
Breakout Local Search for the Max-Cut

Problem

Una Benlic and Jin-Kao Hao ∗

LERIA, Université d’Angers

2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

Accepted to Engineering Applications of Artificial Intelligence,
Sept. 3, 2012

Abstract

Given an undirected graph G = (V, E) where each edge of E is weighted with an
integer number, the maximum cut problem (Max-Cut) is to partition the vertices
of V into two disjoint subsets so as to maximize the total weight of the edges
between the two subsets. As one of Karp’s 21 NP-complete problems, Max-Cut
has attracted considerable attention over the last decades. In this paper, we present
Breakout Local Search (BLS) for Max-Cut. BLS explores the search space by a joint
use of local search and adaptive perturbation strategies. The proposed algorithm
shows excellent performance on the set of well-known maximum cut benchmark
instances in terms of both solution quality and computational time. Out of the 71
benchmark instances, BLS is capable of finding new improved results in 33 cases and
attaining the previous best-known result for 35 instances, within a computational
time ranging from less than one second to 5.6 hours for the largest instance with
20000 vertices.

Keywords: Max-cut; local search and heuristics; adaptive diversification; meta-
heuristics.

1 Introduction

The maximum cut problem (Max-Cut) is one of Karp’s 21 NP-complete prob-
lems with numerous practical applications [12]. Let G = (V,E) be an undi-
rected graph with the set of vertices V and the set of edges E, each edge

∗ Corresponding author.
Email addresses: benlic@info.univ-angers.fr (Una Benlic),

hao@info.univ-angers.fr (Jin-Kao Hao).

Preprint submitted to Elsevier 3 September 2012

(i, j) ∈ E being associated with a weight wij. Max-Cut consists in partition-
ing the vertices of V into two disjoint subsets V1 and V2 such that the total
weight of the edges whose endpoints belong to different subsets is maximized,
i.e.,

f(V1, V2) = max
∑

i∈V1,j∈V2

wij. (1)

Given its theoretical and practical importance, Max-Cut has received consid-
erable attention over the last decades. Well-known exact methods for Max-
Cut, such as the Branch and Price procedure [17], are capable of solving
to optimality medium size instances (i.e., |V | = 500). For larger instances,
different heuristic methods have been proposed including global equilibrium
search [21], projected gradient approach [6], rank-2 relaxation heuristic [7],
and greedy heuristics [11]. Other well-known algorithms are based on popular
metaheuristics such as variable neighbourhood search [8], tabu search [1,16],
scatter search [19], grasp [22], and different hybrid approaches [8,22].

In this work, we propose a new heuristic algorithm for Max-Cut, using the
Breakout Local Search (BLS) [4,5]. Based on the framework of Iterated Lo-
cal Search (ILS) [18], BLS combines local search (i.e., the steepest descent)
with a dedicated and adaptive diversification mechanism. Its basic idea is to
use local search to discover local optima and employ adaptive perturbations
to continually move from one attractor to another in the search space. The
continual exploration of new search areas is achieved by alternating between
random and directed, and weak and strong perturbations depending on the
current search state. Despite its simplicity, BLS shows excellent performance
on the set of well-known Max-Cut instances in terms of both solution quality
and computational time. Out of 71 benchmark instances, the proposed ap-
proach is capable of improving the previous best-known solutions in 33 cases
and reaching the previous best-known results for 35 instances, within a com-
putational time ranging from less than one seconds to 5.6 hours for the largest
instance with 20000 vertices.

In the next section, we present in details the breakout local search approach
for the Max-Cut problem. Section 3 shows extensive computational results
and comparisons with the state-of-art Max-Cut algorithms. In Section 4, we
provide a parameter sensitivity analysis and justify the parameter settings
used to obtain the reported results. Moreover, we investigate the efficiency of
the proposed diversification mechanism of BLS, and highlight the importance
of excluding diversification schemes during the local search phase. Conclusions
are given in the last section.

2

2 Breakout Local Search (BLS)

Our Breakout Local Search (BLS) approach is conceptually rather simple and
transits from one basin of attraction to another basin by a combined use of
local search (to reach local optima) and dedicated perturbations (to discover
new promising regions).

Recall that given a search space S and an objective function f , a neighborhood
N is a function N : S → P (S) that associates to each solution C of S a subset
N(C) of S. A local optimum C∗ with respect to the given neighborhood N is a
solution such that ∀C ′ ∈ N(C∗), f(C∗) ≥ f(C ′), where f is the maximization
function. A basin of attraction of a local optimum C∗ can be defined as the
set BC∗ of solutions that lead the local search to the given local optimum
C∗, i.e., BC∗ = {C ∈ S|LocalSearch(C) = C∗} [3]. Since a local optimum
C∗ acts as an attractor with respect to the solutions BC∗ , the terms attractor
and local optimum will be used interchangeably throughout this paper. Notice
that in practice, for a given solution C, a neighboring solution C ′ is typically
generated by applying a move operator to C. Let m be the move applied to
C, we use C ′ ← C ⊕m to denote the transition from the current solution C
to the new neighboring solution C ′.

BLS follows the general scheme of iterated local search [18] and alternates
between a local search phase, which uses the steepest descent [20] to discover
an attractor, and a perturbation phase, which guides the search to escape
from the current basin of attraction. The general BLS algorithm is shown in
Algorithm 1.

After generation of an initial solution (line 1) and an initialization step (lines
2-7), BLS applies the steepest descent to reach a local optimum (lines 9-
16). Each iteration of this local search procedure identifies the best move m
among those that are applicable to the current solution C, and applies m to
C to obtain a new solution which replaces the current solution (lines 9-12).
Updates are performed to reflect the current state of the search (lines 13-
22). In particular, if the last discovered local optimum is better than the best
solution found so far (recorded in Cbest), Cbest is updated with the last local
optimum (lines 17-18).

If no improving neighbor exists, local optimality is reached. At this point, BLS
tries to escape from the basin of attraction of the current local optimum and
to go into another basin of attraction. For this purpose, BLS applies a number
L of dedicated moves to the current optimum C (we say that C is perturbed,
see Section 2.3 for details). Each time an attractor is perturbed (line 37),
the perturbed solution becomes the new starting point for the next round of
the local search procedure (a new round of the outer while structure, line 8).

3

The algorithm stops when a prefixed condition is satisfied. This can be, for
example, a cutoff time, an allowed maximum of iterations or a target objective
value to be attained. In this paper, an allowed maximum of iterations is used
(see Section 3).

To determine the most appropriate perturbation (its type and strength), we
distinguish two situations. First, if the search returns to the immediate previ-
ous attractor (recorded in Cp), BLS perturbs C more strongly by increasing
the number of perturbation moves L to be applied (lines 28-30). Otherwise
(i.e., the search succeeded in escaping from the current attractor), the number
of perturbation moves L is reduced to its initial value L0 (L0 is a parame-
ter). Second, if the search cannot improve the best solution found so far after
visiting a certain number T (T is a parameter) of local optima, BLS applies
a significantly stronger perturbation in order to drive definitively the search
towards a new and more distant region in the search space (lines 24-27).

