acts as an attractor
with respect to the solutions Bl, the terms attractor and local optimum will be
used interchangeably throughout this work.

Basically, our Breakout Local Search (BLS) approach moves from one basin
of attraction formed by a local optimum to another basin by applying a smaller
or larger number of perturbation moves whose type (e.g., random or directed
moves) is determined adaptively. BLS starts from an initial solution C0 and
applies to it local search (descent) to reach a local optimum or an attractor C.
Each iteration of the local search algorithm scans the whole neighborhood and
selects the best improving neighboring solution to replace the current solution. If
no improving neighbor exists, local optimality is reached. At this point, BLS tries
to escape from the basin of attraction of the current local optimum and move
into a neighboring basin of attraction. For this purpose, BLS applies a number
of dedicated moves to the current optimum C (we say that C is perturbed).
Each time an attractor is perturbed, the perturbed solution is used as the new
starting point for the next round of the local search procedure.

If the search returns to the last attractor C, BLS perturbs C more strongly by
increasing the number of moves to be applied for perturbation. After visiting a
certain number of local optima without improving the best solution found so far,
BLS applies a significantly stronger perturbation in order to drive definitively
the search toward a new and more distant region in the search space.

The success of the described method depends crucially on two factors. First,
it is important to determine the number L of perturbation moves (also called
“jump magnitude”) to be applied to change or perturb the solution. Second,

Breakout local search for the MSCP 3

it is equally important to consider the type of perturbation moves to be ap-
plied. While conventional perturbations are often based on random moves, more
focused perturbations using dedicated information could be more effective. The
degree of diversification, introduced by a perturbation mechanism, depends both
on the jump magnitude and the type of moves used for perturbation. A weak
diversification induces a high probability for the local search procedure to cycle
between two or more locally optimal solutions, leading to search stagnation. On
the other hand, a too strong diversification will have the same effect as a random
restart, which usually results in a low probability of finding better solutions in
the following local search phases.

Algorithm 1 Breakout Local Search
Require: Initial jump magnitude L0, jump magnitude Ls for strongest perturbation, max. number

T of non-improving attractors visited before strong perturb.
Ensure: A solution Cbest.
1: GenerateInitialSolution(C)
2: Cbest ← C /* Cbest records the best solution found so far */
3: Cp ← C /* Cp records the last local optimum */
4: ω ← 0 /* Set counter for consecutive non-improving local optima */
5: while stopping condition not reached do
6: if Solution C is not legal then
7: C ← LocalSearch2(C)
8: end if
9: C ← LocalSearch1(C)
10: if (Sum(C) < Sum(Cbest)) and (C is a legal solution) then
11: Cbest ← C; /* Update the best solution found so far */
12: ω ← 0 /* Reset the counter of consecutive non-improving local optima */
13: else
14: ω ← ω + 1
15: end if
16: /* Determine the perturbation strength L to be applied to C */
17: if ω > T then
18: /* Search is stagnating, strongest perturbation required */
19: L← Ls

20: else if C = Cp then
21: /* Search returned to previous local optimum, increment perturb. strength */
22: L← L + 1
23: else
24: /* Search escaped from previous local optimum, reinitialize perturb. strength */
25: L← L0

26: end if
27: /* Perturb the current local optimum C with L perturbation moves */
28: Cp ← C
29: C ← Perturbation(C,L)
30: end while

Algorithm 1 presents the general BLS algorithm for the MSCP, whose ingre-
dients are detailed in the following sections. BLS starts from an initial random
solution C which may be a conflicting coloring (line 1). To reach a legal coloring,
BLS employs two different local search procedures (lines 6-9, see next section),
based on different move operators and evaluation functions. Once a local opti-
mum is reached, the jump magnitude L is determined depending on whether
the search escaped or returned to the previous local optimum, and whether the
search is stagnating in a non-promising region (lines 17-26). BLS then applies L

4 Una Benlic and Jin-Kao Hao

perturbation moves to C in order to get a new starting point for the local search
procedures (line 29).

