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ABSTRACT 

Motivation: Reconstruction of gene regulatory networks (GRNs), 

which explicitly represent the causality of developmental or 

regulatory process, is of utmost interest and has become a 

challenging computational problem for understanding the complex 

regulatory mechanisms in cellular systems. However, all existing 

methods of inferring GRNs from gene expression profiles have their 

strengths and weaknesses. In particular, many properties of GRNs, 

such as topology sparseness and nonlinear dependence, are 

general in regulation mechanism but seldom be taken into account 

simultaneously in one computational method. 

Results: In this work, we present a novel method for inferring GRNs 

from gene expression data considering the nonlinear dependence 

and topological structure of GRNs by employing path consistency 

algorithm (PCA) based on conditional mutual information (CMI). In 

this algorithm, the conditional dependence between a pair of genes 

is represented by the CMI between them. With the general 

hypothesis of Gaussian distribution underlying gene expression data, 

CMI between a pair of genes is computed by a concise formula 

involving the covariance matrices of the related gene expression 

profiles. The method is validated on the benchmark GRNs from the 

DREAM challenge and the widely used SOS DNA repair network in 

Escherichia coli. The cross-validation results confirmed the 

effectiveness of our method (PCA-CMI), which outperforms 

significantly other previous methods. Besides its high accuracy, our 

method is able to distinguish direct (or causal) interactions from 

indirect associations.  

Availability: All the source data and code are available at: 

http://csb.shu.edu.cn/subweb/grn.htm.  

Contact: lnchen@sibs.ac.cn; zpliu@sibs.ac.cn. 

Supplementary information:  Supplementary data are available at 

Bioinformatics online. 

1 INTRODUCTION  

An important problem in molecular biology is to identify and 
understand the gene regulatory networks (GRNs), which explicitly 
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represent the causality of developmental or regulatory process. 
Microarray technologies have produced tremendous amounts of 
gene expression data (Hughes et al., 2000) which provide 
opportunity for understanding the underlying regulatory 
mechanism. The reconstruction or “reverse engineering” of GRNs, 
which aims to find the underlying network of gene-gene 
interactions from the measurement of gene expression, is 
considered one of most important goals in systems biology (Basso 
et al., 2005; Margolin et al., 2006). For this, the Dialogue for 
Reverse Engineering Assessments and Methods (DREAM) 
program was established to encourage researchers to develop new 
efficient computation methods to infer robust GRNs (Marbach et 
al., 2010). 

A variety of approaches have been proposed to infer GRNs from 
gene expression data (Holter et al., 2001; Tegner et al., 2003; 
Bansal et al. 2007), such as discrete models of Boolean networks 
and Bayesian networks (Kauffman et al., 2003), differential 
equations (Alter et al., 2000; di Bernardo et al., 2005; Cantone et 
al., 2009; Honkela et al., 2010), regression method (Tibshirani, 
1996; Gardner et al., 2003) and linear programming (Wang et al., 
2006). Although many popular network inference algorithms have 
been investigated (Bansal et al. 2007; Altay and Emmert-Streib, 
2010), there are still a large space for current models to be 
improved (Marbach et al., 2010; Smet and Marchal, 2010).  
    Recently, information-theoretic approaches are increasingly 
being used for reconstructing GRNs. Several mutual information 
(MI) based methods (Altay and Emmert-Streib, 2010) have been 
successfully applied to infer GRNs (Basso et al., 2005), such as 
ARACNE (Margolin et al., 2006), CLR (Faith et al., 2007) and 
minet (Meyer et al., 2008). In general, these approaches start by 
computing the pair-wise MIs between all possible pairs of genes, 
resulting in an MI matrix. The MI matrix is then manipulated to 
identify the regulatory relationships (Altay and Emmert-Streib, 
2010). Mutual information provides a natural generalization of the 
correlation since it measures nonlinear dependency (which is 
common in biology) and therefore attracts much attention (Brunel 
et al., 2010). Another advantage of these methods is their ability to 
deal with thousands of variables (genes) in the presence of a 
limited number of samples (Meyer et al., 2008).  