Algorithm 1 The Breakout Local Search for the Max-cut Problem
Require: Graph G = (V, E), initial jump magnitude L0, max. number T of non-improving attractors

visited before strong perturb.
Ensure: A set of vertices forming a clique.
1: C ← generate initial solution(V) /* C is a partition of V into two subsets V1 and V2 */
2: fc ← f(C) /* fc Records the objective value of the solution */
3: Cbest ← C /* Cbest Records the best solution found so far */
4: fbest ← fc /* fbest Records the best objective value reached so far */
5: Cp ← C /* Cp Records the solution obtained after the last descent */
6: ω ← 0 /* Counter for consecutive non-improving local optima */
7: Iter ← 0 /* Counter of iterations */
8: while stopping condition not reached do

9: Let m be the best move m eligible for C /* See Section 2.1 */
10: while f(C ⊕m) > f(c) do

11: fc ← f(C ⊕m) /* Records the objective value of the current solution */
12: C ← C ⊕m /* Perform the best-improving move */
13: Update bucket sorting structure /* Section 2.2 */
14: H ← Iter + γ /* Update tabu list, γ is the tabu tenure */
15: Iter ← Iter + 1
16: end while

17: if fc > fbest then

18: Cbest ← C; fbest ← fc /* Update the recorded best solution */
19: ω ← 0 /* Counter for consecutive non-improving local optima reset */
20: else

21: ω ← ω + 1
22: end if

23: /* Determine the number of perturbation moves L to be applied to C */
24: if ω > T then

25: /* Search seems to be stagnating, random perturbation required */
26: ω ← 0
27: end if

28: if C = Cp then

29: /* Search returned to previous local optimum, increase number of perturbation moves*/
30: L← L + 1
31: else

32: /* Search escaped from the previous local optimum, reinitialize number of perturb. moves */
33: L← L0

34: end if

35: /* Perturb the current local optimum C with L perturbation moves */
36: Cp ← C
37: C ← Perturbation(C, L, H, Iter, ω) /* Section 2.3.1 */
38: end while

The success of the described method depends basically on two key factors.

4

First, it is important to determine the number L of perturbation moves (also
called “perturbation strength” or “jump magnitude”) to be applied to change
or perturb the solution. Second, it is equally important to consider the type
of perturbation moves to be applied. While conventional perturbations are
often based on random moves, more focused perturbations using dedicated
information could be more effective. The degree of diversification introduced
by a perturbation mechanism depends both on the jump magnitude and the
type of moves used for perturbation. If the diversification is too weak, the local
search has greater chances to end up cycling between two or more locally
optimal solutions, leading to search stagnation. On the other hand, a too
strong diversification will have the same effect as a random restart, which
usually results in a low probability of finding better solutions in the following
local search phase. For its perturbation mechanism, the proposed BLS takes
advantage of the information related to the search status and history. We
explain the perturbation mechanism is Section 2.3.

2.1 The neighbourhood relations and its exploration

For solution transformations, BLS employs three distinct move operators (moves
for short) M1 −M3 whose basic idea is to generate a new cut C by moving
vertices to the opposite partition subset. To define these move operators, we
first introduce the notion of move gain which indicates how much a partition
is improved, according to the optimization objective, if a vertex is moved to
another subset. For each vertex v ∈ V , we determine the gain gv for moving
v to the opposite partition subset. As we show in Section 2.2, the vertex with
the (best) highest gain can be easily determined using a special bucket data
structure that has been extensively used to the related (and different) graph
partitioning problem.

Given a partition (cut) C = {V1, V2}, the three move operators are defined
below:

M1: Select a vertex vm with the highest gain. Move the selected vertex vm

from its current subset to the opposite partition subset.
M2: Select a highest gain vertex v1 from V1 and a highest gain vertex v2 from

V2. Move v1 to V2, and v2 to V1.
M3: Randomly select a vertex v. Move the selected vertex v from its current

subset to the opposite partition subset.

Each iteration of the local search consists in identifying the best move m from
M1 and applying it to C to obtain a new solution. This process is repeated
until a local optimum is reached (see lines 8–16 of Alg. 1). The two directed
perturbations of BLS apply a move m from M1 and M2 respectively, while the

5

strong perturbation, which acts as a restart, performs a move from M3 (see
Section 2.3.1 for the three perturbation strategies).

2.2 Bucket sorting

To ensure a fast evaluation of the neighbouring moves, our implementation
uses the bucket sorting data structure which keeps vertices ordered by their
gains. This structure is used to avoid unnecessary search for the highest gain
vertex and to minimize the time needed for updating the gains of vertices
affected by each move.

The bucket sorting structure was first proposed by Fiduccia and Mattheyses
[9] to improve the Kerninghan-Lin algorithm [14] for the minimum graph
bisection problem. We adopt this technique for our Max-Cut problem. The
idea is to put all the vertices with the same gain g in a bucket that is ranked
g. Then, to determine a vertex with the maximum gain, it suffices to go to the
non-empty bucket with the highest rank, and select a vertex from the bucket.
After each move, the bucket structure is updated by recomputing gains of the
selected vertex and its neighbors, and transferring these vertices to appropriate
buckets.

The bucket data structure consists of two arrays of buckets, one for each
partition subset, where each bucket of an array is represented by a doubly
linked list. An example of the bucket data structure is illustrated in Figure 1.
The arrays are indexed by the possible gain values for a move, ranging from
gmax to gmin. A special pointer maxgain points to the highest index in the array
whose bucket is not empty, and thus enables to select the best improving move
in constant time. The structure also keeps an additional array of vertices where
each element (vertex) points to its corresponding vertex in the doubly linked
lists. This enables a direct access to the vertices in buckets and their transfer
from one bucket to another in constant time.

Each time a move involving a vertex v is performed, only the gains of the
vertices adjacent to v are recalculated (in O(1)) and updated in the bucket
structure in constant time (delete and insert operations in the bucket are
both of O(1) complexity). Therefore, the complexity of moving vertex v from
its current subset to the opposite subset is upper-bounded by the number of
vertices adjacent to v.

6

Fig. 1. An illustrative example of the bucket sorting data structure on a graph with
6 vertices

2.3 Adaptive perturbation mechanism

The perturbation mechanism plays a crucial role within BLS since the local
search alone cannot escape from a local optimum. BLS thus tries to move to
the next basin of attraction by applying a weak or strong, directed or random
perturbation depending on the state of the search (lines 23–37 of Alg. 1). The
pseudo-code of this adaptive perturbation-based diversification procedure is
given in Algorithms 2 and 3.

The perturbation procedure (Alg. 2) takes as its input the following param-
eters: the current solution C which will be perturbed, the jump magnitude
L determined in the main BLS algorithm (Alg. 1, lines 30 and 33), the tabu
list H, the global iteration counter Iter and the number of consecutive non-
improving local optima visited ω. Based on these information, the perturba-
tion procedure determines the type of moves to be applied. The perturbation
moves can either be random or directed. First, if the search fails to update
the best solution after consecutively visiting a certain number T of local op-
tima (indicated by ω = 0, Alg. 2), the search is considered to be trapped
in a non-promising search-space region and a strong perturbation is applied
(Alg. 2, line 3) which basically displaces randomly a certain number (fixed by
the jump magnitude L) of vertices from one side of the two-way partition to
the other side. Here no constrained is imposed on the choice of the displaced
vertices and any vertex can take part in this perturbation process. We will
explain this random perturbation in Section 2.3.1.

Second, if the number of consecutively visited local optima does not exceed

7

the threshold T , we will allow the search to explore the current search region
more thoroughly by adaptively choosing between weaker (directed) and ran-
dom (stronger) perturbation moves (the adaptive mechanism is described in
Section 2.3.1). Basically, the directed perturbation is more oriented towards
search intensification than a random perturbation, since perturbation moves
are chosen by also considering the quality criterion so as not to deteriorate
too much the current solution. Two different types of directed perturbation
moves are distinguished with BLS and are explained in the next section.

Once the type of perturbation is determined, BLS modifies the current so-
lution C by applying to it L perturbation moves which are chosen from the
corresponding set of moves defined in the next section (Alg. 3). Notice that
as in the case of moves performed during the local search phase, perturbation
moves are added into the tabu list to avoid reconsidering them for the next
γ iterations (Alg. 3, line 4, see also Section 2.3.1). The perturbed solution is
then used as the new starting point for the next round of the local search.

