
Adaptive Memory-Based Local Search for MAX-SAT

Zhipeng Lüa,b, Jin-Kao Haob,∗

Accept to Applied Soft Computing, Feb 2012

aSchool of Computer Science and Technology, Huazhong University of Science and
Technology, 430074 Wuhan, P.R.China

bLERIA, Université d’Angers, 2 Boulevard Lavoisier, 49045 Angers, France

Abstract

Many real world problems, such as circuit designing and planning, can be en-
coded into the maximum satisfiability problem (MAX-SAT). To solve MAX-
SAT, many effective local search heuristic algorithms have been reported in
the literature. This paper aims to study how useful information could be
gathered during the search history and used to enhance local search heuristic
algorithms. For this purpose, we present an adaptive memory-based local
search heuristic (denoted by AMLS) for solving MAX-SAT. The AMLS al-
gorithm uses several memory structures to define new rules for selecting the
next variable to flip at each step and additional adaptive mechanisms and
diversification strategies. The effectiveness and efficiency of our AMLS al-
gorithm is evaluated on a large range of random and structured MAX-SAT
and SAT instances, many of which are derived from real world applications.
The computational results show that AMLS competes favorably, in terms
of several criteria, with four state-of-the-art SAT and MAX-SAT solvers
AdaptNovelty+, AdaptG2WSATp, IRoTS and RoTS.
Keywords: Local Search; Tabu Search; SAT and MAX-SAT; Hybrid Algo-
rithm; Metaheuristics

1. Introduction

As one of the most studied NP-complete problems, the propositional
satisfiability problem or SAT has deserved numerous studies in the last few

∗Corresponding author.
Email addresses: zhipeng.lv@hust.edu.cn, zhipeng.lui@gmail.com (Zhipeng

Lü), hao@info.univ-angers.fr (Jin-Kao Hao)

Preprint submitted to Applied Soft Computing March 20, 2012

decades. Besides its theoretical importance, SAT has many practical ap-
plications such as circuit designing, planning or graph coloring, since such
problems can be conveniently formulated with SAT in a natural way [7].

A SAT instance F is typically defined by a set of n Boolean variables
and a conjunctive normal form (CNF) of a set of m disjunctive clauses of
literals, where each literal is a variable or its negation. The SAT problem
consists in deciding whether there exists an assignment of truth values to
variables such that all clauses in F can be satisfied.

MAX-SAT is the optimization variant of SAT in which the objective is
to find an assignment of truth values to the variables in F that minimizes
the number of unsatisfied clauses or equivalently to find an assignment that
maximizes the number of satisfied clauses. In weighted MAX-SAT, each
clause ci is associated with a weight wi and the objective is to minimize the
total weight of the unsatisfied clauses. Obliviously, SAT can be considered
as a special case of MAX-SAT and the latter is a special case of weighted
MAX-SAT where each clause weight equals to one.

Given a CNF formula F and an initial assignment, local search proce-
dures repeatedly modify locally this assignment, typically by flipping each
time one variable, in order to find an assignment having as large as possible
weights of satisfied clauses of F . Since the introduction of GSAT [23] and
WalkSAT [22], there have been a large number of local search heuristics pro-
posed to tackle the SAT and MAX-SAT problems. These heuristics mainly
differ from each other on the variable selection heuristics used at each local
search iteration.

Besides historically important GSAT and WalkSAT, other representative
state-of-the-art local search algorithms in the literature include various en-
hanced GSAT and WalkSAT solvers (e.g., GSAT/Tabu [18], WalkSAT/Tabu
[19], Novelty and R Novelty [19], G2WSAT [14]), adaptive solvers based on
dynamic noise tuning (e.g., AdaptNovelty+ [9], AdaptG2WSATP [16] and
TNM [15]), variable weighting algorithms (e.g., VW [21]), clause weight-
ing algorithms (e.g., Pure Additive Weighting Scheme (PAWS) [27], Scaling
and Probabilistic Smoothing (SAPS) [10] and Discrete Lagrangian Method
(DLM) [31]), genetic algorithm [12], hybrid algorithms (e.g., GASAT [13]
and Hybrid [30]) and other SAT or CSP solvers [4, 6, 11, 17, 24, 29]. Inter-
ested readers are referred to [7] for more details.

However, no single local search heuristic can be effective on all types
of instances, since each type of instances presents certain characteristics.
One way to design an effective heuristic algorithm is to take advantage of
various memory information gathered during the search process to guide
the algorithm into promising search regions and diversify the search when

2

necessary. Furthermore, it is also essential to adapt the search to switch
smoothly between intensification and diversification according to the search
history. Therefore, this paper aims to study how useful information collected
during the search history could be used to enhance the performance of local
search heuristic algorithms.

Following this spirit, we propose a memory-based local search heuristic
(denoted by AMLS) for MAX-SAT and SAT. In order to achieve a suitable
tradeoff between intensification and diversification, our variable selection
heuristic is based on various memory structures. In addition, the diversifi-
cation parameters used in the algorithm are dynamically adjusted according
to the search history.

In addition to taking advantage of some well known strategies in the
literature, our AMLS introduces some original features:

• In the variable selection heuristic, our AMLS algorithm globally takes
into account information related to tabu mechanism, variable flipping
recency, and consecutive falsification and satisfaction of clauses, which
is missing in the literature.