2.2 Neighborhood relations and evaluation functions

As previously explained, a solution to sum coloring with k colors can be rep-
resented as a k-partition C = {S1, S2, ..., Sk} of vertices into k disjoint subsets
S1, ..., Sk, where each subset Si, i ∈ {1, ..., k} is associated with a unique integer
i (i.e., color). The objective of MSCP is to find a coloring C that minimizes
the total sum of colors assigned to vertices, while its implicit constraint requires
that any two adjacent vertices {u, v} ∈ E belong to different subsets. If this
constraint is violated, we say the coloring is illegal with conflicting vertices.

A common move for minimum sum coloring and graph coloring problems
is the exchange move (v, j), which consists in moving a vertex (element) v ∈ V
from its current subset Si to another subset Sj (i.e., changing the color of v from
i to j). The proposed BLS algorithm distinguishes two types of move exchange
operators. The first type of move operators only considers exchange moves that
do not violate the implicit problem constraint. For the second type of move
operators, the implicit constraint is not strictly imposed in order to permit more
freedom during the search. These two move operators are used in BLS under
specific conditions as explained below.

If the solution C is a legal coloring, BLS applies to C a local search procedure
(call it LocalSearch1) which consists in identifying the exchange move that
decreases the most the objective value of Eq. (1) such that the new coloring
remains legal. This process is repeated until reaching a local optimum.

If the solution C is an illegal coloring (i.e., with conflicting vertices), before
applying LocalSearch1, BLS first applies another local search procedure (call it
LocalSearch2) which evaluates all the moves (i.e., ∀v ∈ V , and ∀j ∈ {1, ..., k}
and C(v) 6= j) by considering both the variation ∆conf (v, j) in the number
of conflicts and the variation ∆sc(v, j) in the sum of colors when exchanging
the color of vertex v to j. Both ∆conf (v, j) and ∆sc(v, j) are negative for an
improving move. Each move is then evaluated with the following relation:

∆f(v, j) = ∆conf (v, j) ∗ γ(v, j), where (2)

γ(v, j) =

{
abs(∆sc(v, j)) + k + 1 if ∆sc(v, j) < 0
k −∆sc(v, j) + 1 otherwise

(3)

LocalSearch2 performs at each steep an exchange move with the smallest
∆f , and stops after reaching a solution with no conflicting vertices (i.e., when
∆f = 0). The evaluation function from Eq. 2 ensures that a conflicting vertex
is eventually assigned a color k + 1 in case the conflict cannot be resolved by
changing the color of v to a color less than or equal to k. However, a local
optimum attained with LocalSearch2 is not necessarily a local optimum with
respect to LocalSearch1. After reaching a local optimum with LocalSearch2,
BLS thus applies LocalSearch1 to this local optimum which may improve the
solution in terms of the objective value of Eq. (1).

Breakout local search for the MSCP 5

Upon reaching a feasible locally optimal solution, BLS triggers its perturba-
tion mechanism as described in the following section.

2.3 Adaptive perturbation mechanism

General idea The perturbation mechanism plays a crucial role within BLS
since the descent-based local search alone cannot escape from a local optimum.
BLS thus tries to move to the another basin of attraction by applying perturba-
tions of different intensities depending on the search state. The idea of BLS is to
first explore neighboring attractors. Therefore, after the local search phase, BLS
performs most of the time a weak perturbation (by applying a small number
L of moves) that is hopefully just strong enough to escape the current basin
of attraction and to fall under the influence of a neighboring local optimum. If
the jump was not sufficient to escape the current attractor, the perturbation
strength L is incremented and the perturbation is applied again to the current
attractor (lines 20–23 of Alg. 1). After visiting consecutively T legal local optima
without any improvement of the best solution found, BLS sets the number of
perturbation moves L to a significantly larger value Ls (see lines 17–19 of Alg. 1).
In addition to the number of perturbation moves, we also determine which type
of moves are to be applied. Instead of making random jumps all the time, BLS
alternates between several types of dedicated perturbation moves, depending on
the desired amount of diversification (i.e., the state of search).