Algorithm 2 The perturbation procedure Perturbation(C,L,H, Iter, ω)
Require: Local optimum C, jump magnitude L, tabu list H, global iteration counter Iter, number of

consecutive non-improving local optima visited ω.
Ensure: A perturbed solution C.
1: if ω = 0 then

2: /* Best sol. not improved after a certain num. of visited local opt.*/
3: C ← Perturb(C, L, B) /* Random perturb. with moves from set B, see Section 2.3.1 for the

definition of set B */
4: else

5: Determine probability P according to Formula (2) /* Section 2.3.1 */
6: With probability P ∗Q, C ← Perburb(C, L, A1)

/* Directed perturb. with moves of set A1, see Section 2.3.1 for the definition of set A1 */
7: With probability P (1−Q), C ← Perturb(C, L, A2)

/* Directed perturb. with moves of set A2, see Section 2.3.1 for the definition of set A2 */
8: With probability (1− P), C ← Perturb(C, L, B)

/* Random perturb. with moves of set B */
9: end if

10: Return C

Algorithm 3 Perturbation operator Perburb(C,L,M)
Require: Local optimum C, perturbation strength L, tabu list H, global iteration counter Iter, the set of

perturbation moves M .
Ensure: A perturbed solution π.
1: for i := 1 to L do

2: Take move m ∈M
3: C ← C ⊕m
4: H ← Iter + γ /* Update tabu list, γ is the tabu tenure */
5: Update bucket sorting structure /* Section 2.2 */
6: Iter ← Iter + 1
7: end for

8: Return C

2.3.1 The perturbation strategies

As mentioned above, BLS employs two types of directed perturbations and a
random perturbation to guide the search towards new regions of the search
space.

8

Directed perturbations are based on the idea of tabu list from tabu search [10].
These perturbations use a selection rule that favors the moves that minimize
the degradation of the objective, under the constraint that the moves are not
prohibited by the tabu list. Move prohibition is determined in the following
way. Each time a vertex v is moved from its current subset Vc, it is forbidden
to place it back to Vc for γ iterations (called tabu tenure), where γ takes a
random value from a given range.

The information for move prohibition is maintained in the tabu list H where
the ith element is the iteration number when vertex i was last moved plus γ.
The tabu status of a move is neglected only if the move leads to a new solution
better than the best solution found so far (this is called aspiration in the
terminology of tabu search). The directed perturbations rely thus both on 1)
history information which keeps track, for each move, the last time (iteration)
when it was performed and 2) the quality of the moves to be applied for
perturbation in order not to deteriorate too much the perturbed solution.

The eligible moves for the first type of directed perturbation (applied in Alg.
2 line 6) are identified by the set A1 such that:

A1 = {m|m ∈M1,max{gm}, (Hm + γ) < Iter or (gm + fc) > fbest}

where gm is the gain for performing move m (see Sections 2.1 and 2.2), fc the
objective value of the current solution, and fbest the objective value of the best
found solution. Note that the first directed perturbation considers a subset of
eligible move obtained by applying the move operator M1 (see Section 2.1).

The second type of directed perturbation (applied in Alg. 2, line 7) is almost
the same as the first type. The only difference is that the second directed
perturbation considers eligible moves obtained with the move operator M2

(see Section 2.1). These moves are identified by the set A2 such that:

A2 = {m|m ∈M2,max{gm}, (Hm + γ) < Iter or (gm + fc) > fbest}

Finally, the random perturbation, consists in performing randomly selected
moves (i.e., M3 from Section 2.1). More formally, moves performed during
random perturbation are identified by the set B such that:

B = {m|m ∈M3}

Since random perturbations can displace any vertex of the partition without
constraint, the quality of the resulting solution could be severely affected. In
this sense, this perturbation is significantly stronger than the directed pertur-
bations.

As soon as a search stagnation is detected, i.e., the best found solution has not

9

been improved after consecutively visiting T local optima, BLS applies moves
of random perturbation in order to drive the search towards distant regions of
the search space (lines 1–3 of Alg. 2). Otherwise, BLS applies probabilistically
these three types of perturbations. The probability of applying a particular
perturbation is determined dynamically depending on the current number of
consecutive non-improving attractors visited (indicated by ω in Alg. 1). The
idea is to apply more often directed perturbations (with a higher probability)
at the beginning of the search, i.e., as the search progresses towards improved
new local optima (the non-improving consecutive counter ω is small). With
the increase of ω, the probability of using directed perturbations progressively
decreases while the probability of applying random moves increases for the
purpose of a stronger diversification.

Additionally, it has been observed from an experimental analysis that it is
often useful to guarantee a minimum of applications of a directed perturbation.
Therefore, we constraint the probability P of applying directed perturbations
to take values no smaller than a threshold P0:

P =

{

e−ω/T if e−ω/T > P0

P0 otherwise
(2)

where T is the maximum number of non-improving local optima visited before
carrying out a stronger perturbation.

Given probability P of applying directed perturbation, the probability of ap-
plying the first and the second type of directed perturbation is determined
respectively by P · Q and P · (1 − Q) where Q is a constant from [0, 1] (see
Alg. 2). BLS then generates a perturbed solution by applying accordingly the
perturbation operator to make the dedicated moves from the sets A1, A2 or
B (see Alg. 3).

In Section 4.2, we provide an experimental study showing the influence of this
perturbation strategy on the performance of our search algorithm.

2.4 Discussion

The general BLS procedure combines some features from several well-established
metaheuristics: iterated local search [18], tabu search [10] and simulated an-
nealing [15]. We briefly discuss the similarities and differences between our
BLS approach and these methods.

Following the general framework of ILS, BLS uses local search to discover local
optima and perturbation to diversify the search. However, BLS distinguishes
itself from most ILS algorithms by the combination of multiple perturbation

10

strategies triggered according to the search status, leading to variable levels
of diversification. Moreover, with BLS each locally optimal solution returned
by the local search procedure is always accepted as the new starting solution
no matter its quality, which completely eliminates the acceptance criterion
component of ILS.

A further distinction of BLS is the way an appropriate perturbation strat-
egy is selected at a certain stage of the search. As explained in Section 2.3.1,
BLS applies a weak perturbation with a higher probability P as long as the
search progresses towards improved solutions. As the number of consecutively
visited non-improving local optima ω increases, indicating a possible search
stagnation, we progressively decrease the probability for a weak perturbation
and increase the probability for a strong perturbation. The idea of this adap-
tive change of probability finds its inspiration from simulated annealing and
enables a better balance between an intensified and diversified search.

To direct the search towards more promising regions of the search space, BLS
employs perturbation strategies based on the notion of tabu list that is bor-
rowed from tabu search. The tabu list enables BLS to perform moves that do
not deteriorate too much the solution quality in a way that the search does
not return to the previous local optimum. However, BLS does not consider
the tabu list during its local search (descent) phases while each iteration of
tabu search is constrained by the tabu list. As such, BLS and tabu search may
explore different trajectories during their respective search, leading to differ-
ent local optima. In fact, one of the keys to the effectiveness of BLS is that
it completely excludes diversification during local search, unlike tabu search
and simulated annealing for which the intensification and diversification are
always intertwined. We argue that during local search, diversification schemes
are unnecessary and the compromise between search exploration and exploita-
tion is critical only once a local optimum is reached. Other studies supporting
this idea can be found in [2,13]. We show computational evidences to support
this assumption in Section 4.2.2.

As we will see in the next section, BLS is able to attain highly competitive
results on the set of well-known benchmarks for the Max-Cut problem in
comparison with the state of the art algorithms.

3 Experimental results

In this section, we report extensive computational results of our BLS approach
and show comparisons with some state of the art methods of the literature.
We conduct our experiments on a set of 71 benchmark instances that has
been widely used to evaluate Max-Cut algorithms. These instances can be

11

downloaded from http://www.stanford.edu/∼yyye/yyye/Gset/ and include
toroidal, planar and random graphs, with the number of vertices ranging from
|V | = 800 to 20,000, and edge weights of values 1, 0, or -1.

3.1 Parameter settings and comparison criteria

The parameter settings of BLS used in our experiments are given in Table 1.
These parameter values were determined by performing a preliminary experi-
ment on a selection of 15 problem instances from the set of the first 54 graphs
(G1-G54). In this experiment, we tested different values for each of the five
parameters (L0, T , φ, P0 and Q), while fixing the rest of the parameters to
their default values given in Table 1. In Section 4.1, we provide a parameter
sensitivity analysis and justify the setting of parameters that is used to obtain
the reported results.