• To refine our variable selection rule, we introduce a penalty function
which is guided by clause falsification and satisfaction information.

• Our AMLS algorithm employs a dynamic tabu tenure strategy. Addi-
tionally it uses an aspiration criterion to choose a tabu variable under
specific conditions.

• We adopt the Hoos’s adaptive mechanism [9] to dynamically adjust
both diversification parameters p and wp, while this mechanism is
previously used to adjust p only.

• We employ an adaptive random perturbation operator to diversify the
search when the search reaches a local optimum solution.

Our experimental results show that, on a broad range of MAX-SAT and
SAT instances, many of which are derived from real word application, AMLS
compares favorably with the state-of-the-art local search algorithms, such as
AdaptNovelty+, adaptive gradient-based WalkSAT algorithm with promis-
ing decreasing variable heuristics (AdaptG2WSAT p), Robust Tabu Search
(RoTS) and Iterated Robust Tabu Search (IRoTS). Furthermore, without
any manual parameter tuning, AMLS solves effectively these instances in a
reasonable time.

3

The remaining part of the paper is organized as follows. In Section 2, we
briefly review some previous related works in the literature. Then, Section
3 presents our adaptive memory based local search algorithm. Section 4 is
dedicated to computational results. Discussion and remarks are presented
in Section 5 and conclusions are given in Section 6.

2. Related Works

In spite of the differences between our algorithm and existing SAT and
MAX-SAT solvers, AMLS inherits some elite features of previous algo-
rithms. We now review some of these related works and the way of adopting
these features into our AMLS algorithm.

For the incomplete SAT solvers developed during the last two decades,
the most significant advancement was perhaps to introduce “random walk”
component into the local search procedures, leading to the well-known GSAT
with random walk [23] and WalkSAT [22]. At each step, GSAT greedily
chooses a best variable to flip among all the variables that occur in at least
one unsatisfied clause, while WalkSAT first randomly selects one unsatisfied

clause and then always picks a variable from the selected clause to flip. Our
AMLS algorithm attempts to incorporate both the intensification of GSAT
to select the best variable to flip and the diversification of WalkSAT to
always pick a variable from one random unsatisfied clause to flip.

One direct improvement on GSAT and WalkSAT is to extend them
into a simple tabu search strategy. GSAT/Tabu is obtained from GSAT by
associating a tabu status with the variables [18]. Similar to GSAT/Tabu,
there is also an extension to WalkSAT which employs a tabu mechanism,
called WalkSAT/Tabu [19]. For both algorithms, each flipped variable is
enforced with a tabu tenure to avoid repeating previous recent moves. Our
AMLS algorithm then adopts the tabu table to diversify the search when
we choose the best variable to flip as GSAT.

McAllester, Selman and Kautz (1997) improved the WalkSAT algorithm
by introducing the following two improvements for selecting the variable to
flip: Favoring the best variable that is not recently flipped and selecting the
second best variable according to certain probability p. The probability p
is called the noise parameter. These strategies lead to the famous Novelty
and R Novelty heuristics. Our AMLS algorithm then borrows the idea of
strategically selecting the second best variable to flip to further enhance its
diversification capability.

For WalkSAT -based algorithms, the choice of the noise parameter p has
a major impact on the performance of the respective algorithm. However,

4

finding the optimal noise setting is extremely difficult. Hoos proposed an
adaptive mechanism to adjust the noise parameter p according to the search
history [9]. The main idea is to increase the noise value when the search
procedure detects a stagnation behavior. Then, the noise is gradually de-
creased until the next stagnation situation is detected. This adaptive mech-
anism leads to various adaptive algorithms, such as AdaptNovelty+ [9] and
AdaptG2WSATP [16]. Li and Wei (2009) proposed another noise adaptive
mechanism relying on the history of the most recent consecutive falsification
of a clause. The main principle is that if a clause is most recently falsified
by a same variable for a number of consecutive times, then the noise level
should be increased [15]. We adapt this adaptive mechanism into our AMLS
algorithm to enhance its robustness and utilize the information of the re-
cent consecutive falsification of a clause to strategically select the second
best variable to flip.

Hoos introduced random walk into the Novelty and R Novelty heuristics
to prevent the extreme stagnation behavior, leading to the Novelty+ and
R Novelty+ heuristics [8]. These variants perform a random walk with a
small probability wp, and select the variable to be flipped according to the
standard Novelty and R Novelty mechanisms with probability 1 − wp. We
adopt this famous “random walk” strategy as one of the main mechanisms
to diversify the search in our AMLS algorithm.

Battiti and Potasi proposed a Reactive Tabu Search (H-RTS) algorithm
for unweighted MAX-SAT, in which the tabu tenure is dynamically adjusted
during the search [1]. Also noteworthy is an Iterated Local Search by Yag-
iura and Ibaraki [32] that is different from many other approaches in that
2-flip and 3-flip neighborhoods are used. The perturbation phase consists of
a fixed number of random walk steps. In [25], a new stochastic local search
algorithm, called Iterated Robust Tabu Search (IRoTS), was presented for
MAX-SAT that combines two well-known metaheuristic approaches: Iter-
ated Local Search and Tabu Search. IRoTS used a different perturbation
mechanism, in which a number of RoTS steps are performed with tabu
tenure values that are substantially higher than the ones used in the lo-
cal search phase. For strong diversification purpose, our AMLS algorithm
employs a perturbation strategy to diversify the search in a drastic way.