The perturbation strategies The proposed BLS algorithm employs two di-
rected perturbation strategies (Dp1 and Dp2), a recency-based perturbation
(RBp) and a random perturbation (Rp).

Directed perturbations are based on the idea of tabu list from tabu search
[5]. These perturbations use a selection rule that favors the moves that minimize
solution degradation, under the constraint that the moves are not prohibited by
the tabu list. Move prohibition is determined in the following way. Each time
vertex v is moved from subset Si to Sj , it is forbidden to move v back to Si

for the next tt iterations (tt takes a random value from a given range). The
information for move prohibition is maintained in a matrix H where the element
Hv,j is the iteration number when vertex v was last moved to subset Sj . The
tabu status of a move is neglected only if the move leads to a new solution better
than the best solution found so far. The directed perturbations rely thus both on
history information and the quality of the moves to be applied for perturbation.

The first directed perturbation Dp1 consists in making a legal non-tabu move
which reduces the most the objective value, under constraint that the move does
not violate an additional problem constraint. The second directed perturbation
Dp2 consists in performing a non-tabu exchange move (v, j) of the smallest
∆f(v, j), ∀v ∈ V , and ∀j ∈ {1, ..., k} and C(v) 6= j (see Eq. 2), such that the
number of vertices in Sj is greater than or equal to the number of vertices in
the current subset of v.

6 Una Benlic and Jin-Kao Hao

The recency-based perturbation RBp consists in making the least recent le-
gal exchange move (v, j) (i.e., a move that would not violate an additional con-
straint) provided that the subset Sj is not empty.

The move with random perturbation Rp consists first in selecting randomly
two non-empty subsets Si and Sj , such that |Si| ≤ |Sj |. A vertex v is then
randomly chosen from Si and moved to its new subset Sj .

Since moves with perturbations Dp2 and Rp always lead to an illegal solution,
we consider them to be stronger than perturbations Dp1 and RBp.

Our BLS approach takes turns probabilistically between a weaker perturba-
tion (Dp1 or RBp) and a stronger perturbation (Dp2 or Rp) depending on the
search state, i.e., the current number of consecutive non-improving legal attrac-
tors visited ω. The idea is to apply weaker perturbation with a higher probability
as the search progresses toward improved new solutions (when ω is small). With
the increase of ω, the probability of using a stronger perturbation increases for
the purpose of an important diversification.

Additionally, it has been observed from an experimental analysis that it is
useful to guarantee a minimum of applications of a weaker perturbation. There-
fore, we constraint the probability P of applying perturbations Dp1 or RBp to
take values no smaller than a threshold P0:

P =

{
e−ω/T if e−ω/T > P0

P0 otherwise
(4)

where T is the maximum number of legal non-improving local optima visited
before carrying out a stronger perturbation.

Given the probability P of applying perturbation Dp1 or RBp over Dp2
or Rp, the probability of applying perturbation Dp1 over RBp is P · Q1 and
P ·(1−Q1) respectively, while the probability of applying Dp2 over Rp is defined
by (1−P) ·Q2 and (1−P) · (1−Q2) respectively. Q1 and Q2 are two coefficients
that take a value from [0, 1].

2.4 Experimental results

Experimental protocol Our BLS algorithm is programmed in C++, and
compiled with GNU gcc on a Xeon E5440 with 2.83 GHz and 2 GB. Two sets
of benchmark graphs from the literature which are commonly used to test sum
coloring algorithms are considered in the experiments. The first set is composed
of 11 DIMACS1 (DSJC125.1 to DSJC1000.5) instances. The second benchmark
set is composed of 16 graphs from the COLOR02 competition website2. For all
the instances, we run our BLS algorithm 20 times, with the maximum time
limit set to 2 hours. However, BLS often attains its best result long before
this limit. The parameter settings used to obtain the reported results are the
following: initial jump magnitude L0 = 0.1 ∗ |V |, jump magnitude during strong
perturbation Ls = 0.25∗|V |, maximum number of non-improving legal attractors

1 ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/color/
2 http://mat.gsia.cmu.edu/COLOR02/

Breakout local search for the MSCP 7

visited before strong perturbation T = 100, smallest probability for applying
weaker perturbation P0 and probability coefficients Q1 and Q2 are set to 0.5.

