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ABSTRACT
In the realm of Machine Learning, the pursuit of simpler yet effec-
tive models has led to increased interest in decision trees due to
their interpretability and efficiency. However, their inherent sim-
plicity often limits their ability to handle intricate patterns in data.
This paper introduces a novel approach termed Directed Acyclic
Graphs of Programs, inspired by evolutionary strategies, to address
this challenge. By iteratively constructing program graphs from
binary decision makers, our method offers a balance of simplicity
and performance for classification tasks. Notably, we emphasize the
preservation of model interpretability and expressiveness, avoiding
the use of ensemble techniques like voting. Experimental evalua-
tions demonstrate the superiority of our approach over existing
methods in terms of both effectiveness and interpretability.
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1 INTRODUCTION
In Machine Learning, there is a growing interest in searching for
models that might not perform as well as neural networks, but
are easier to understand, more compact, and more energy efficient.
Decision trees are one such method getting more attention because
they meet these requirements [4]. However, decision trees can’t
always handle complicated problems because they use simple rules
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to split data. This makes it hard for them to deal with complex pat-
terns [15]. This is where evolutionary computation can help, since
it can offer new ways to create these rules, making decision trees
better at handling different and complex situations. Additionally it
can help to create more complex models, like graphs of programs,
which can be more efficient than decision trees for some problems
[9].

In this paper, we propose a new approach, inspired by the Tan-
gled Program Graph (TPG) [9] and Tree in Tree (TnT) [17] methods,
to build Directed Acyclic Program Graphs (DAPGs). The idea is to
build a graph of programs which make local decisions at each node,
until a leaf is reached. The leaf is then the class predicted.

The base component of our method is a program that acts as
a binary decision maker. These binary programs are inspired by
binary decomposition techniques, which offer a way to enhance
classification performance on multiclass problems [1, 5–8]. One
way to aggregate results from binary classifiers is to use a Deci-
sion Directed Acyclic Graph (DDAG) [11]. The issue with DDAG
obtained by binary decomposition is that they have static structure,
which means that the structure cannot adapt to the problem.

Our approach is a constructive evolutionary approach to produce
program graphs. The idea is to start from the leaves, which represent
classes or labels, and iteratively add on top, nodes containing binary
programs until a node is able to manage the entire problem. Using
this approach, the output is printable, compact and tends to be more
explainable.

The method combines several techniques: the use of local search
to generate binary programs [12, 13, 16] and crossover between
program graphs in order to build more complex structures able to
manage multi-class classification.

Some research has been done combining ensemble learning and
genetic programming [12]. While performance may increase due to
the ensemble approach, we claim that this gain is not worth the cost
in compactness, explicability and frugality. To ensure explainability,
our approach does not make use of ensemble techniques which
avoids aggregating strategies such as voting.

With this work, we aim to demonstrate the value of DAPGs in
classification tasks. The rest of the paper is organized as follows. In
Section 2 we describe binary program generation and show results
obtained with a binary problem. Then, in Section 3, we present our
evolutionary algorithm, building DAPGs with binary programs on
multi-class problems. We also present results obtained with our
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method against similar methods like TPG and TnT in Section 3.3
Finally, we conclude in Section 4.

2 BINARY PROGRAM
First we present how binary programs are built, using operators and
features, and optimized through local search with neutral adaptive
walk. Then, we present our binary program’s performance on a
difficult binary classification dataset as well as the output given by
our method.

2.1 Program’s construction
The base component of our method is a program that acts as a
binary classifier. The program takes, as inputs, an array containing
the features, all between 0 and 1 due to min-max normalization
of numerical features or one-hot encoding of categorical ones, of
the instance to be classified and returns a real value. This value is
compared to a threshold1 to determine the class of the instance. If
the output value is above or equal to the threshold, the class is 0;
otherwise, it is 1. To accelerate the program search process, when
a program’s accuracy score on the training set falls below 50%,
we reverse its decision. In other words, if the program originally
returns 0, we make it return 1, and vice versa. This allows us to
automatically generate programs with better training performances
than random.

A program is simply a fixed length sequence of 𝐼 instructions,
where each instruction consists of an operator and two operands.
The form of these programs is similar to those handled by linear
genetic programming [10], except that there is only one internal
register, modified as the execution progresses. The available oper-
ators are shown in table 12. It is worth noting that none of them
use constant values, and each instruction is always dealing with
feature values.