Despite these advantages, mutual information based methods 
only work when investigating pair-wise regulations in a gene 
regulatory network. They are unable to discover the joint 
regulations of a target gene by two or more genes. The three-way 
mutual information (MI3) was designed to detect the co-regulators 
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of target genes by scoring the sum of correlative and coordinative 
regulatory components (Luo et al., 2008). But it can only detect 
two of the co-regulators while missing the other co-regulators 
when there are more than two co-regulators with the assumption of 
regulation relationship. In contrast, conditional mutual information 
(CMI) is capable of detecting the joint regulations by exploiting 
the conditional dependency between genes of interest (Wang et al., 
2009). Methods based on both MI and CMI have also been 
proposed to reduce the false positive rate for detecting interactions 
(Basso et al., 2005). Moreover, CMI can distinguish direct from 
indirect interactions based on multivariate time series data (Frenzel 
and Pompe, 2007). 

It was found that regulatory network is sparse as experimentally 
observed in visual system of primates (Vinje and Gallant, 2000). 
Among the available methods, optimization methods with penalty 
or constraint are good alternatives to achieve sparseness (Wang et 
al., 2006; Banerjee et al., 2010), while they do not perform well 
when the number of variables is much larger than sample size. Path 
consistency (PC) algorithm (Spirtes et al., 2000) was recently used 
to construct networks by calculating partial correlations coefficient 
(PCC) to estimate the conditional independencies (Kalisch and 
Bühlmann, 2007; Saito and Horimoto, 2009; Saito et al., 2011). 
Besides its robustness and uniform consistency, PC-algorithm is 
computationally feasible and fast especially for sparse problems 
with a large number of nodes. However, the current PC-algorithm 
estimates the dependency of gene pairs with PCC, which can only 
detect the linear correlation between gene pairs while the nonlinear 
dependency is more common in biological processes.  

 In this work, we propose a novel method, namely PCA-CMI, 
for inferring GRNs from gene expression data by employing PC-
algorithm based on conditional mutual information. In this 
algorithm, the conditional independency between a pair of genes is 
represented by their conditional mutual information instead of PCC 
with the following advantages. Firstly, MI provides a natural 
generalization of the correlation since it measures nonlinear 
dependency. Unlike PCC, it does not assume linearity, continuity, 
or other specific properties of dependence. Hence, MI has the 
flexibility to detect regulatory interactions that might be missed by 
linear measures such as PCC (Faith et al., 2007). Secondly, mutual 
information is more general than PCC to model the relations 
between genes, while PCC is more easily distorted when points are 
not uniformly distributed across the axes (Butte and Kohane, 
2000). With the hypothesis of Gaussian distribution for gene 
expression data, MI and CMI of gene pairs are evaluated by a 
concise formula involving the covariance matrices of the related 
gene expression profiles. The method is validated on the 
benchmark GRNs from DREAM challenge (Marbach et al., 2010) 
and the widely used SOS DNA repair network in Escherichia coli 
(Shen-Orr et al., 2002; Ronen et al., 2002). The cross-validation 
results confirmed the effectiveness of our method (PCA-CMI), 
which outperforms significantly other previous methods. Besides 
its high accuracy, our method is able to distinguish direct (or 
causal) interactions from indirect associations.  

2 METHODS 

In this section, we will introduce some definitions of information theory 

including entropy, MI, and CMI, as well as the algorithm of PCA-CMI for 

inferring GRNs.   

  

2.1 Information theory 

MI from information theory has been used to construct GRNs from gene 

expression data (Altay and Emmert-Streib, 2010). In particular, MI is 

generally used as a powerful criterion for measuring the dependence 

between two variables (genes) X and Y. For gene expression data, variable 

X is a vector, in which the elements denote its expression values in different 

conditions (samples).  