We compare the performance of BLS with six recent algorithms from the
literature. The comparison is solely based on the quality criterion according to
Eq. (1) since information like the computing time are not always available for
the reference approaches.

Table 1. Computational results of BLS on DIMACS and COLOR02 instances.

Name Sum* Sum Avg(Std) t(min) Name Sum* Sum Avg(Std) t(min)
DSJC125.1 326 326 326.9 (0.6) 18.3 jean 217 217 217.0 (0.0) 0.1
DSJC125.5 1015 1012 1012.9 (0.3) 51.0 queen5.5 75 75 75.0 (0.0) 0.0
DSJC125.9 2511 2503 2503.0 (0.0) 1.1 queen6.6 138 138 138.0 (0.0) 0.0
DSJC250.1 977 973 982.5 (3.4) 111.7 queen7.7 196 196 196.0 (0.0) 0.0
DSJC250.5 3246 3219 3248.5 (14.5) 104.1 queen8.8 291 291 291.0 (0.0) 0.8
DSJC250.9 8286 8290 8316 (13.2) 41.6 games120 443 443 443.0 (0.0) 0.5
DSJC500.1 2850 2882 2942.9 (19.6) 112.4 miles250 325 327 328.8 (0.9) 31.1
DSJC500.5 10910 11187 11326.3 (75.3) 118.8 miles500 709 710 713.3 (1.2) 86.3
DSJC500.9 29912 30097 30259.2 (63.3) 37.1 myciel3 21 21 21 (0.0) 0.0
DSJC1000.1 9003 9520 9630.1 (65.7) 112.9 myciel4 45 45 45.0 (0.0) 0.0
DSJC1000.5 37598 40661 41002.6 (169.3) 113 myciel5 93 93 93.0 (0.0) 1.3
anna 276 276 276.0 (0.0) 14.8 myciel6 189 189 196.6 (4.3) 20.0
david 237 237 237.0 (0.0) 2.5 myciel7 381 381 393.8 (8.4) 38.3
huck 243 243 243.0 (0.0) 0.3

Computational results and comparisons Table 1 presents computational
results of our BLS algorithm on the sets of 27 DIMACS and COLOR02 in-
stances. Column Sum* shows the best-known results for these instances taken
from references [6, 13]. Column Sum indicates the best result obtained with BLS
after 20 independent runs. Columns Avg(Std) and t(min) provide respectively
the average and standard deviation values over 20 executions and the average
CPU time in minutes required by BLS to reach its best result. From Table 1, we
observe that for the DIMACS instance, BLS improved the best-known result for
four instances, but failed to reach the best reported result for six other (larger)
instances. The results for instances of COLOR02 benchmark indicate that BLS
attained the best-known result for 14 instances, and was unable to reach the
current best result for two instances. The average computing times required by
BLS to attain its best reported results from column Sum range from less then a
minute up to 120 minutes for the largest instances.

To further evaluate the performance of BLS, we show a comparison with the
following approaches from the literature: a very recent heuristic EXSCOL [13]; a
hybrid local search (HLS) [4]; a greedy algorithm (MRLF) based on the popular
RLF graph coloring heuristic [10]; a parallel genetic algorithm (PGA) [9]; a tabu
search algorithm (TS) [3]; and a recent local search combining ideas of variable
neighborhood search and iterated local search (MDSLS) [6]. EXSCOL [13] is the
current best-performing approach in the literature and is particularly effective
on large graphs. It is based on an iterative extraction of large independent sets,
where each independent set defines a color class. Moreover, EXSCOL is highly

8 Una Benlic and Jin-Kao Hao

effective in terms of computing time. On the same computing platform as that we
used to test BLS, it requires from 1 minute up to 30 minutes for large graphs (e.g.,
DIMACS1000.X) to reach the reported results. The time limit used by MDSLS
[6] is 1 hour on a computer similar to ours. For other reference approaches [3, 4,
9, 10], details on testing conditions are not available.