Function Description
ADD(A,B) return A+B
MINUS(A,B) return A-B
MUL(A,B) return A×B
MIN(A,B) return A if A<B else B
MAX(A,B) return A if A>B else B
GREATER(A,B) return A if A>B else -A

Table 1: List of instructions available for program.

The first instruction in a program has its two operands drawn
from the features of the instance to be classified. Any subsequent
instruction takes one operand from the instance’s features and
the result of the previous instruction. The program returns the
result of the final instruction as shown in figure 1, which is the
python transcription of one program obtained. To export programs
in python, and for reasons of implementation simplicity, inputs are
a register of size of number of features plus one. The first cell of
the register, 𝑅 [0] is used as an intermediate result variable, and the
rest of the register is filled with the normalized feature values. Due
1In the following, the threshold is set to 0.5, which makes sense as features are nor-
malized between 0 and 1 and there are no constants in the programs.
2We followed the usage of GP to refer to an expression as a program

to the accumulative nature of our program, 𝑅 [0] is returned as the
final value.

We generate programs with operators and operands randomly
picked from the operator list and feature list for a fixed number
of instructions and then apply local search through neutral adap-
tive walk to search for better programs. The first randomly gen-
erated program becomes the current solution then, adaptive walk
iteratively applies the mutation operator, and updates the current
solution only if the new solution is at least as good as the current so-
lution. It is worth noticing that contrary to classical adaptive walk,
we allow the current solution to be updated even if the new solution
is not better than the current one. This seems to perform better
when the search space is neutral [3], as it is the case in classification
problems optimized on accuracy.

At the end of the walk, when a maximum number of steps is
reached or when a program obtains 100% accuracy in the training
set, we return the current solution, which is the best program
found through the walk. Mutation operator is a hyper-parameter
and is chosen from a list of different mutation functions as the most
suitable for the problem we are dealing with.

2.2 Results
We tested our binary program construction method on the GA-
METES3 dataset, which is, regarding [12], the most challenging
one for all algorithms presented as none of them seem to be able to
achieve more than 55 percent accuracy in the testing set within this
dataset. GAMETES dataset contains 1600 instances, 1000 numerical
features, and two classes. This dataset is balanced, which is crucial
as we use accuracy to measure performance. Mutation used for this
dataset works as follows: for each instruction, we change either the
operator or every operand other than 𝑅 [0], based on a fifty percent
chance. The length of the programs is experimentally set to 7 with
a systematic search, and the maximum number of steps of the walk
is set to 10 million.

Experiments were performed on a Gigabyte AMD EPYC 7003 DP
server system, with 2 AMD ROME 7662 processors and Linux oper-
ating system. Our method is implemented in the C language, and
expriments have been made over 30 independant seeds, including
the train (70%) / test (30%) split.

In order to compare ourself with state-of-the-art algorithms, we
extracted performance of Standard Genetic Programming (GP), Mul-
tidimensional Multiclass GP with Multidimensional Populations
(M3GP) and Ensemble Genetic Programming (eGP) from [12]. Since
performance was depicted via boxplots, we filled our results table
with values that appeared to approximate the data distribution.
Performance of our binary program is presented in table 2.

Although the values read may not be exactly those due to the
challenging interpretation of exact values in a boxplot, we are
confident that this will not skew the comparison, as our results are
well above the margin of error in interpretation.

Our method is better on testing accuracy and seems to outper-
form other Genetic Programming algorithms. Furthermore, this
approach does not suffer from overfitting on this dataset. As the

3https://www.openml.org/search?type=data&sort=runs&id=40645&status=active
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Train Test Size
GP* 55±1 50±1 400±100
M3GP* 75±1.5 49±1.5 200±10
eGP-W5* 62±0.2 50±1 225±30
Binary Program 74.78±4.22 73.32±6.19 7±0

Table 2: Performance with training and testing set on GA-
METES (%). Size is in number of instructions.
*Based on scores from [12].

program obtained contains only 7 instructions, it is very energy-
efficient and explainable. The entire program achieving 73% of
accuracy on testing set is shown in figure 1.