For a discrete variable (gene) X, the entropy H(X) is the measure of 

average uncertainty of variable X and can be defined by  

 ( ) ( ) log ( ),
x X

H X p x p x
∈

= −∑  (1) 

where p(x) is the probability of each discrete value x in X. The joint entropy 

H(X, Y) of X and Y can be denoted by 

 
,

( , ) ( , ) log ( , ),
x X y Y

H X Y p x y p x y
∈ ∈

= − ∑  (2) 

where p(x, y) is the joint probability of x in X and  y in Y. 

Mutual information (MI) measures the dependency between two 

variables. For discrete variables X and Y, MI is defined as  

 
,

( , )
( , ) ( , ) log ,

( ) ( )x X y Y

p x y
I X Y p x y

p x p y∈ ∈

= − ∑  (3) 

MI can also be defined in terms of entropies as  

 ( , ) ( ) ( ) ( , ),I X Y H X H Y H X Y= + −  (4) 

where H(X,Y) is joint entropy of X and Y. High MI value indicates that 

there may be a close relationship between the variables (genes), while low 

MI value implies their independence.  

Conditional mutual information measures conditional dependency 

between two variables (genes) given other variable(s) (gene(s)). The CMI 

of variables X and Y given Z is defined as 

 
, ,

( , | )
( , | ) ( , , ) log .

( | ) ( | )x X y Y z Z

p x y z
I X Y Z p x y z

p x z p y z∈ ∈ ∈

= ∑
 

 (5) 

CMI can also be expressed in terms of entropies as  

 ( , | ) ( , ) ( , ) ( ) ( , , ),H X Y Z H X Z H Y Z H Z H X Y Z= + − −
 
 (6) 

where ( , ), ( , ), ( , , )H X Z H Y Z H X Y Z  are joint entropies. Similarly, high 

CMI indicates that there may be a close relationship between the variables 

X and Y given variable(s) Z. 

Here, the entropy is estimated with Gaussian kernel probability density 

estimator (Basso et al., 2005) as follows. 

 1

2 2
1

1 1 1
( ) exp( ( ) ( )),

(2 ) | | 2

N
T

i j i j in n
j

P X X X C X X
N Cπ

−

=

= − − −∑  (7) 

where C is the covariance matrix of variable X, | |C is the determinant of 

matrix C, N is the number of samples and n is the number of variables 

(genes) in C.  

With equations (1) and (7), we can get the entropy of variable X as 

follows. 

 2 1 2 1
( ) log[(2 ) | | ] log(2 ) | | .

2

n n
H X e C e Cπ π= =  (8) 

With equation (8), the formulation (4) can be expressed as follows. 

 
1 | ( ) | | ( ) |

( , ) log .
2 | ( , ) |

C X C Y
I X Y

C X Y

⋅
=  (9) 

Similarly, (6) equals to 
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1 | ( , ) | | ( , ) |

( , | ) log ,
2 | ( ) | | ( , , ) |

C X Z C Y Z
I X Y Z

C Z C X Y Z

⋅
=

⋅
 (10) 

which is an efficient formula to calculate CMI between two variables 

(genes) given one or more variables (genes). For example, if conditional 

variable Z= (Z1, Z2)

 

is composed of two variables (genes) Z1 and Z2, we get 

second-order CMI.

 

 

When variables (genes) X and Y are independent, we get ( , ) 0I X Y = . 

Similarly, if the variables X and Y are conditional independence given Z, 

we have ( ,  | ) 0I X Y Z = . 

To test whether a CMI is zero, it is statistically tested by using the Z-

statistic (Kalisch and Bühlmann, 2007; Saito et al., 2011). Firstly, the CMIs 

are normalized by 

 
( , | ) ( , )

( , | ) , ( ( , ) , if ).
( , ) ( , ) ( ) ( )

I X Y Z I X Y
I X Y Z I X Y Z

H X Z H Y Z H X H Y
φ= = =

+ +
$ $   

Secondly, Fisher’s Z-transforms of CMI are calculated by following 

equation 

 , |

1 1 ( , | )
log .