Tables 2 and 3 report respectively the comparative results with these ref-
erence algorithms on the tested DIMACS and COLOR02 instances. From the
results of Table 2, we observe that our BLS algorithm outperforms, for each of
the tested DIMACS instance, the reference algorithms MRLF [10], TS [3], and
MDSLS [6] (except on DSJC125.1 where BLS and MDSLS report the same re-
sult). However, compared to the highly effective EXSCOL algorithm [13], BLS
shows a worse performance on large DIMACS instances, but is able to report
a better result than EXSCOL for 4 DIMACS instances up to 250 vertices. No-
tice that two reference algorithms HLS and PGA do not report results for these
instances.

Table 2. Comparative results between our BLS algorithm and four reference ap-
proaches on the set of DIMACS instances.

Name Sum* BLS EXSCOL [13] MRLF [10] TS [3] MDSLS [6]
DSJC125.1 326 326 326 352 344 326
DSJC125.5 1015 1012 1017 1141 1103 1015
DSJC125.9 2511 2503 2512 2653 2631 2511
DSJC250.1 977 973 985 1068 1046 977
DSJC250.5 3246 3219 3246 3658 3779 3281
DSJC250.9 8286 8290 8286 8942 9198 8412
DSJC500.1 2850 2882 2850 3229 3205 2951
DSJC500.5 10910 11187 10910 12717 – 11717
DSJC500.9 29912 30097 29912 32703 – 30872
DSJC1000.1 9003 9520 9003 10276 – 10123
DSJC1000.5 37598 40661 37598 45408 – 43614

Table 3. Comparative results between our BLS algorithm and five reference approaches
on the set of COLOR02 instances.

Name Sum* BLS EXSCOL [13] HLS [4] MRLF [10] PGA [9] MDSLS [6]
anna 276 276 283 – 277 281 276
david 237 237 237 – 241 243 237
huck 243 243 243 243 244 243 243
jean 217 217 217 – 217 218 217
queen5.5 75 75 75 – 75 75 75
queen6.6 138 138 150 138 138 138 138
queen7.7 196 196 196 – 196 196 196
queen8.8 291 291 291 – 303 302 291
games120 443 443 443 446 446 460 443
miles250 325 327 328 343 334 347 325
miles500 709 710 709 755 715 762 712
myciel3 21 21 21 21 21 21 21
myciel4 45 45 45 45 45 45 45
myciel5 93 93 93 93 93 93 93
myciel6 189 189 189 189 189 189 189
myciel7 381 381 381 381 381 382 381

Breakout local search for the MSCP 9

For the COLOR02 instances, we observe in Table 3 that BLS shows a com-
parable performance to the recent MDSLS algorithm [6] and a slightly better
performance than EXSCOL [13]. Moreover, the best result obtained with BLS
is in each case either better or as good as that reported by HLS [4], MRLF [10]
and PGA [9]. For TS, no results are reported on these instances in [3].

From the given comparison on both sets of benchmarks, we can conclude
that our BLS algorithm for the MSCP is very competitive with the state of art
approaches from the literature.

3 Discussions

One observes that among the different ingredients of the BLS algorithm (see
Alg. 1), only the neighborhood relations, evaluation functions and perturbation
moves (see sections 2.2 and 2.3) are specific to the MSCP. In fact, BLS is a
generic search framework which inherits and combines features from iterated
local search [11], tabu search [5] and simulated annealing [8]. We briefly discuss
the similarities and differences between our BLS approach and these methods.