3. Adaptive Memory-Based Local Search

3.1. Evaluation Function and Neighborhood Moves

Given a CNF formula F and an assignment A, the evaluation function
f(A), is the total weight of unsatisfied clauses in F under A. This function

5

is to be minimized with zero as its optimal value, if possible. Our AMLS
algorithm is based on the widely used one-flip move neighborhood defined
on the set of variables contained in at least one unsatisfied clause (critical
variables).

More formally, the most obvious way to represent a solution for a MAX-
SAT instance with n variables is to use a n-binary vector A = [a1, a2, . . . , an].
A|i denotes the truth value of the ith variable ai. A[i ← α] denotes an
assignment A where the ith variable has been set to the value α. Given a
clause c, we use sat(A, c) to denote the fact that the assignment A satisfies
the clause c. Each clause c is associated with a weight wc. For unweighted
problems, wc = 1 for all the clauses. We use i ≺ c to represent that variable
ai or its negation ¬ai appears in clause c. Therefore, the evaluation function
f(A) can be writhen as:

f(A) =
∑

c∈F

{wc|¬sat(A, c)} (1)

In a local search procedure, applying a move mv to a candidate solution
A leads to a new solution denoted by A ⊕ mv. Let M(A) be the set of all
possible moves which can be applied to A, then the neighborhood of A is
defined by: N(A) = {A ⊕ mv|mv ∈ M(A)}. For MAX-SAT, we use the
critical one-flip neighborhood defined by flipping one critical variable at a
time. A move that flips the truth assignment of the ith variable ai from A|i
to 1-A|i is denoted by mv(i). Thus,

M(A) = {mv(i)|∃c ∈ F , i ≺ c ∧ ¬sat(A, c), i = 1, . . . , n} (2)

3.2. Main Scheme and Basic Preliminaries

The general architecture of the proposed AMLS procedure is described
in Algorithm 1. From an initial truth assignment A of variables, AMLS
optimizes the evaluation function f(A) by minimizing the total weight of
unsatisfied clauses.

At each search step, a key decision is the selection of the next variable to
be flipped (see line 8 of Algorithm 1). This memory-based variable selection
heuristic is explained later in Algorithm 2. AMLS uses two diversification
parameters (p and wp). The adaptive tunings of both parameters (line 14)
and the perturbation operator (line 16) are described in later sections.

As a basis for the following explanation, we first explain how neighboring
solutions are evaluated. Indeed, for large problem instances, it is necessary
to be able to rapidly determine the effect of a move on f(A). In our imple-
mentation, since at each iteration we examine all the critical neighborhood

6

Algorithm 1 AMLS procedure for MAX-SAT
1: Input: CNF formula F , Maxpert and Maxsteps
2: Output: the best truth assignment A∗ and f(A∗)
3: A← randomly generated truth assignment
4: A∗ ← A
5: for try := 1 to Maxpert do

6: Parameter Initialization: p := 0, wp := 0
7: for step := 1 to Maxsteps do

8: mv(y)← neighborhood move selected from M(A) (see Algorithm 2)
9: A := A⊕mv(y)

10: if f(A∗) < f(A) then

11: A∗ ← A
12: end if

13: Set the tabu tenure of variable ay

14: Update the diversification parameters p and wp
15: end for

16: A← Perturbation Operator(A∗) (see Section 3.5)
17: end for

moves, an incremental evaluation technique widely used in the family of
GSAT algorithms [7] is employed to cache and update the variable scores.
This forms the basis for choosing the variable to be flipped at each search
step.

Specifically, let y be the index of a variable to be flipped. The break of y,
break(y), denotes the total weight of clauses in F that are currently satisfied
but will be unsatisfied if variable y is flipped. The make of y, make(y),
denotes the total weight of clauses in F that are currently unsatisfied but
will be satisfied if variable y is flipped. The score of y with respect to A,
score(y), is the difference between break(y) and make(y). Formally,

break(y) =
∑

c∈F

{wc|sat(A, c) ∧ ¬sat(A⊕mv(y), c)} (3)

make(y) =
∑

c∈F

{wc|¬sat(A, c) ∧ sat(A⊕mv(y), c)} (4)

score(y) = break(y)−make(y) (5)

In our implementation, we employ a fast incremental evaluation tech-
nique to calculate the move value of transitioning to each neighboring so-
lution. Specifically, at each search step only the break and make values
affected by the current move (i.e., the variables that appear in the same
clauses with the currently flipped variable) are updated.