2 1 ( , | )
X Y Z

I X Y Z
z

I X Y Z

 +
=   − 

$

$
  

Then, classical decision theory yields the following rule when using the 

significance levelα . Reject the null-hypothesis 
0 , |: 0X Y ZH z = against the 

two-sided alternative
1 , |: 0X Y ZH z ≠  if 

 1

, |
| | 3 | | (1 / 2),

X Y Z
n Z z α−− − > Φ −   

where ( )Φ ⋅ denotes the cumulative distribution function of standard normal 

distribution (0,1)N and | |Z is the conditional order of CMI. 

2.2 Path consistency algorithm (PC-algorithm) 

After we obtain MI and CMI through formulation (9) and (10), the path 

consistency algorithm (PC-algorithm) is used to remove the edges with 

(conditional) independent correlation from the graph. The inference of 

GRNs will be performed by deleting the edges with independent correlation 

recursively, i.e. from low to high order independent correlation until there 

is no edge can be deleted.  

We describe the process of PCA-CMI in detail as follows. Firstly, 

generate a complete graph according to the number of genes. Secondly, for 

adjacent gene pair i and j, compute mutual information (zero-order 

conditional mutual information) ( , )I i j . If the gene pair i and j has low or 

zero mutual information, it represents independent correlation, then we 

delete the edge between genes i and j.  Thirdly, for adjacent gene pair i and 

j, select the adjacent gene k of them and compute first-order conditional 

mutual information ( , | )I i j k . If the gene pair i and j has low or zero 

conditional mutual information which represent their independent 

correlation, delete the edge between them. The next step is to compute 

higher order CMI until there are no more adjacent edges. 

The following gives the algorithm to infer a gene regulatory network. 

PC-Algorithm based on CMI (PCA-CMI) 

Step-0: Initialization. Input the gene expression data A and set the 

parameterθ for deciding the independence. Generate the complete network 

G for all genes (i.e. the clique graph of all genes). Set 1L = − . 

Step-1: 1L L= + ; For a nonzero edge ( , ) 0i j ≠G , select adjacent genes 

connected with both genes i and j. Compute the number T of the adjacent 

genes (not including genes i and j) . 

Step-2: If T L< , stop. If T L≥ , select out L genes from these T genes 

and let them as
1[ , , ]Lk k= LK . The number of all selections for K is L

T
C . 

Compute the L-order CMI ( , | )I i j K  for all L

T
C selections, and choose the 

maximal one denoting as
max ( , | )I i j K .  If

max ( , | )I i j θ<K , set ( , ) 0i j =G . 

Return to Step-1.  

Fig.1 shows a diagram of PC-algorithm based CMI for a five-gene 

network. Microarray data is the expression data of genes X, Y, Z, W and V. 

The first step is to generate the complete network with these five genes. 

Then the independence between gene pairs is decided by the MI between 

 

Fig.1. Diagram of method PCA-CMI. In the figure, ( , )I ⋅ ⋅ is the mutual information and ( , | )I ⋅ ⋅ ⋅  is the conditional mutual information. They are calculated 

from gene expression data by a concise formula of computation. The MI and CMI equal to zero or lower than given threshold represent independence 

between variables (genes). The left graph is the true network of the microarray dataset with gene expression profiles under different conditions (samples). 