Given its stochastic nature, we run our BLS approach 20 times on each of the
71 benchmark instances, each run being limited to 200000|V | iterations where
|V | is the number of vertices in the given graph instance. The assessment
of BLS performance is based on two comparisons: one is against the best-
known results ever reported in the literature and the other is against 4 state
of the art methods. In addition to information related to the quality criteria
(best objective values, average objective values and standard deviation), we
also show computing times for indicative purposes. Our computing times are
based on a C++ implementation of our BLS algorithm which is compiled
with GNU gcc under GNU/Linux running on an Intel Xeon E5440 with 2.83
GHz and 2GB. Following the DIMACS machine benchmark 1 , our machine
requires 0.23 CPU seconds for r300.5, 1.42 CPU seconds for r400.5, and 5.42
CPU seconds for r500.5.

It should be noted that a fully fair comparative analysis with the existing Max-
Cut algorithms from the literature is not a straight-forward task because of
the differences in computing hardware, programming language, termination
criterion, etc. For this reason, the evaluation is mainly based on the best-
known results obtained with different state of art Max-Cut algorithms (Table
2). The comparison with individual algorithms is presented only for indicative
purposes and should be interpreted with caution (Table 3). Nevertheless, our
experimental study provides interesting indications about the performance of
the proposed BLS algorithm relative to these state of the art approaches.

12

Table 1
Settings of parameters
Parameter Description Setting

L0 initial jump magnitude 0.01|V |

T max. number of non-improving attractors visited before strong perturb. (restart) 1000

φ tabu tenure rand[3, |V |/10]

P0 smallest probability for applying directed perturb. 0.8

Q probability for applying directed perturb. I over directed perturb. II. 0.5

Table 2
Computational results of BLS on 71 Max-Cut instances. Column fprev shows the
best-known results reported in the literature; columns fbest and favg give the best
and average result obtained with BLS over 20 runs; column σ shows the standard
deviation; column t(s) indicated the average time (in seconds) required by BLS to
reach the best result from fbest.

Name |V | fprev fbest favg σ t(s)

G1 800 11624 11624(9) 11612.4 11.16 13

G2 800 11620 11620(11) 11615 5.74 41

G3 800 11622 11622(19) 11621.1 3.92 83

G4 800 11646 11646(16) 11642.8 6.65 214

G5 800 11631 11631(20) 11631 0 14

G6 800 2178 2178(20) 2178 0 18

G7 800 2006 2006(12) 2001.05 6.55 317

G8 800 2005 2005(18) 2004.4 1.8 195

G9 800 2054 2054(14) 2049.95 6.22 97

G10 800 2000 2000(13) 1996.05 5.84 79

G11 800 564 564(20) 564 0 1

G12 800 556 556(20) 556 0 2

G13 800 582 582(20) 582 0 2

G14 800 3064 3064(6) 3062.85 0.91 119

G15 800 3050 3050(20) 3050 0 43

G16 800 3052 3052(8) 3051.1 1.14 70

G17 800 3047 3047(16) 3046.7 0.64 96

G18 800 992 992(14) 991.7 0.46 106

G19 800 906 906(6) 904.55 1.56 20

G20 800 941 941(20) 941 0 9

G21 800 931 931(14) 930.2 1.29 42

G22 2000 13359 13359(1) 13344.45 16.14 560

G23 2000 13354 13344(10) 13340.6 4.08 278

G24 2000 13337 13337(5) 13329.8 6.76 311

G25 2000 13326 13340(1) 13333.4 3.68 148

G26 2000 13314 13328(3) 13320 6.98 429

G27 2000 3325 3341(10) 3332.25 9.79 449

G28 2000 3287 3298(8) 3293.85 5.31 432

G29 2000 3394 3405(1) 3388.2 5.94 17

G30 2000 3403 3412(10) 3404.85 9.61 283

G31 2000 3299 3309(8) 3305.3 4.79 285

G32 2000 1410 1410(13) 1409.3 0.95 336

G33 2000 1382 1382(1) 1380.1 0.44 402

G34 2000 1384 1384(20) 1384 0 170

G35 2000 7684 7684(2) 7680.85 0.57 442

G36 2000 7677 7678(1) 7673.6 1.37 604

G37 2000 7689 7689(1) 7685.85 2.1 444

G38 2000 7681 7687(4) 7684.95 2.33 461

G39 2000 2397 2408(13) 2405.35 3.72 251

G40 2000 2392 2400(1) 2394.6 4.65 431

13

Table 2
Continued.

Name |V | fprev fbest favg σ t(s)

G41 2000 2398 2405(17) 2403 4.98 73

G42 2000 2474 2481(2) 2475.4 2.97 183

G43 1000 6660 6660(18) 6658.15 5.57 26

G44 1000 6650 6650(14) 6647.7 3.66 43

G45 1000 6654 6654(15) 6652.15 4.67 104

G46 1000 6649 6649(13) 6647.75 2.26 67

G47 1000 6656 6657(11) 6654.35 3.53 102

G48 3000 6000 6000(20) 6000 0 0

G49 3000 6000 6000(20) 6000 0 0

G50 3000 5880 5880(19) 5879.9 0.44 169

G51 1000 3847 3848(17) 3847.85 0.36 81

G52 1000 3850 3851(19) 3850.85 0.65 78

G53 1000 3848 3850(13) 3849.5 0.74 117

G54 1000 3850 3852(10) 3850.6 1.74 131

G55 5000 10236 10294(2) 10282.4 5.67 842

G56 5000 3949 4012(1) 3998.65 7.19 786

G57 5000 3460 3492(2) 3488.6 2.11 1440

G58 5000 19248 19263(1) 19255.9 4.06 1354

G59 5000 6019 6078(1) 6067.9 5.99 2485

G60 7000 14057 14176(1) 14166.8 4.53 2822

G61 7000 5680 5789(1) 5773.35 7.23 7420

G62 7000 4822 4868(2) 4863.8 2.4 5465

G63 7000 26963 26997(1) 26980.7 6.25 6318

G64 7000 8610 8735(1) 8735.0 9.6 4090

G65 8000 5518 5558(2) 5551.2 2.63 4316

G66 9000 6304 6360(1) 6350.2 4.37 6171

G67 10000 6894 6940(1) 6935.3 2.85 3373

G70 10000 9499 9541(1) 9527.1 7.89 11365

G72 10000 6922 6998(2) 6935.3 2.85 12563

G77 14000 – 9926(1) 9916.1 4.17 9226

G81 20000 – 14030(1) 14021.7 5.77 20422

Improved 33

Matched 35

Worse 1

3.2 Comparisons with the current best-known solutions

Table 2 summarizes the computational results of BLS on the set of 71 Max-
Cut instances (G1-G81) in comparison with the current best-known results
(column fprev) which are from references [7,16,19,21,22]. For BLS, we report
the best objective value fbest, the average objective value favg, the standard
deviation σ, and the average CPU time in seconds required for reaching fbest

over 20 executions. The results from Table 2 show that BLS is able to improve
the previous best-known results for 33 instances 2 , and reach the best-known
solution in 35 cases. Out of the 71 instances, BLS is unable to reach the best-
known result only in one case. As far as we know, solutions for the two largest
Max-Cut instances (G77 and G81) have not been reported in the literature.
However, for future comparisons, we include in Table 2 the result obtained by

1 dmclique, ftp://dimacs.rutgers.edu in directory /pub/dsj/clique
2 Our best results are available at http://www.info.univ-
angers.fr/pub/hao/BLS max cut.html

14

BLS for these two instances. As for the computing time required to reach its
best solution from column fbest, BLS takes on average a time ranging from
less than one second to 10 minutes for instances with up to 3000 vertices. For
the large and very large instances with 5000 to 20000 vertices, the computing
time needed goes from 0.2 to 5.6 hours.

3.3 Comparisons with the current best performing approaches

To further evaluate the performance of BLS, we compare it with the following
algorithms that achieve state-of-art performance:

(1) Two very recent GRASP-Tabu search algorithms [22] – a GRASP-Tabu
Search algorithm working with a single solution (GRASP-TS) and its
reinforcement (GRASP-TS/PM) by a population management strategy.
The reported results were obtained on a PC running Windows XP with
Pentium 2.83GHz CPU and 2GB RAM (the same computing platform
as that we used).