7

3.3. Memory-based Variable Selection Heuristic

Algorithm 2 Variable selection heuristic for AMLS

1: Input: A and N(A)
2: Output: The selected variable y to be flipped
3: // Intensification Phase: lines 8-13, 22
4: // Diversification Phase: lines 14-21
5: Let Nts(A) denote the set of neighborhood moves that are tabu
6: Let xtb be the best variable in Nts(A) (tabu moves) in terms of the score value
7: Let xnb and xnsb, respectively, be the best and the second best variables in

N(A)\Nts(A) (non-tabu variable moves) in terms of the score value
8: if score(xtb) < score(xnb) and f(A) + score(xtb) < f(A∗) then

9: y := xtb; return y
10: end if

11: if score(xnb) < 0 then

12: y := xnb; return y
13: end if

14: if rand[0, 1] < wp then

15: y := random walk move selected from N(A)\Nts(A); return y
16: end if

17: if xnb is the least recently flipped variable in N(A)\Nts(A) and rand[0, 1] < p
then

18: if penalty(xnsb) < penalty(xnb) then

19: y := xnsb; return y
20: end if

21: end if

22: y := xnb; return y

In order to enhance the search capability of our algorithm, we introduce
a variable selection heuristic which relies on a set of memory components,
including a tabu table to avoid selecting the recently flipped variables, a
flip recency structure to record the iteration at which a variable is recently
flipped and two other memory structures to respectively record the frequency
of a variable that recently consecutively falsifies and satisfies a clause. All
these memory structures are jointly used by our variable selection heuristic,
as described in Algorithm 2.

Tabu Search (TS) typically incorporates a tabu list as a “recency-based”
memory structure to assure that solutions visited within a certain span of
iterations, called the tabu tenure, will not be revisited [5]. Our AMLS al-
gorithm uses such a tabu list as one of its three diversification strategies.
In our implementation, each time a variable y is flipped, a value is assigned
to an associated record TabuTenure(y) (identifying the “tabu tenure” of

8

y) to prevent y from being flipped again for the next TabuTenure(y) iter-
ations. For our experiments, we set the tabu tenure in two ways according
to whether the instance is satisfiable or not. Specifically, if the instance is
unsatisfiable, we set:

TabuTenure(y) = tl + rand(15) (6)

If the instance is satisfiable, we set:

TabuTenure(y) = ⌊tp · |N(A)|⌋+ rand(15) (7)

where tl is a given constant and rand(15) takes a random value from 1 to
15. |N(A)| is the cardinality of the current neighborhood N(A) and tp is a
tabu tenure parameter. We empirically set tp to 0.25 in all the experiments
in this paper and we observe that tp ∈ [0.15, 0.35] gives satisfying results on
a large number of instances.

One observes that for satisfiable instances at the beginning of the search,
the cardinality of the current neighborhood |N(A)| is large enough and the
second part of the tabu tenure function becomes dominated by the first
part. On the other hand, as the algorithm progresses, the size of the cur-
rent neighborhood becomes smaller and smaller. In this situation, since the
search is around the local optimum regions, we mainly use a random tabu
tenure (the second part) to enlarge the diversification of the search. This is
quite different from the situation for the unsatisfiable instances.

For convenience, we use Nts(A) to represent the subset of the current
neighborhood that are declared tabu. AMLS then restricts consideration to
variables in N(A)\Nts(A) (i.e., moves that are not currently tabu). However,
an aspiration criterion is applied that permits a move to be selected in spite
of being tabu if it leads to a solution better than both the current best non-
tabu move (xnb) and the best solution found so far, as shown in lines 8-10 of
Algorithm 2. Note that in the case that two or more tabu moves have the
same score value, we break ties in two ways: one is to favor the least recently
flipped variable; the other is to select a variable randomly. This also applies
to the situation of identifying the best and the second best (xnsb) non-tabu
moves as following. These two tie-breaking options lead to two versions of
our AMLS algorithm, denoted by AMLS1 and AMLS2 respectively.

Under the condition that the aspiration criterion is not satisfied, if the
best non-tabu move (variable) in the current neighborhood can improve the
current solution (i.e., score(xnb) < 0), our algorithm deterministically se-
lects the best non-tabu move as the variable to be flipped, as described in

9

lines 11-13 of Algorithm 2. These two strategies constitute the intensifi-
cation phase of our AMLS algorithm. These intensification strategies also
guarantee that new better solutions would not be missed if such solutions
exist in the current neighborhood.

Additionally, our AMLS algorithm uses two more strategies to diversify
the search when improving move (i.e., the move that can improve the current
solution) does not exist. In this case, our AMLS algorithm randomly selects
a variable in the current neighborhood to flip with a small probability wp, as
shown in lines 14-16 of Algorithm 2. wp is a diversification parameter just
as in Novelty+ algorithm, which lies in [0, 0.05] and is adaptively adjusted
during the search. One notices that this strategy is somewhat different from
the “random walk” strategy used in the WalkSAT family algorithms, since
we consider all the non-tabu critical variables while the WalkSAT family
algorithms always consider the variables in a randomly selected clause.

Our last diversification mechanism is to strategically select the second
best non-tabu move according to the search history. This selection is only
active when the best non-tabu variable is the recently flipped variable in the
current non-tabu neighborhood (line 17 in Algorithm 2), evaluated by the
memory structure called recency which represents when a variable is most
recently flipped. In our implementation, each time a variable y is flipped,
the current iteration index (the step number in Algorithm 1) is assigned to
an associated record recency(y).