The graph in pink box with dashes is the diagram of PCA-CMI, which detects the true network step by step according to the (conditional) independency of 

gene pairs. 
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them. If the MI is smaller than a given thresholdθ , the edge between the 

two genes is deleted for the independence. Here, the mutual information 

I(X, Z) and I(W, V) are approximately equal to zero on assumption, so the 

edges E(X, Z) and E(W, V) are deleted and the zero-order network is 

reconstructed. Then, the first-order CMIs between genes with common 

adjacent edges in the zero-order network are computed, and the conditional 

mutual information I(X, W|Y) and I(X, V|Y) are assumed to equal to zero, so 

the edges E(X, W) and E(X, V) are deleted and the first-order network is 

obtain. Based on the first-order network, the second-order CMIs between 

genes can be computed and the CMI I(Y, Z|W, V) is assumed approximately 

equal to zero, so the edge E(Y, Z) is deleted and the second-order network 

is inferred. There is no third-order CMI, so the algorithm terminates and the 

second-order network is the inferred GRN (or final GRN). 

3 RESULTS  

In order to validate our method, PCA-CMI was applied to several 

simulation datasets as well as real gene expression datasets. As for 

simulation data, we tested two synthetic datasets from the 

DREAM3 (Dialogue for Reverse Engineering Assessment and 

Methods) challenge (Marbach et al., 2010). As for real gene 

expression data, we applied our method to the well-defined SOS 

DNA repair network with experiment dataset in Escherichia coli 

(Shen-Orr et al., 2002; Ronen et al., 2002), and also rice (Oryza 

sativa L.) gene expression data (see Supplementary Materials). 

The predictive results were evaluated by following measures, 

i.e., sensitivity (SN) or true positive rate (TPR), false positive rate 

(FPR), positive predictive value (PPV), and accuracy (ACC). 

Mathematically, they are defined by: 

TPR=TP (TP+FN) , 

FPR= FP (FP+TN) , 

PPV=TP (TP+FP) , 

ACC= (TP+TN) (TP+FP+TN+FN) , 

where TP, FP, TN and FN are the numbers of true positives, false 

positives, true negatives and false negatives, respectively. TPR and 

FPR are also used to plot the receiver operating characteristic 

(ROC) curves and the area under ROC curve (AUC) is calculated.  

3.1 Evaluation on simulation data 

In order to assess the effectiveness of methods for constructing 

GRNs, simulation data was generated based on the benchmarking 

network. Many tools have been developed for assessing the 

effectiveness of GRN inference methods (Hache et al., 2009). 

DREAM challenge introduces a framework for critical 

performance assessment of methods for GRNs inference and 

presents an in silico benchmark suited as a blinded, community-

wide challenge within the context of the DREAM project. In this 

challenge, the gene expression datasets with noise and their gold 

standard (benchmark) networks were given. The gold standard 

networks were selected from source networks of real species. We 

tested our method on the DREAM3 datasets about Yeast knock-out 

gene expression data in sizes 10 and 50, respectively. 

Firstly, we tested method PCA-CMI on the Yeast gene 

expression data with network size 10, sample number 10. Fig.2 

shows the inferred networks with different CMI orders from gene 

expression data. Fig.2 (A) is the true gene regulatory network 

which contains 10 nodes with 10 edges. The network was selected 

from an experimental verified network in Yeast genomes. We 

chose 0.03 as the threshold value of mutual information and 

conditional mutual information to decide independence, and got 

networks with different CMI orders. Fig.2 (B) is the zero-order 

network inferred from gene expression data. The edges with red 

dotted lines are wrongly inferred and the edges with black solid 

lines are correctly inferred. In the wrongly inferred edges, G2-G4, 

G3-G4 and G2-G9 are redundant edges, while edge G4-G9 is 

missed out. Fig.2 (C) is the first-order network inferred from gene 

expression data which is also the final network because there is no 

higher-order networks to be inferred based on the algorithm. 

Table 1.  Results of a 10-gene network in DREAM3 with different CMI 

orders. 