(2) Scatter search (SS) [19] – an advanced scatter search incorporating several
inovative features. The evaluation of SS was performed on a machine
with a 3.2 GHz Intel Xenon processor and 2GB of RAM (a comparable
computer as that we used).

(3) Rank-2 relaxation heuristic (CirCut) [7] – a method based on a relax-
ation of the problem. The results reported in this paper for CirCut were
obtained under the same conditions as that of SS and are taken from [19].

Since large Max-Cut instances (G55-G81) are very rarely used in the literature
for algorithm evaluation, we limit this comparison to the first 54 Max-Cut
instances which are also the most commonly used in the literature.

Table 3 provides the results of this comparison with the four reference ap-
proaches. For each approach, we report the percentage deviation ρ from the
best-known solution (column fprev from Table 2), computed as %ρ = 100 ∗
(fprev − f)/fprev, where f is the best objective value attained by a given ap-
proach. Moreover, we show for each algorithm the required average time in
seconds, taken from the corresponding papers.

GRASP-TS/PM is one of the current most effective algorithm for the Max-
Cut problem, which attains the previous best-known result for 41 out of 54
instances, with an average percentage deviation of 0.051. GRASP-TS also pro-
vides excellent performance on these instances, compared to the current state-
of-art Max-Cut heuristics. It is able to reach the previous best-known solution
for 22 instances with an average percentage deviation of 0.201. The other
two popular Max-Cut approaches, SS and CirCut, can obtain the previous
best-known result in 11 and 12 cases respectively, with an average percentage

15

Table 3
Comparison of BLS with the four reference approaches on the most commonly used
54 benchmark instances. For each approach, we report the percentage deviation
%ρ of the best result obtained by the given algorithm from the best-known result
reported in the literature. Column t(s) shows the average time in seconds required
for reaching the best result.

BLS GRASP-TS [22] GRASP-TS/PM [22] SS [19] CirCut [7]

Name %ρ t(s) %ρ t(s) %ρ t(s) %ρ t(s) %ρ t(s)

G1 0 13 0 100 0 47 0 139 0 352

G2 0 41 0 677 0 210 0 167 0.026 283

G3 0 83 0 854 0 297 0 180 0 330

G4 0 214 0 155 0 49 0 194 0.043 524

G5 0 14 0 235 0 232 0 205 0.034 1128

G6 0 18 0 453 0 518 0.597 176 0 947

G7 0 317 0 304 0 203 1.196 176 0.150 867

G8 0 195 0 565 0 596 0.848 195 0.099 931

G9 0 97 0 581 0 559 0.682 158 0.292 943

G10 0 79 0 845 0 709 0.35 210 0.3 881

G11 0 1 0 18 0 10 0.355 172 0.709 74

G12 0 2 0 723 0 233 0.719 241 0.719 58

G13 0 1 0 842 0 516 0.687 228 1.374 62

G14 0 119 0.065 812 0 1465 0.131 187 0.196 128

G15 0 43 0.328 419 0 1245 0.033 143 0.033 155

G16 0 70 0.098 1763 0 335 0.229 162 0.229 142

G17 0 96 0.131 1670 0 776 0.131 313 0.328 366

G18 0 106 0 977 0 81 0.403 174 1.411 497

G19 0 20 0 490 0 144 0.331 128 1.989 507

G20 0 9 0 578 0 80 0 191 0 503

G21 0 42 0.430 484 0 667 0.107 233 0 524

G22 0 560 0.097 983 0.075 1276 0.097 1336 0.097 493

G23 0.075 278 0.271 1668 0.165 326 0.277 1022 0.277 457

G24 0 311 0.104 643 0.097 1592 0.255 1191 0.172 521

G25 -0.105 148 0.083 767 0 979 0.045 1299 0 1600

G26 -0.105 429 0.060 1483 0.008 1684 0.150 1415 0 1569

G27 -0.481 449 0.271 256 0 832 0.211 1437 0.571 1456

G28 -0.335 432 0.365 81 0 1033 0.061 1314 0.821 1543

G29 -0.324 17 0.236 21 0 993 0.147 1266 0.530 1512

G30 -0.264 283 0.235 1375 0.029 1733 0 1196 0.529 1463

G31 -0.303 285 0.394 904 0 888 0.333 1336 0.424 1448

G32 0 336 1.135 903 0.284 1232 0.851 901 1.418 221

G33 0 401 1.013 1501 0.579 506 1.447 926 1.592 198

G34 0 170 0.578 1724 0.578 1315 1.445 950 1.156 237

G35 0 442 0.403 1124 0.299 1403 0.208 1258 0.182 440

G36 -0.013 604 0.404 543 0.221 1292 0.221 1392 0.221 400

G37 0 444 0.325 983 0.247 1847 0.325 1387 0.299 382

deviation of 0.292 and 0.342.

The results from Table 3 show that BLS outperforms the four reference algo-
rithms in terms of solution quality. Indeed, the average percentage deviation
of the best results obtained with BLS is -0.064, meaning that BLS improves
on average the best-known result by 0.064%. Moreover, BLS also seems to be
highly competitive with other approaches in terms of computing time. The
average run-time required by BLS for the 54 instances is 176 seconds, which
is significantly less than the average time required by the four reference ap-
proaches, considering that the reported results were obtained on comparable

16

Table 3
Continued.

BLS GRASP-TS [22] GRASP-TS/PM [22] SS [19] CirCut [7]

Name %ρ t(s) %ρ t(s) %ρ t(s) %ρ t(s) %ρ t(s)

G38 -0.078 461 0.365 667 0.143 1296 0 1012 0.456 1189

G39 -0.459 251 0.375 911 0 742 0.167 1311 0.083 852

G40 -0.334 431 0.585 134 0 1206 0.753 1166 0.209 901

G41 -0.292 73 1.293 612 0 1490 0.500 1016 0 942

G42 -0.283 183 0.849 1300 0 1438 0.687 1458 0.202 875

G43 0 26 0 969 0 931 0.060 406 0.060 213

G44 0 43 0.015 929 0.015 917 0.030 356 0.105 192

G45 0 104 0 1244 0 1791 0.180 354 0.030 210

G46 0 67 0.015 702 0 405 0.226 498 0.060 639

G47 -0.015 102 0 1071 0 725 0.105 359 0 633

G48 0 0 0 13 0 4 0 20 0 119

G49 0 0 0 27 0 6 0 35 0 134

G50 0 169 0 80 0 14 0 27 0 231

G51 -0.026 81 0.104 628 0 701 0.026 513 0.260 497

G52 -0.026 78 0.156 1274 0 1228 0.026 551 0.442 507

G53 -0.052 117 0.026 1317 0 1419 0.052 424 0.156 503

G54 -0.052 131 0.052 1231 0 1215 0.104 429 0.208 524

Avg. -0.064 176 0.201 771 0.051 804 0.292 621 0.342 617

computers.

To see whether there exists significant performance difference in terms of solu-
tion quality among BLS and the reference algorithms, we apply the Friedman
non-parametric statistical test followed by the Post-hoc test on the results from
Table 3. From the Friedman test, we observe that there is a significant per-
formance difference among the compared algorithms (with a p-value less than
2.2e-16). Moreover, the Post-hoc analysis shows that BLS statistically outper-
forms GRASP-TS, SS and CirCut with p-values of 7.081000e-09, 9.992007e-16
and 0.000000e+00 respectively. However, the performance between BLS and
GRASP-TS/PM is statistically less significant with a p-value of 9.547157e-02.

4 Experimental analyses

4.1 Parameter sensitivity analysis

The performed parameter sensitivity analysis is based on a subset of 15 se-
lected Max-Cut instances from the set of the first 54 graphs (G1-G54). For
each BLS parameter (i.e., L0, T , φ, P0 and Q), we test a number of possible val-
ues while fixing the other parameters to their default values from Table 1. We
test values for L0 in the range [0.0025|V |, 0.32|V |], T in the range [250,2000],
P0 in the range [0.5,0.9] and Q in the range [0.2,0.8]. Similarly, for the tabu
tenure φ we tried several ranges which induce increasingly larger degrees of
diversification into the search. For each instance and each parameter setting,
we perform 20 independent runs with the time limit per run set to 30 minutes.