Then, we compare the best and the second best non-tabu variables (de-
noted by xnb and xnsb respectively) according to a penalty value. The basic
idea is that if a clause is most recently falsified (or satisfied) by the same
variable for a number of consecutive times, this variable receives a high
penalty if its flipping falsifies (or satisfies) again the clause. We denote this
kind of penalty cost by penalty(·). Then, if penalty(xnsb) is smaller (better)
than penalty(xnb), the second best non-tabu variable xnsb is selected with
a probability p, as shown in lines 17-21 of Algorithm 2. Just like wp men-
tioned above, the parameter p lies in [0, 1] and is also dynamically adjusted
during the search.

Now, we give the details for calculating the penalty(·) value. For this
purpose, we give some basic definitions. During the search, for a clause c we
respectively record the variable vf [c] that most recently falsifies the clause
and the variable vs[c] that most recently satisfies c. A variable falsifies a
clause means that flipping the variable makes the clause from satisfied to
unsatisfied, while a variable satisfies a clause implies that the clause turns
from unsatisfied to satisfied after the variable is flipped. Meanwhile, the
value nf [c] (respectively ns[c]) records the consecutive times that variable

10

vf [c] falsifies (respectively vs[c] satisfies) clause c.
At the beginning of the search, for each clause c we initialize vf [c] to be

null. Once a clause c is falsified by flipping a variable y, we check whether
vf [c] and y are the same variable. If yes, variable y falsifies clause c again,
and thus we increase nf [c] by 1. Otherwise, variable y is a new variable that
falsifies clause c and we set vf [c] = y and nf [c] = 1. The values of vs[c] and
ns[c] are likewise updated based on the consecutive satisfaction history of
clause c.

At each step for a variable y to be flipped, we define the following two
sets:

RS[y] = {c ∈ F|y satisfies clause c and y = vs[c]}
RF [y] = {c ∈ F|y falsifies clause c and y = vf [c]}
RS[y] and RF [y] respectively denote the set of clauses which have been

recently consecutively satisfied and falsified by variable y.
Thus, the penalty of variable y is defined as:

penalty(y) =

∑
c∈RS[y] 2

ns[c]

2|RS[y]|
+

∑
c∈RF [y] 2

nf [c]

2|RF [y]|
(8)

This penalty function measures the degree to which the flipping of vari-
able y can repeat the most recent satisfaction and falsification of a clause
on average. Note that if the set RS[y] or RF [y] is empty, the corresponding
part in Eq.(8) is set to zero, implying that the flipping of variable y will not
repeat the most recent satisfaction or falsification of any clause.

This penalty function is different from the information used in the Nov-
elty family algorithms, where only the recency information is used to guide
the selection of the second best variable. Furthermore, this strategy is also
different from the look-ahead strategy used in AdaptG2WSATP [16], which
selects the second best variable according to the promising scores made by
a two-flip move. In TNM [15], the consecutive falsification information of
clauses is also used. However, TNM only considers the falsification infor-
mation on the currently selected clause and the satisfaction information of
clauses are not taken into account.

3.4. Dynamic Parameters Adjustment

Previous research has demonstrated that it is highly desirable to have a
mechanism that automatically adjusts the noise parameter such that a near
optimal performance can be achieved. One of the most effective techniques
is the adaptive noise mechanism proposed in [9] for the WalkSAT family
algorithms, leading to various algorithms, such as AdaptNovelty+ [9] and

11

AdaptG2WSATP [16]. We extend this adaptive mechanism to adjust the
two diversification parameters in our algorithm.

According to this mechanism, the noise parameters are first set at a level
low enough such that the objective function value can be quickly improved.
Once the search process detects a stagnation situation, the noise level is
increased to reinforce the diversification until the search process overcomes
the stagnation. Meanwhile, the noise is gradually decreased when the search
begins to improve the objective value.

In our AMLS algorithm, there are two diversification parameters wp and
p that can be adjusted. One observes that the larger the values of wp and
p are, the higher possibility that the search can be diversified. Specifically,
we record at each adaptive step the current iteration number and the objec-
tive value of the current solution. Then, if one observes that this objective
value has not been improved over the last m/6 steps, where m is the num-
ber of clauses of the given problem instance, the search is supposed to be
stagnating. At this point, the two parameters are increased according to:
wp := wp+(0.05−wp)/5 and p := p+(1− p)/5. Similarly, both parameter
values are kept until another stagnation situation is detected or the objec-
tive value is improved, in the latter case, both parameters are decreased:
wp := wp − wp/10 and p := p − p/10. These constant values are borrowed
from [9] and have shown to be quite effective for all the tested instances in
this paper.

3.5. Perturbation Operator

When the best solution cannot be further improved using the local search
algorithm presented above, we employ a simple perturbation operator to
locally perturb the local optimum solution and then another round of the
local search procedure restarts from the perturbed solution. In order to guide
efficiently the search to jump out of the local optima and lead the search
procedure to a new promising region, we reconstruct the local optimum
solution obtained during the current round of local search as follows.

Our perturbation operator consists of a sequential series of perturbation
steps. At each perturbation step, we first order the score values of all the
neighborhood moves in N(A) and then randomly choose one among the µ
best moves in terms of score values. After flipping the chosen variable, all
the affected move values are updated accordingly and the chosen variable
is declared tabu. Note that here the tabu tenure is much longer than the
case in the local search procedure. We set it to be a random value from
Maxsteps/4 to Maxsteps/3. This strategy is aimed to prevent the search

12

from repeating the perturbation moves at the beginning of the next round
of local search.