Order TP FP TPR FPR PPV ACC 

Zero 9 3 0.900 0.086 0.750 0.911 

First 9 1 0.900 0.029 0.900 0.956 

 

Fig.2. Comparison of a 10-gene network inferred from DREAM3 dataset. (A) The true network with 10 nodes and 10 edges.  (B) Zero-order network inferred 

by PCA-CMI from gene expression data. The edges with red dotted lines G2-G4, G4-G5 and G2-G9 are false positives, while the edge G4-G9 is false 

negative. (C) First-order network inferred from gene expression data. The false positive edges G2-G4 and G4-G5 in zero-order network were successfully 

removed by PCA-CMI. 
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Clearly, in the first-order network, the non-existing regulations of 

G2-G4 and G3-G4 were successfully removed. 

As for the different order networks, Table 1 gives the results of 

assessment for the prediction performance. We can find that a 

higher order network has a higher accuracy (ACC) with a lower 

false positive rate (FPR) than that of a lower order network, which 

demonstrates that method PCA-CMI can detect the true network 

step by step. This provides evidence that PCA-CMI is effective 

and efficient to infer GRNs.  

In order to clearly evaluate the performance of PCA-CMI, the 

ROC curve was drawn. The red solid line with star points in Fig.3 

is the ROC curve of method PCA-CMI. The AUC value reaches 

0.991, which indicates the high efficiency of the performance of 

PCA-CMI. In order to describe the efficiency of PCA-CMI, we 

also compared the method with linear programming method (LP), 

multiple linear regression Lasso method (LASSO), mutual 

information method (MI) and PC-Algorithm based on partial 

correlation coefficient (PCA-PCC) (Wang et al., 2006; Tibshirani, 

1996; Margolin et al., 2006; Kalisch and Bühlmann, 2007). Fig.3 

gives the ROC curves of these GRN inference methods and clearly 

describes the higher performance of method PCA-CMI superior to 

other methods. Table 2 gives the result about the comparison of 

different methods for inferring GRNs. From Table 2, we can see 

that PCA-PCC and MI perform better than LP and LASSO 

obviously, while our method PCA-CMI performs better than PCA-

PCC and MI with the AUC score 0.991. 

Table 2. Comparison of the performance of different methods for inferring 

a 10-gene network in DREAM3. 

Method LP LASSO PCA-PCC MI PCA-CMI 

AUC 0.750 0.813 0.897 0.930 0.991 

Abbreviation: AUC: area under ROC curve; LP: linear programming 
method; LASSO: Lasso regression method; MI: mutual information 
method; PCA-PCC: PC-algorithm based on partial correlation coefficient. 

Secondly, we tested our PCA-CMI on the Yeast gene expression 

data with network size 50 and sample number 50. The network was 

selected from real and experimental verified network in Yeast 

genomes. We set the threshold value 0.1 of MI and CMI to decide 

independence and obtained different order networks. The network 

structure of the true network and the inferred different order 

networks from gene expression data are described in Fig.S1 (see 

Supplementary Materials). Fig.S1 (A) is the true network which 

contains 50 nodes with 77 edges. Fig.S1 (B-D) gives the network 

structures with different CMI orders. As for the different order 

networks, Table S1 gives the results of assessment for the 

performance of different order networks which demonstrated the 

efficient performance of PCA-CMI (see Supplementary Materials).   

In order to check the advantage of PCA-CMI, we also compared 

it with some other methods described above. The ROC curves of 

our PCA-CMI and other methods are analyzed in Fig.S2 (see 

Supplementary Materials). The AUC value was also considered to 

test the efficiency of PCA-CMI. Table S2 (see Supplementary 

Materials) gives the result about the comparison of different 

methods for inferring GRNs. From the ROC curves and the result 

of the table, we can see that our method PCA-CMI performs better 

than all other methods with the AUC value 0.839. All the results 

demonstrate the high efficiency of our method PCA-CMI. 

In addition, to assess the effectiveness of conditional mutual 

information (CMI) on measuring correlation between genes, the 

comparison of methods using mutual information including PCA-

CMI, MI and MI3 was performed on a 10-gene network with 10 

edges in DREAM3 challenge (Marbach et al., 2010) and a 

synthetic 9-gene network with 13 edges (Luo et al., 2008). The 

results of comparison listed in Tables S3 and S4 (see 

Supplementary Materials) show that MI can detect almost all of 

correlations between genes while CMI can screen out the indirect 

correlations from direct ones.  