Following the general framework of ILS, BLS uses local search to discover lo-
cal optima and perturbation to diversify the search. However, BLS distinguishes
itself from most ILS algorithms by the combination of multiple perturbation
strategies of different intensities, triggered according to the search status. In
particular, a distinction of BLS is in the way a perturbation type is selected. As
explained in Section 2.3, BLS applies a perturbation of weaker diversification
with a higher probability P as the search progresses toward improved new local
optima. This probability is progressively decreased as the number of consecu-
tively visited non-improving local optima ω increases. The idea of an adaptive
change of probability P is inspired by the popular acceptance criterion used in
simulated annealing, which ensures that neighboring solutions (even those of bad
quality) are accepted with higher probability when the temperature is high, and
with lower probability as the temperature decreases.

In order to direct the search toward more promising regions of the search
space, BLS employs directed perturbation strategies based on the notion of tabu
list from tabu search. However, unlike tabu search, BLS does not consider the
tabu list during its local search phases. As such, BLS and tabu search may ex-
plore quite different trajectories during their respective search, leading to differ-
ent local optima. In fact, we believe that diversification during the descent-based
improving phase is unnecessary. The compromise between search exploration and
exploitation is critical only once a local optimum is reached. Other studies sup-
porting this idea can be found in [1, 7].

To validate the generality of BLS, in addition to the MSCP presented in this
paper, we have applied BLS to solve several other classical combinatorial opti-
mization problems (quadratic assignment, maximum clique [2], and maximum
cut) and observed very competitive performances on benchmark instances.

10 Una Benlic and Jin-Kao Hao

4 Conclusion

In this paper, we have presented the Break Local Search algorithm for solving the
minimum sum coloring problem. The computational evaluation of the proposed
algorithm on two sets of 27 DIMACS and COLOR02 benchmark instances has
revealed that BLS is able to improve the best-known results for 4 DIMACS
instances and attain the best-known results for 15 instances while failing to
reach the best ones for 8 instances. These results are competitive compared with
most of the state of art approaches for the MSCP.

Acknowledgment

We are grateful to the referees for their comments and questions which helped
us to improve the paper. The work is partially supported by the Pays de la
Loire Region (France) within the RaDaPop (2009-2013) and LigeRO (2010-2013)
projects.

References

1. Battiti R., Protasi M.: Reactive search, a history-based heuristic for max-sat. ACM
Journal of Experimental Algorithmics, 2 (1996)

2. Benlic U., Hao J.K.: Breakout local search for maximum clique problems. Accepted
to Computers & Operations Research, DOI:10.1016/j.cor.2012.06.002 (2012)

3. Bouziri H., Jouini M.: A tabu search approach for the sum coloring problem. Elec-
tronic Notes in Discrete Mathematics, 36:915–922 (2010)

4. Douiri S.M., and Elbernoussi S.: New algorithm for the sum coloring problem. In-
ternational Journal of Contemporary Mathematical Sciences, 6:453–463 (2011)

5. Glover F., Laguna M.: Tabu Search. Kluwer Academic Publishers, Boston (1997)
6. Helmar A., Chiarandini M.: A local search heuristic for chromatic sum. In MIC

2011, pp. 161–170 (2011)
7. Kelly J.P., Laguna M., Glover F.: A study of diversification strategies for the

quadratic assignment problem. Computers and Operations Research, 21(8):885 –
893 (1994)

8. Kirkpatrick S., Gelett C.D., Vecchi M.P.: Optimization by simulated annealing.
Science, 220:621–630 (1983)

9. Kokosiński Z., Kwarciany K.: On sum coloring of graphs with parallel genetic algo-
rithms. Proceedings of the ICANNGA’07 (Part 1), LNCS 4431: 211–219 (2007)

10. Li Y., Lucet C., Moukrim A., Sghiouer K.: Greedy algorithms for minimum sum
coloring algorithm. Proceedings of LT2009 (2009)

11. Lourenco H.R., Martin O., Stützle T.: Iterated local search, Handbook of Meta-
heuristics, Springer-Verlag, Berlin Heidelberg (2003)

12. Malafiejski M.: Sum coloring of graphs. In M. Kubale (Ed.), Graph colorings, AMS,
pp 55–65 (2004)

13. Wu Q., Hao J.K.: An effective heuristic algorithm for sum coloring of graphs.
Computers & Operations Research, 39(7):1593–1600 (2012)