We repeat the above-mentioned perturbation moves for a given number
λ of times, which is also called the perturbation strength. Finally, a new
round of local search procedure is launched from the perturbed solution with
the flipped variables having longer tabu tenure than the usual local search.
This idea is similar to that used in IRoTS algorithm [25]. It should be
noticed that once a variable is flipped, it is strictly restricted to be flipped
again during the current perturbation phase.

4. Experimental Results

4.1. Reference Algorithms and Experimental Protocol

In order to evaluate the relative effectiveness and efficiency of our pro-
posed algorithm, we compared our AMLS algorithm with 4 effective MAX-
SAT and SAT solvers in the literature:

• AdaptNovelty+: Stochastic local search algorithm with an adaptive
noise mechanism in [9].

• AdaptG2WSATp: Adaptive gradient-based greedy WalkSAT algorithm
with promising decreasing variable heuristic in [16].

• IRoTS : Iterated robust tabu search algorithm in [25].

• RoTS : Robust tabu search algorithm in [26].

We should notice that these 4 reference algorithms are among the most
successful approaches for solving a wide range of MAX-SAT and SAT bench-
mark instances in the literature. For these reference algorithms, we carry
out the experiments using UBCSAT (version 1.1)—an implementation and
experimentation environment for stochastic local search algorithms for SAT
and MAX-SAT solvers—which is downloadable at the webpage1[28]. As
claimed by Tompkins and Hoos [28], the implementations of these reference
algorithms in UBCSAT is more efficient than (or just as efficient as) the
original implementations. Therefore, a comparison of our algorithm with
the UBCSAT implementations is meaningful.

Our algorithm is coded in C and compiled using GNU GCC on a Cluster
running Linux with Pentium 2.88GHz CPU and 2GB RAM. Table 1 gives

1http://www.satlib.org/ubcsat/index.html

13

the descriptions and settings of the parameters used in our AMLS algorithm
for the experiments.

Given the stochastic nature of the proposed algorithm as well as the
reference algorithms, each problem instance is independently solved 20 and
100 times respectively for the unsatisfiable and satisfiable instances. Notice
that to solve each problem instance, our algorithm and the four reference
algorithms are given the same amount of computing effort on the same
computer.

As indicated in Section 3.3, we break ties in two ways when we select
the best (tabu and non-tabu) and the second best variables: by favoring
the least recently flipped variable and selecting a variable randomly. Thus,
we denote our AMLS algorithm using these two ways of breaking ties by
AMLS1 and AMLS2, respectively.

In this paper, we use the total number of iterations as the stop condition
of all these 6 algorithms, i.e., the value of Maxpert×Maxsteps in Algorithm
1.

4.2. Test Instances

To evaluate our AMLS algorithm for the MAX-SAT problem, we have
tested AMLS on 79 well-known benchmark instances. Some of them are
derived from other specific problems while others are randomly generated.
In some circumstances, it is necessary for each clause to have a weight such
that the objective is to maximize the total weights of the satisfied clauses.
These 79 benchmark instances belong to four families:

• UnWeighted2/3MaxSat. This set contains 13 randomly generated un-
weighted MAX-2-SAT and MAX-3-SAT instances first described in
[2]2. The stop condition for this set of instances is 106 iterations.

• WeightedMaxSat. These 10 instances are weighted variants of ran-
domly generated instances used in [32]3. All of them have 1000 vari-
ables and 11050 clauses. The stop condition for this set of instances
is 108 iterations.

• UnWeightedMaxSat. This set of instances consists of 27 structured un-
weighted MAX-SAT instances presented at the SAT2002 or SAT2003
competitions which are available at the web site4. These instances are

2http://infohost.nmt.edu/∼borchers/maxsat.html
3http://www.hirata.nuee.nagoya-u.ac.jp/∼yagiura/msat.html
4http://www.info.univ-angers.fr/pub/lardeux/SAT/benchmarks-EN.html

14

Table 1: Settings of important parameters
Parameters Section Description Value
Maxpert 3.2 number of perturbation phases 100

tl 3.3 tabu tenure constant 15
tp 3.3 tabu tenure parameter 0.25
µ 3.5 number of candidate perturbation moves 15
λ 3.5 perturbation strength r[20, 30]

also tested in [3] and [13]. The stop condition for this set of instances
is 107 iterations.

• Satisfiable. This set of instances consists of 29 hard satisfiable both
randomly generated and structured instances used in the DIMACS
Challenge which have been widely used by many SAT solvers and are
available in SATLIB5. The stop condition for this set of instances is
set according to the size and difficulty of the tested instances.

4.3. Computational Results

We first present in Table 2 the computational results of the two ver-
sions of AMLS (AMLS1 and AMLS2) on the 13 UnWeighted2/3MaxSat
instances, compared with the 4 reference algorithms.

In Table 2 the first two columns identify the problem instance and the
best known objective values f∗. From column 3, each three columns give
the results of one of the tested algorithms according to three criteria: (1)
the success rate, #suc, to the best known objective values over 20 runs,
(2) the average objective value, favr, over 20 independent runs and (3) the
average search step, #step, for reaching the best known result f∗. Notice
that these criteria have been widely used for efficiency evaluation of heuristic
algorithms. If the algorithms lead to different results, the best results are
indicated in bold.