17

Table 4
Post-hoc test for solution sets obtained by varying the value of L0

L0 = 0.0025|V | 0.005|V | 0.01|V | 0.02|V | 0.04|V | 0.08|V | 0.16|V |

L0 = 0.005|V | 0.85863

L0 = 0.01|V | 0.19961 0.95858

L0 = 0.02|V | 0.02021 0.53532 0.99145

L0 = 0.04|V | 0.01468 0.47563 0.98450 0.99999

L0 = 0.08|V | 0.65622 0.99997 0.99567 0.76698 0.71316

L0 = 0.16|V | 0.99986 0.97971 0.44552 0.07605 0.05944 0.89527

L0 = 0.32|V | 0.99999 0.74057 0.11999 0.00931 0.00704 0.50545 0.99804

Table 5
Post-hoc test for solution sets obtained by varying the value of P0

P0 = 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85

P0 = 0.55 0.99999

P0 = 0.60 0.94419 0.98065

P0 = 0.65 0.77176 0.87550 0.99998

P0 = 0.70 0.77154 0.87545 0.99998 1.00000

P0 = 0.75 0.22748 0.33802 0.94411 0.99529 0.99529

P0 = 0.80 0.69552 0.81722 0.99985 0.99999 0.99999 0.99840

P0 = 0.85 0.10606 0.17438 0.81728 0.96221 0.96221 0.99999 0.98063

P0 = 0.90 0.00557 0.01134 0.22809 0.47073 0.47048 0.94417 0.55630 0.99128

We use the Friedman statistical test to see whether there is any difference in
BLS performance, in terms of its average result, when varying the value of a
single parameter as mentioned above. The Friedman test shows that there is
no statistical difference in the performance (with p-value > 0.8) when varying
respectively the values of T , φ, and Q. This implies that these three parameters
exhibit no particular sensitivity. On the other hand, when varying values of
parameters L0 and P0 respectively, the Friedman test revealed a statistical
difference in performance with p-value = 0.006906 and p-value = 0.005237.
We thus perform the Post-hoc test on these solution sets obtained respectively
with different settings of parameters L0 and P0. The results of these analyses
are provided in tables 4 and 5 for L0 and P0 respectively, where each table
entry shows the p-value for two sets of average results obtained with two
different values of the corresponding parameter.

From the results in Table 4 for L0, we observe that for any two tested values
of L0 the p-value is generally significant (often p-value > 0.5), except in 4
case when the p-value < 0.05. This implies that L0 is not highly sensitive
to different settings. However, the analytical results from Table 5 show that
P0 is even less sensitive than L0. Indeed, the p-value for two solution sets
obtained with different values of P0 is often very close to 1. Only in 2 cases,
the difference is statistically significant (with p-value < 0.01).

To further investigate the performance of BLS with different values for L0 and
P0, we show in figures 2 and 3 the box and whisker plots which indicate, for
each tested parameter value, the distribution and range of the obtained results
for the 15 used instances. For the sake of clarity, these results are expressed as
the percentage deviation of the average result from the best-known solution
fbest reported in the literature.

18

Fig. 2. Box and whisker plot of the results obtained with different settings of pa-
rameter L0 for 15 selected instances.

From the box and whisker plot in Figure 2, we observe a visible difference in
the distribution of results among the data sets obtained with different settings
of parameter L0. For the set of results generated with small values of L0 ≤
0.01|V |, the plot indicates a significantly smaller variation compared to the
results obtained with larger values of L0. For instance, the comparison between
the two sets of results, obtained with L0 = 0.01|V | (set S1) and L0 = 0.04|V |
(set S2), indicates that the percentage deviations of the results from S1 and
S2 range from -0.25% to 0.07% and from -0.45% to 0.5% respectively. More
precisely, around 25% of the results from S2 have a lower percentage deviation
from fbest than any of the result from S1, while another 37% of the results
from S2 have a higher percentage deviation from fbest than any of the result
from S1. We can thus conclude that a lower value for L0 (e.g., L0 = 0.01|V |) is
a better choice since the deviations from the best-known result does not vary
much from one instance to another.

From the box and whisker plot in Figure 3, we observe that the difference in
the distribution and variation of results among the solution sets generated with
different settings of parameter P0 is less evident than in Figure 2. This confirms
our previous observations from the Post-hoc analysis that P0 is slightly less

19

Fig. 3. Box and whisker plot of the results obtained with different settings of pa-
rameter P0 for 15 selected instances.

sensitive than L0.

4.2 Influence of diversification strategies: comparisons and discussions

The objective of this section is twofold. First, we wish to highlight the contri-
bution of the proposed diversification mechanism to the overall performance of
the BLS method. In Section 4.2.1, we thus provide a statistical comparison be-
tween several variants of BLS integrating different perturbation mechanisms.
Second, we try to justify our statement made in Section 2.4 that diversifica-
tion schemes are crucial only once a local optimum is reached and should be
excluded during local search. For this purpose, we provide in Section 4.2.2 a
comparison with tabu search and iterated tabu search (ITS) methods which,
because of the tabu list, induce a certain degree of diversification at each it-
eration. These two methods are obtained with minimal changes of our BLS
algorithm.

We perform the comparisons using the set of the 54 Max-Cut instances (G1-
G54). In every experiment and for each instance, the reported results are
obtained under the same conditions, i.e., after 20 independent executions with
the maximum time limit per run set to 30 minutes.

20

4.2.1 Comparison with different variants of the perturbation mechanism

In this section, we perform a comparison between several versions of our algo-
rithm, which employ different diversification strategies to escape local optima.
The diversification mechanism of the first version (call it V1) is based solely
on random moves of type M3 (selected from the set of moves B, see Section
2.3.1). The diversification mechanism of the second version (call it V2) adap-
tively switches between the directed perturbation, which performs moves of
type M1 from the set A1 (see Section 2.3.1), and the random perturbation. The
third version (call it V3) integrates a diversification strategy that combines the
two types of directed perturbations, which effectuate respectively moves from
the set A1 (moves of type M1) and the set A2 (moves of type M2). The last
version is our default BLS algorithm detailed in Section 2. Please note that
the strongest diversification is induced by V1 since only random moves are
considered for perturbation. On the other hand, the weakest diversification
is introduced with V3 since all the perturbation moves consider the quality
criterion so as not to degrade too much the resulting solution.

The results of this experiment are shown in Table 6. Columns fbest and favg

provide respectively the best and average results obtained by each algorithm.
The results indicate that the three algorithms, i.e., V2, V3 and default BLS,
clearly outperform algorithm V1 which combines the descent local search with
the most basic perturbation mechanism based on random moves. More pre-
cisely, the best results reported in columns fbest indicate that our default BLS
algorithm reports a better solution than V1 for 36 out of the 54 instances
and attains the same result as V1 for the other 18 instances. However, the
difference between V2, V3 and the default BLS is much less obvious. Indeed,
we observe from columns fbest that the default BLS outperforms V2 and V3 in
only 5 and 6 cases respectively (out of 54), and is outperformed on 4 and 5
instances respectively. To see whether there is a statistically significant differ-
ence in average results (from column favg) obtained by the four algorithms, we
perform the Friedman test followed by the Post-hoc test. The Friedman test
revealed a significant difference with the p-value < 2.2e − 16. As expected,
the Post-hoc test showed a significant difference between the sets of average
solutions obtained with V1 and the default BLS algorithm with the p-value of
0.000000e+00. Moreover, the Post-hoc test showed that the default BLS algo-
rithm statistically outperforms V2 in terms of average performance with the
p-value of 1.701825e-03. However, there is no statistical difference in average
performance between V3 and the default BLS algorithm with the p-value of
7.734857e-01. From Table 6, we observe that V3 outperforms the three other
algorithms, in terms of average results, for a number of small instances (i.e.,
G1 – G10). This implies that the weakest diversification insures the best per-
formance for these instances. On the other hand, the default BLS algorithm
provides better average results than V3 for a number of more difficult instances
(e.g., G36 – G42, G51 – G54).