3.2 Construction of SOS network in Escherichia coli 

PCA-CMI was also implemented to identify how well it works in 

constructing regulatory networks from real gene expression data. 

We tested our method on the well-known SOS DNA repair 

network and experiment dataset in Escherichia coli (Shen-Orr et 

al., 2002; Ronen et al., 2002).  

In order to evaluate PCA-CMI, the ROC curve was considered.  

The results were compared with that of LP, LASSO, MI and PCA-

PCC methods. The comparison results are shown in Fig. 4. The 

AUC of PCA-CMI is 0.792, which indicates the proposed method 

can distinguish most of the true interactions between genes. 

Moreover, it clearly performed better than other methods. Table 3 

gives the results about the comparison of different methods for 

Table 3. Comparison of different methods on SOS DNA repair network. 

Method LP LASSO PCA-PCC MI PCA-CMI 

AUC 0.590 0.618 0.670 0.739 0.792 

Abbreviation: AUC: area under ROC curve; LP: linear programming 

method; LASSO: lasso regression method; MI: mutual information method; 

PCA-PCC: PC-algorithm based on partial correlation coefficient. 

 
Fig.3. ROC curves of several methods on DREAM3 challenge Yeast 

dataset in size 10. The red solid line with star points is the ROC curve of 

method PCA-CMI. The AUC value (0.991) of Method PCA-CMI is 

higher than other methods. 
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inferring GRNs. In these results, our method PCA-CMI performs 

better than other methods. We also can find that MI and PCA-CMI 

with the consideration of nonlinear correlation do better than LP, 

LASSO and PCA-PCC with the consideration of linear correlation. 

Furthermore, PCA-CMI is better than MI. For the PC-algorithms, 

PCA-CMI does better than PCA-PCC. All the results have 

provided evidence for the effectiveness and efficiency of the 

proposed method on the real gene expression data. 

4 DISCUSSION 

In this work, we proposed a novel method PCA-CMI to infer gene 

regulatory networks. From the benchmark validations, PCA-CMI 

is an effective method and the comparison results show its 

advantages. Comparing to linear methods like LP, LASSO and 

PCA-PCC, our method can cover nonlinear relations between gene 

pairs based on MI and CMI from information theory. They can 

detect the nonlinear statistical dependence, which is accordance 

with the complexity of biology instead of linear assumption.  

In addition, PCA-CMI can distinguish the direct interactions or 

correlations from indirect ones, which are important for causality 

analysis. For example, consider three genes forming a causal chain: 

The first gene couples to the second, and the latter to the third gene. 

In this case, a pair wise mutual information analysis would yield 

dependencies also between the first and third genes, and we could 

not decide whether this coupling is made directly or mediated by 

the second one. An alternative to overcome the problem is to 

consider partial (conditional) dependence or correlation. To this 

end, partial mutual information as proposed is a general approach 

because it relates to nonlinear dependencies, needs no explicit 

modeling, and further represents the information between two 

observations that is not contained in a third one. Thus, in this way, 

we can discover the real underlying coupling or dependence 

structure.  

To illustrate the significance of the inferred networks, the 

average correlation underling the inferred regulations was 

compared with that of random gene pairs. We chose the result of 

the method performed on a rice (Oryza sativa L.) gene expression 

dataset (GEO access number: GSE4471) with 1387 significantly 

differential expression genes (t-test P-value<0.05). The average 

mutual information (MI) and Pearson Correlation Coefficient 

(PCC) between gene pairs from 4459 inferred edges by PCA-CMI 

were also computed. The average PCC was randomly repeated 5 

times. Figs.S3 and S4 describe the histograms of MIs and PCCs 

(see Supplementary Materials). The result shows that conditional 

mutual information can significantly quantify the correlations of 

gene pairs.  