def prog0 ( R ) :
R [ 0 ] = R [ 3 7 4 ] + R [ 2 8 6 ]
R [ 0 ] = R [ 0 ] ∗ R [ 2 6 6 ]
R [ 0 ] = min ( R [ 0 ] , R [ 3 3 8 ] )
R [ 0 ] = R [ 0 ] ∗ R [ 7 0 3 ]
R [ 0 ] = R [ 0 ] + R [ 1 0 0 0 ]
R [ 0 ] = R [ 0 ] − R [ 9 9 9 ]
R [ 0 ] = R [ 0 ] i f R[0] >R [ 2 8 9 ] e l se −R [ 0 ]
return R [ 0 ]

Figure 1: Python transcript of the program obtained on GA-
METES dataset.

In conclusion, we saw that our method for generating binary
program seems to be efficient on binary classification. We can now
use it as basic element in buidling DAPG.

3 DIRECTED ACYCLIC PROGRAM GRAPH
(DAPG)

3.1 Handling multi-class problems
To handle multiclass problems, we utilize a directed acyclic graph
comprising of two kinds of nodes:

(1) Leaves, which lack successors and represent the labels of the
problem.

(2) Program nodes which possess two successors and a variable
number of predecessors. If a program node has no predeces-
sors, it is termed a root.

Considering a root and an instance to be classified, the prediction of
the label is done as follows : First, the current node is set as the root
and the program associated is executed on the instance. The result
of the program determines which successor to move to. If the result
is less (resp. more) than the threshold (0.5), the left (resp. right)
successor is chosen as the current node. This process continues
until a leaf node is reached, at which point the corresponding label is
returned. This approach enables the utilization of binary programs
to optimize multiclass classification problems.

3.2 Evolutionary algorithm to optimize DAPG
The graph construction is achieved through an evolutionary pro-
cess, inspired by the TPG construction procedure. This process is

broken down into initialization, a construction loop, and a post-
optimization procedure aimed at eliminating redundant nodes.

Initially, leaves are generated, with one corresponding to each
label of the problem and containing no program. Additionally, a
population of potential successors, denoted as 𝑆 , is initialized, which
initially includes each leaf. Finally, an archive 𝐴 is created specifi-
cally to store useful programs.

During each iteration, the population of successors includes the
most promising nodes of the graph based on their training dataset
performances. These nodes in the population are candidates for
mating, facilitating the creation of new nodes. Subsequently, for
each iteration, we generate a pool of 𝑁 (set to 5 in the following)
nodes, formed through crossover between two nodes from the
population of potential successors.

Let 𝑛1 and 𝑛2 be two potential successors; the score of the pair
is determined by the number of instances correctly classified by
𝑛1 as a root or by 𝑛2 as a root. This score represents the maximum
achievable accuracy through a crossover between 𝑛1 and 𝑛2. To
select the two successors, we generate all possible pairs and com-
pute their respective scores. Next, we randomly choose 30% of the
possible pairs and finally select the most promising ones based on
the computed scores.

Once the successors are chosen, the crossover proceeds as fol-
lows:

(1) A subproblem is formulated, considering only instances mis-
classified by exactly one of the successors. If an instance is
misclassified by the first successor, it is labeled as one; other-
wise, it is labeled as zero. This created subproblem becomes
a binary classification problem.

(2) A starting program is selected in the archive 𝐴 based on its
performance on the generated subproblem.

(3) Subsequently, we utilize the adaptive walk described in Sec-
tion 2 of this paper to optimize this program considering the
subproblem.

Once the generation of the pool is completed, we compare each
new node 𝑛𝑛𝑒𝑤 with each item 𝑛𝑜𝑙𝑑 contained in the population of
successors, using the following comparison function applied to the
entire training dataset:

𝑂𝑃 (𝑛𝑛𝑒𝑤 , 𝑛𝑜𝑙𝑑 ) =


1 if 𝑛𝑛𝑒𝑤 well classifies all instances
well-classified by 𝑛𝑜𝑙𝑑

0 otherwise

A new node 𝑛𝑛𝑒𝑤 is inserted in the population 𝑆 only if no existing
successors 𝑛𝑜𝑙𝑑 in the list outperforms 𝑛𝑛𝑒𝑤 . Conversely, any exist-
ing successors 𝑛𝑜𝑙𝑑 are removed from the population 𝑆 if at least
one new node 𝑛𝑛𝑒𝑤 ouperforms them.