Table 2 shows that the two versions of our AMLS algorithm can eas-
ily reach the best known objective values with a 100% success rate within
the given stop condition for all the considered instances, equalling that of
IRoTS and RoTS. One observes that the algorithms AdaptNovelty+ and
AdaptG2WSATp cannot always find the best known objective values for
4 and 2 instances, respectively. In particular, for the instance p2600/150
AdaptNovelty+ cannot find the best known objective value 38 under this
stop condition and AdaptG2WSATp can only reach this objective value for

5http://www.satlib.org/benchm.html

15

Table 2: Computational results on the UnWeighted2/3MaxSat instances (stop condition:
106)

AMLS1 AMLS2 AdaptNovelty+Instance f∗

#suc favr #step #suc favr #step #suc favr #step
p2200/100 5 20 5.0 222 20 5.0 417 20 5.0 478
p2300/100 15 20 15.0 220 20 15.0 152 20 15.0 817
p2400/100 29 20 29.0 3083 20 29.0 2006 10 29.5 354426
p2500/100 44 20 44.0 359 20 44.0 292 5 44.8 358968
p2600/100 65 20 65.0 369 20 65.0 299 1 66.9 387088
p3500/100 4 20 4.0 43051 20 4.0 14771 20 4.0 2646
p3550/100 5 20 5.0 6272 20 5.0 7784 20 5.0 3795
p3600/100 8 20 8.0 4368 20 8.0 4829 20 8.0 8299
p2300/150 4 20 4.0 208 20 4.0 210 20 4.0 237
p2450/150 22 20 22.0 354 20 22.0 398 20 22.0 35985
p2600/150 38 20 38.0 5188 20 38.0 15283 0 39.2 —
p3675/150 2 20 2.0 24153 20 2.0 20558 20 2.0 7909
p3750/150 5 20 5.0 41177 20 5.0 11906 20 5.0 8137

AdaptG2WSATp IRoTS RoTSInstance f∗

#suc favr #step #suc favr #step #suc favr #step
p2200/100 5 20 5.0 150 20 5.0 672 20 5.0 920
p2300/100 15 20 15.0 175 20 15.0 127 20 15.0 200
p2400/100 29 16 29.2 43585 20 29.0 505 20 29.0 513
p2500/100 44 20 44.0 8885 20 44.0 125 20 44.0 141
p2600/100 65 20 65.0 21354 20 65.0 158 20 65.0 151

p3500/100 4 20 4.0 1952 20 4.0 1939 20 4.0 2314
p3550/100 5 20 5.0 1561 20 5.0 2230 20 5.0 3775
p3600/100 8 20 8.0 3861 20 8.0 1817 20 8.0 2053
p2300/150 4 20 4.0 216 20 4.0 226 20 4.0 263
p2450/150 22 20 22.0 3917 20 22.0 374 20 22.0 580
p2600/150 38 2 38.9 42976 20 38.0 1807 20 38.0 3564
p3675/150 2 20 2.0 6705 20 2.0 5674 20 2.0 22831
p3750/150 5 20 5.0 5237 20 5.0 4737 20 5.0 9262

16

Table 3: Computational results on the 10 random WeightedMaxSat instances (stop con-
dition: 108)

AMLS1 AMLS2 AdaptNovelty+Instance
fbest favr tavr fbest favr tavr fbest favr tavr

Randwb01 9309 9922.9 352.6 9046 10023.9 333.7 8617 9293.1 138.3
Randwb02 7992 8665.9 385.1 7996 8665.8 340.9 7982 8697.0 139.9
Randwb03 9011 9660.8 149.2 8838 9578.9 379.8 9030 9327.1 147.8
Randwb04 7098 7628.7 122.9 7098 7607.4 311.1 7374 7840.8 189.4
Randwb05 9089 10173.2 238.3 9484 10177.6 346.6 9070 10309.1 239.5
Randwb06 9558 10296.9 151.6 9645 10524.2 518.9 9176 9744.5 342.5
Randwb07 9387 10514.2 438.5 9523 10522.6 111.7 9472 9923.5 264.7
Randwb08 8228 8969.9 441.2 8228 9019.3 353.3 8242 8980.5 289.5
Randwb09 10274 10818.9 269.4 10032 10971.4 525.7 10303 11031.0 225.6
Randwb10 10028 10560.0 54.0 10001 10543.2 485.0 9903 10264.0 243.4

G2WSAT∗ IRoTS RoTSInstance
fbest favr tavr fbest favr tavr fbest favr tavr

Randwb01 16069 17085.7 207.3 10626 11440.2 612.4 11486 12263.5 509.9
Randwb02 13929 14907.5 208.4 9505 10186.6 613.4 10251 10989 514.8
Randwb03 13587 15037.7 314.7 10037 11098.9 583.7 10849 11485.5 583.5
Randwb04 12440 13510.6 287.5 7965 9072.4 653.4 9156 10089.9 582.3
Randwb05 15627 17204.5 254.3 11260 11959.1 598.6 11642 12478.1 478.9
Randwb06 17053 17814.4 235.6 11464 12146.3 568.3 11399 12458.2 542.9
Randwb07 15601 17167.8 287.5 10434 11594.3 645.7 11530 12286.5 387.6
Randwb08 14552 16277.3 305.6 10089 11171.8 587.3 10005 11399.9 437.5
Randwb09 16662 18175.9 312.8 11800 12457.4 689.3 11863 12811.7 398.7
Randwb10 16618 17662.9 235.6 11290 12392.2 624.8 12227 12979.8 412.8
*: due to the unavailability of the weighted version of AdaptG2WSATp in UBCSAT, we employ its simplified

version G2WSAT in this experiment.