For the general PC-algorithm, genes i, j and k are randomly 

selected in order to reduce the computational complexity. To 

reduce computational complexity but not sacrifice the accuracy to 

detect the true regulatory interactions, we adopted an optimal 

strategy to select L genes from T adjacent genes for randomly 

selected gene pair i and j, which also ensures the local optimality 

of the algorithm. For example, suppose that there are T (T ≥ 1) 

genes which are adjacent with both genes i and j. When 

constructing the L-order (L ≤ T) network, all the L-order CMIs for 

the possible combinations of L conditional genes from T genes are 

computed and the maximum one or the geometric mean of them is 

selected to decide the existence of regulation. It is well known that 

the path consistency algorithm is not robust for some inputs. In 

order to improve the robustness and accuracy of the inference in 

large-scale datasets, modular analysis is adopted in our algorithm. 

Specifically, the first level network is inferred by PCA-CMI. Then 

sub-networks are identified from the first level network by module 

finder methods such as CFinder (Adamcsek et al., 2006; Radicchi 

et al., 2004). Each modular network can be re-inferred again by 

PCA-CMI, and the resulting networks are called second level sub-

networks. The bi-level integrative method of PCA-CMI can 

improve accuracy for avoiding the effects of wrong edges in a 

large scale network.  The performance of such bi-level method was 

tested on DREAM3 challenge InSilico50 datasets and the ACC 

value was actually improved from 0.9102 to 0.9332 (see Table S5 

in Supporting Materials). In addition, the path consistency 

algorithm based on partial coefficient correlation is not robust for 

the correlation estimator of PCC, in which a small quantity of 

outliers suffices to completely distort the resulting network 

(Kalisch and Bühlmann, 2008). A comparison study on correlation 

measure for MI and PCC based methods from gene expression 

datasets showed that MI is more robust than PCC with respect to 

missing expression values (Priness et al., 2007). 

 However, there is some limitation for PCA-CMI.  As same as 

that of ARACNE, PCA-CMI cannot directly infer edge 

directionality, which is also a general limitation of many other 

methods, especially for these methods that do not use time series 

data (Margolin et al., 2006). Another limitation of PCA-CMI (the 

same as other methods based on general mutual information) is 

that it cannot detect all regulatory relations, in particular those with 

time delay between transcriptional factors and their target genes. 

Although mutual information is a symmetric measure, which 

cannot derive the direction of an edge (Meyer et al., 2008), this 

limitation can be relieved by a two-tier approach in which an 

undirected GRN is inferred firstly, and then edge directionality is 

accessed via other method like multiple linear regression method 

(Carrera et al., 2009) or specific biochemical perturbation method 

(Margolin et al., 2006). 

 
Fig.4. Comparison of ROC curves of PCA-CMI with other methods on 

SOS real gene expression dataset. The red solid line with star points is 

the ROC curve of method PCA-CMI. The AUC (Area under ROC curve) 

value of PCA-CMI is 0.792, which is higher than other methods.  
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5 CONCLUSION 

In this work, we proposed a novel method PCA-CMI for inferring 

GRNs from gene expression data by taking into account the 

nonlinear dependence and sparse structure of GRNs. In this 

algorithm, the conditional independence between a pair of genes is 

represented by conditional mutual information between this gene-

pair given certain other genes. With the hypothesis of Gaussian 

distribution for gene expression data, CMIs between gene pairs are 

calculated by a concise formula involving the covariance matrices 

of the related gene expression profiles. The proposed method 

performed superior to other methods on the benchmark gene 

regulatory networks from the DREAM3 challenge, real SOS DNA 

repair network in Escherichia coli, and real rice networks. Both the 

cross-validation results and comparison studies demonstrate the 

effectiveness and efficiency of our method. In addition, PCA-CMI 

is able to distinguish the direct regulatory relationships from 

indirect ones.   
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