Once themaximum number of iterations is reached, we designate
the node with the highest accuracy score as the root 𝑟 , and eliminate
all nodes that are not part of the spanning tree of 𝑟 .

3.3 Results
We chose two multi-class benchmark problems, PENDIGITS and
MNIST. Both are digit image classification with 10 classes. PENDIG-
ITS contains 16 features and 11k instances while MNIST contains
784 features and 70k instances. Experiments have been made in
the same environment as GAMETES except that the train - test
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Figure 2: Performances* on training and testing set on
PENDIGITS with respect to the number of iterations.
*Accuracy and size are averaged over 30 independant seeds.

split was the same for the 30 seeds. For both datasets, the mutation
operator functions in the following manner: it randomly selects
one instruction and completely regenerates it, including both the
operator and features operands. Maximum number of steps of walk
is set to 50k for both datasets.

Train Test Size
TPG* 66.34±1.66 63.32±2.33 49±9
TNT* - 92.61±0.53 125±0
DAPG 99.35±0.19 93.54±0.66 44.43±5.12

Table 3: Performances on training and testing set on PENDIG-
ITS (%). Size is in number of nodes.
*Based on scores from [2] and [17].

On PENDIGITS in table 3, DAPG is better than TPG and TnT
while preserving compactness. Based on Figure 2, we chose to stop
convergence after 25 iterations, since it allows convergence on the
training set with a minimal length. Other tradeoffs could be chosen,
for example lower performing but smaller programs. According to
parameters, the theoretical growth is 5 nodes per iteration. How-
ever, when considering raw size (before final reduction) expansion,
the algorithm demonstrates a nuanced behavior. Initially, during
iterations in the range of 0 to 20, it generates 2.5 nodes per iteration,
indicating a rejection of half of the nodes produced. This is followed
by a period of stagnation or decline from iterations 20 to 40, where
the algorithm discards all generated nodes or maintains a one-to-
one ratio of generation to destruction. Beyond iteration 40, the rate
drops to less than one node per iteration. Conversely, in the reduced
size, which is the length of the DAPG free from unreachable nodes,
we find a stable growth slightly exceeding one node per iteration.
It is worth noticing that TPG, which has a similar model structure,
does not converge on multi-class problems, as shown in [2], the
results are reported in table 3.

On MNIST in table 4,results are obtained after 30 iterations and
DAPG is also better than TPG and still compact. It is worth noting
that the "Size" in table 4 is the reduced size. However, DAPG does not
reach TnT performance on testing accuracy. As depicted in Figure 3,

Train Test Size
TPG* 46.76±1.3 47.35±1.42 55±14
TNT* - 90.87±0.31 600±0
DAPG 85.80±1.56 84.89±1.34 41.03±7.63

Table 4: Performances on training and testing set on MNIST
(%). Size is in number of nodes.
*Based on scores from [2] and [17].

Figure 3: Performances* on training and testing set onMNIST
with respect to the number of iterations.
*Accuracy and size are averaged over 30 independant seeds.

convergence appears to be restricted. This limitation likely arises
from the persisting challenges in the task, which could explain the
asymptotic performance curve observed, as illustrated in Figure 2,
even in PENDIGITS.

4 CONCLUSION
In conclusion, our binary programs seem to be effective compared
to the literature. Maybe a stack representation of programs, as
[14], could lead to better results due to new crossover and mutation
mechanisms, at the expense of introducing introns. The fixed length
of programs could be seen as a limitation, as it could be interesting
to have a variable length program that adapts to problem difficulty.
On the other hand, this will surely introduce bloat, which is a
problem in genetic programming.

A first approach of Directed Acyclic Program Graph has been
made, inspired by TPG, which strongly improves performance on
supervised classification tasks. However, TnT, which uses a top-
down construction, like decision trees, seems to be better with some
classification problems. Future work will be to try to combine top-
down, like TnT, and bottom-up, like TPG and DAPG, construction
in the same approach to create graphs of programs even more
efficient but still compact and explainable.
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