21

Table 6
Computational result obtained with four different diversification mechanisms. For
each algorithm, columns fbest and favg show the best and average result over 20
runs.

M3(V1) M1M3(V2) M1M2(V3) Complete

fbest favg fbest favg fbest favg fbest favg

G1 0 0.407 0 0.091 0 0.072 0 0.101

G2 0.026 0.478 0 0.113 0 0.038 0 0.046

G3 0.043 0.443 0 0.052 0 0 0 0.023

G4 0.172 0.505 0 0.062 0.010 0.035 0 0.012

G5 0.043 0.432 0 0.031 0 0 0 0.012

G6 0.138 2.162 0 0.191 0 0 0 0.044

G7 0.648 2.806 0 0.501 0 0 0 0.187

G8 0.998 2.117 0 0.304 0 0 0 0.067

G9 0 2.347 0 0.613 0 0 0 0.204

G10 0.4 2.123 0 0.238 0 0.120 0 0.270

G11 0 0 0 0 0 0 0 0

G12 0 0 0 0 0 0 0 0

G13 0 0 0 0 0 0 0 0

G14 0.033 0.165 0 0.042 0.033 0.119 0 0.036

G15 0 0.256 0 0.011 0.011 0.175 0 0

G16 0 0.224 0 0.034 0 0.106 0 0.021

G17 0 0.184 0 0.026 0.033 0.138 0 0.021

G18 0.101 0.968 0 0.297 0.210 0.877 0 0.066

G19 0 1.176 0 0.348 0 0.717 0 0.270

G20 0 1.509 0 0.122 0.210 1.190 0 0

G21 0 1.241 0 0.521 0 1.004 0 0.064

G22 0.467 0.844 0.067 0.467 0.030 0.367 0 0.257

G23 0.322 0.565 0.075 0.151 0.07 0.092 0.075 0.089

G24 0.067 0.473 0 0.104 0 0.017 0 0.058

G25 0.038 0.336 -0.105 -0.012 -0.105 -0.052 -0.105 -0.051

G26 0.158 0.321 -0.105 0.004 -0.105 -0.077 -0.105 -0.040

G27 0.451 1.463 -0.331 0.053 -0.481 -0.457 -0.481 -0.331

G28 1.065 1.771 -0.335 -0.090 -0.335 -0.240 -0.335 -0.129

G29 0.619 1.499 -0.324 0.355 -0.324 -0.066 -0.324 0.080

G30 0.558 1.604 -0.294 0.066 -0.294 -0.239 -0.264 -0.076

G31 0.606 1.552 -0.251 0.027 -0.303 -0.174 -0.303 -0.177

G32 0.142 0.277 0 0.007 0 0 0 0.057

G33 0.145 0.412 0 0.109 0 0.015 0 0.137

G34 0 0.195 0 0 0 0 0 0

G35 0.104 0.228 0 0.010 0.013 0.142 0 0.038

G36 0.091 0.231 0 0.032 0.026 0.138 -0.013 0.049

G37 0.104 0.256 0 0.032 0.065 0.161 0 0.029

G38 0.065 0.182 -0.091 -0.055 0.013 0.098 -0.065 -0.040

G39 0.167 0.766 -0.459 -0.200 -0.167 0.465 -0.459 -0.348

G40 0.293 1.248 -0.334 -0.115 0.084 0.717 -0.293 -0.123

G41 -0.291 1.372 0 0.056 -0.292 0.922 -0.292 -0.265

G42 0.121 1.071 -0.283 0.196 0.081 0.879 -0.283 -0.071

G43 0.090 0.437 0 0.052 0 0 0 0.045

G44 0.075 0.452 0 0.055 0 0.023 0 0.042

G45 0 0.325 0 0.106 0 0 0 0.033

G46 0.211 0.426 0 0.119 0 0.006 0 0.043

G47 0.060 0.500 -0.015 0.064 -0.015 0.002 -0.015 0.053

G48 0 0 0 0 0 0 0 0

G49 0 0.100 0 0 0 0 0 0

G50 0 0.607 0 0 0 0 0 0.003

G51 -0.026 0.207 -0.026 -0.009 -0.026 0.119 -0.026 -0.017

G52 0.026 0.148 -0.026 -0.018 -0.026 0.095 -0.026 -0.021

G53 0.026 0.173 -0.052 -0.031 -0.052 0.084 -0.052 -0.045

G54 0.052 0.197 -0.052 0.019 0.026 0.142 -0.052 -0.004

22

To conclude, the directed perturbation, which uses dedicated information, is
more beneficial than the random perturbation for the tested Max-Cut in-
stances. Nevertheless, for some difficult instances, an even better average per-
formance with BLS is obtained when combining perturbation strategies that
introduce varying degrees of diversification into the search process.

4.2.2 Comparison with tabu search (TS) and iterated tabu search (ITS)

As previously mentioned, one of the keys to the effectiveness of BLS is that
it completely excludes diversification during its local search phase. Indeed,
the descent phases of BLS are carried out by moves that are selected by
considering only the quality criterion. To provide some justifications to this
idea, we perform a comparison with a tabu search algorithm (TS) and an
iterated tabu search algorithm (ITS) which are obtained by making minor
modifications to our BLS algorithm.

The TS algorithm used for this comparison consists in performing moves iden-
tified by the two sets A1 and A2 (see Section 2.3.1 for the definition of sets A1

and A2). With equal probability, TS performs a move either from A1 or from
A2. Note that this procedure is simply the directed perturbation of BLS. For
ITS, we modify our BLS algorithm by excluding the adaptive perturbation
strategy. The local search phase of ITS is the above-mentioned TS procedure,
while the perturbation mechanism corresponds to the random perturbation
performed by BLS. The perturbation phase of ITS is triggered if the best
found solution is not improved after 10000 iterations of the TS procedure. It
is important to note that the tabu list of TS and ITS insures a certain degree
of diversification at each iteration.

For each approach, we report in Table 7 the best and average result in columns
fbest and favg respectively. From column fbest, we observe that for 19 instances,
BLS finds better results than both TS and ITS. In other 35 cases, the best
solution attained by BLS is at least as good as that reached by both TS and
ILS.

To see whether BLS statistically outperforms TS and ITS in terms of solu-
tion quality, we apply the Friedman non-parametric statistical test followed
by the Post-hoc test on the average results from Table 7. The Friedman test
discloses that there is a significant difference among the compared algorithms
with a p-value of 4.724e-05. Moreover, the Post-hoc analysis shows that BLS
is statistically better than TS and ITS with a p-value of 6.554058e-04 and
4.615015e-05 respectively. Although we did not include the average time re-
quired by each approach to reach the best result from fbest, BLS remains highly
competitive with TS and ILS also in terms of computational time. While TS
and ILS need on average 236 and 330 seconds respectively to reach their best

23

Table 7
Comparison of BLS with tabu search (TS) and iterated local search (ITS). For each
algorithm, columns fbest and favg show the best and average result over 20 runs.

BLS TS ITS

fbest favg fbest favg fbest favg

G1 0 0.101 0 0.001 0 0

G2 0 0.046 0 0.004 0 0.009

G3 0 0.023 0 0.008 0 0.009

G4 0 0.012 0 0.004 0 0.004

G5 0 0.012 0 0.003 0 0.004

G6 0 0.044 0 0.087 0 0.071

G7 0 0.187 0 0.032 0 0.017

G8 0 0.067 0 0.082 0 0.092

G9 0 0.204 0.049 0.119 0 0.097

G10 0 0.270 0.05 0.125 0 0.118

G11 0 0 0 0 0 0

G12 0 0 0 0 0 0

G13 0 0 0 0 0 0

G14 0 0.036 0.033 0.080 0 0.059

G15 0 0 0 0.102 0 0.113

G16 0 0.021 0 0.090 0 0.057

G17 0 0.021 0 0.062 0 0.108

G18 0 0.066 0.101 0.307 0 0.161

G19 0 0.270 0 0.199 0 0.221

G20 0 0 0 0.367 0 0.499

G21 0 0.064 0 0.585 0 0.585

G22 0 0.257 0.212 0.542 0.198 0.421

G23 0.075 0.089 0.142 0.200 0.142 0.208

G24 0 0.058 0.060 0.109 0.075 0.127

G25 -0.105 -0.051 -0.015 0.026 -0.015 0.026

G26 -0.105 -0.040 -0.030 0.035 -0.045 0.032

G27 -0.481 -0.331 -0.271 0.002 -0.241 0.036

G28 -0.335 -0.129 0 0.141 -0.122 0.105

G29 -0.324 0.080 -0.147 0.088 -0.059 0.153

G30 -0.264 -0.076 -0.088 0.101 -0.029 0.084

G31 -0.303 -0.177 -0.091 0.192 -0.061 0.196

G32 0 0.057 0 0 0 0

G33 0 0.137 0 0 0 0

G34 0 0 0 0 0 0

G35 0 0.038 0.104 0.159 0.065 0.146

G36 -0.013 0.049 0.091 0.153 0.078 0.177

G37 0 0.029 0.039 0.185 0.117 0.179

G38 -0.065 -0.040 -0.052 0.131 0.052 0.131

G39 -0.459 -0.348 -0.167 0.325 -0.417 0.280

G40 -0.293 -0.123 -0.167 0.355 -0.084 0.337

G41 -0.292 -0.265 -0.291 0.542 -0.292 0.588

G42 -0.283 -0.071 -0.081 0.400 -0.040 0.758

G43 0 0.045 0 0.022 0 0.0188

G44 0 0.042 0 0.038 0.015 0.040

G45 0 0.033 0 0.026 0 0.032

G46 0 0.043 0 0.045 0.015 0.050

G47 -0.015 0.053 0 0.025 0 0.026

G48 0 0 0 0 0 0

G49 0 0 0 0 0 0

G50 0 0.003 0 0 0 0.005

G51 -0.026 -0.017 -0.026 0.057 -0.026 0.077

G52 -0.026 -0.021 0 0.069 0 0.064

G53 -0.052 -0.045 -0.052 0.012 -0.052 0.012

G54 -0.052 -0.004 0 0.108 -0.026 0.082

24

results reported in fbest, BLS requires on average around 180 seconds for the
54 instances.

5 Conclusion

In this paper, we presented the Breakout Local Search approach for the Max-
Cut problem. The BLS alternates between a local search phase (to find local
optima) and a perturbation-based diversification phase (to jump from a local
optimum to another local optimum). The diversification phase is of an extreme
importance for the performance of BLS since the local search alone is unable
to escape a local optimum. The diversification mechanism of the proposed
approach adaptively controls the jumps towards new local optima according
to the state of the search. This is achieved by varying the magnitude of a jump
and selecting the most suitable perturbation for each diversification phase.

Experimental evaluations on a popular set of benchmark instances showed
that despite its simplicity, our approach outperforms all the current Max-Cut
algorithms in terms of solution quality. Out of the 71 benchmark instances,
BLS improves the current best results in 33 cases and attains the previous
best-known result for 35 instances. Moreover, the computing time required by
BLS to reach the reported results competes very favorably compared to other
state-of-the-art approaches. To attain its best results reported in the paper,
BLS needs less than one second to 10 minutes for the graphs with up to 3000
vertices, and 0.2 to 5.6 hours for the large and very large instances with 5000
to 20000 vertices.

We also provided experimental evidences to highlight the importance of the
adaptive perturbation strategy employed by the proposed BLS approach, and
the benefit of separating completely diversification from intensification during
the local search phases.

Acknowledgment

We are grateful to the anonymous referees for valuable suggestions and com-
ments which helped us improve the paper. The work is partially supported by
the RaDaPop (2009-2013) and LigeRO projects (2009-2013) from the Region
of Pays de la Loire, France.

25

References

[1] E. Arráiz, O. Olivo. Competitive simulated annealing and Tabu Search
algorithms for the max-cut problem. GECCO 2009: 1797–1798, 2009.

[2] R. Battiti, M. Protasi. Reactive search, a history-based heuristic for max-sat.
ACM Journal of Experimental Algorithmics, 2:2, 1996.

[3] R. Battiti, M. Brunato, F. Mascia. Reactive search and intelligent optimization.
Operations Research/Computer Science Interfaces Series 45, 2009.

[4] U. Benlic, J.K. Hao. Breakout local search for maximum clique problems.
Computers & Operations Research, (in press, http://dx.doi.org/10.1016/
j.cor.2012.06.002).

[5] U. Benlic, J.K. Hao. A study of breakout local search for the minimum sum
coloring problem. To appear in Bui LT et al. (Eds.) SEAL 2012, Lecture Notes
in Computer Science, 2012.

[6] S. Burer, R.D.C. Monteiro. A projected gradient algorithm for solving the
maxcut SDP relaxation. Optimization Methods and Software, 15: 175–200, 2001.

[7] S. Burer, R.D.C. Monteiro, Y. Zhang. Rank-two relaxation heuristics for MAX-
CUT and other binary quadratic programs. SIAM J. on Optimization, 12:
503–521, 2002.

[8] P. Festa, P.M. Pardalos, M.G.C. Resende, C.C. Ribeiro. Randomized heuristics
for the maxcut problem. Optimization Methods and Software, 17: 1033–1058,
2002.

[9] C. Fiduccia, R. Mattheyses R. A linear-time heuristics for improving network
partitions. In Proceedings of the 19th Design Automation Conference, 171–185,
1982.

[10] F. Glover, M. Laguna. Tabu Search, Kluwer Academic Publishers, Boston, 1997.

[11] S. Kahruman, E. Kolotoglu, S. Butenko, I.V. Hicks. On greedy construction
heuristics for the MAX-CUT problem. International Journal of Computational

Science and Engineering, 3(3): 211–218, 2007.

[12] R.M. Karp, Reducibility among combinatorial problems, in R. E. Miller, J.
W.Thacher, Complexity of Computer Computation, Plenum Press, 85–103,
1972.

[13] J.P. Kelly, M. Laguna, F. Glover. A study of diversification strategies for the
quadratic assignment problem. Computers and Operations Research, 21(8):885
– 893, 1994

[14] B.W. Kernighan, S. Lin S. An efficient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49:291–307, 1970.

[15] S. Kirkpatrick, C.D. Gelett, M.P. Vecchi. Optimization by simulated annealing.
Science, 220: 621–630, 1983.

26

[16] G.A. Kochenberger, J.K. Hao, Z. Lü, H. Wang, F. Glover. Solving large scale
Max Cut problems via tabu search. To appear in Journal of Heuristics, DOI:
10.1007/s10732-011-9189-8, 2012.

[17] K. Krishnan, J.E. Mitchell. A Semidefinite Programming Based Polyhedral Cut
and Price Approach for the Maxcut Problem. Computational Optimization and

applications, 33(1): 51–71, 2006.

[18] H.R. Lourenco, O.Martin, T.Stützle. Iterated local search. Handbook of Meta-
heuristics, Springer-Verlag, Berlin Heidelberg, 2003.

[19] R. Mart́ı, A. Duarte, M. Laguna. Advanced Scatter Search for the Max-Cut
Problem. INFORMS Journal on Computing, 21(1): 26–38, 2009.

[20] C.H. Papadimitriou, K. Steiglitz. Combinatorial Optimization : Algorithms and
Complexity Second edition by Dover, 1998.

[21] V.P. Shylo, O.V. Shylo. Solving the maxcut problem by the global equilibrium
search. Cybenetics and Systems Analysis, 46(5): 744–754, 2010.

[22] Y. Wang, Z. Lü, F. Glover, J.K. Hao. Probabilistic GRASP-tabu search
algorithms for the UBQP problem. To appear in Computers and Operations

Research, DOI: 10.1016/j.cor.2011.12.006, 2012.

27