twice over 20 runs. In terms of the average search step for reaching the best
known results, our AMLS1 algorithm has the best value for 2 instances while
only IRoTS outperforms AMLS1, having the best value for 9 instances. In
sum, both versions of our AMLS algorithm are effective in finding the best
known objective values compared with the 4 reference algorithms for this
set of instances.

In Table 3, we show our computational results on the 10 WeightedMaxSat
instances. Note that this set of instances is in weighted MAX-SAT version.
For each algorithm, we show results according to the following three criteria:
(1) the best objective value, fbest, over 20 independent runs, (2) the average
objective value, favr, over 20 independent runs and (3) the CPU time, tavr

(in seconds), for reaching the best objective value fbest. In this experiment,
since the weighted version of AdaptG2WSATp is not available in UBCSAT,
we use its previous version G2WSAT.

Table 3 shows that both versions of our AMLS algorithm are competi-
tive with the reference algorithms for these weighted MAX-SAT instances.
Specifically, AMLS1 and AMLS2 obtain the best objective values fbest for 4

17

Table 4: Computational results on the UnWeightedMaxSat instances (stop condition: 107)
AMLS1 AMLS2 AdaptNovelty+ AdaptG2WSATp IRoTS RoTSInstance
fbest favr tbest fbest favr tbest fbest favr tbest fbest favr tbest fbest favr tbest fbest favr tbest

difp 19 0 6 14.8 21.4 6 12.4 11.9 9 9.45 8.73 10 13.2 11.4 21 27.8 66.5 23 28.4 52.5
difp 19 1 6 14.8 18.7 4 12.3 21.9 8 9.85 10.5 11 12.9 15.4 19 26.2 47.8 23 29.6 54.8
difp 19 3 5 14.6 13.3 5 12.6 17.0 8 9.45 5.86 11 13.2 9.68 23 29.4 67.3 24 28.2 63.8
difp 19 99 7 16.0 25.9 6 13.1 9.1 8 9.75 7.58 11 12.7 16.3 26 32.7 52.7 27 29.4 42.4
difp 20 0 7 16.5 22.5 7 12.9 9.6 9 10.1 9.87 11 12.6 18.8 18 28.2 41.0 27 30.1 39.7
difp 20 1 6 16.0 18.9 6 13.7 19.2 8 10.2 7.89 9 13.0 10.5 26 31.3 73.2 25 28.9 52.9
difp 20 2 5 14.1 20.7 5 12.4 6.6 8 10.2 6.86 10 12.9 17.8 26 30.1 62.1 26 29.6 60.3
difp 20 3 7 16.0 19.4 5 13.1 21.9 9 11.0 5.37 9 12.1 16.9 23 28.3 47.2 19 25.9 58.2
difp 20 99 8 17.3 32.8 7 14.4 3.9 7 10.3 10.8 11 12.8 15.2 26 32.5 52.8 28 30.9 44.4
difp 21 0 7 15.6 25.8 8 14.6 24.9 10 12.5 12.7 14 15.6 14.9 31 37.9 48.2 30 36.4 39.6
difp 21 1 6 17.4 15.4 7 14.9 17.9 9 11.8 14.7 12 15.6 8.97 34 38.6 42.7 31 36.7 35.4
difp 21 2 8 15.5 26.5 8 14.6 11.2 11 12.2 10.8 8 15.9 10.2 33 38.8 78.3 28 35.5 49.5
difp 21 3 8 11.8 18.9 8 10.5 12.4 10 12.1 8.97 14 16.3 16.4 34 39.7 69.3 32 36.7 58.1
difp 21 99 7 11.9 25.6 7 10.3 16.4 9 11.8 12.4 13 15.4 13.8 33 38.9 60.3 28 35.4 50.6
mat25.shuf 3 3.74 3.11 3 4.02 11.5 3 3.00 4.97 3 3.00 6.44 4 4.25 34.6 3 3.00 17.8
mat26.shuf 2 3.55 12.4 2 4.07 14.1 2 2.00 5.43 2 2.00 3.46 4 5.35 43.6 2 2.00 13.6
mat27.shuf 1 3.59 10.9 1 4.19 11.3 1 1.00 5.87 1 1.00 3.85 5 6.45 38.5 1 1.00 5.87
glassy-a 6 6.18 1.9 6 6.65 0.18 6 6.00 2.87 6 6.00 3.09 6 6.00 7.80 6 6.00 3.87
glassy-b 6 6.12 8.4 6 6.65 0.17 6 6.00 8.65 6 6.00 5.87 6 6.00 6.53 6 6.00 4.39
glassy-c 5 5.22 16.6 5 5.88 1.21 5 5.00 2.01 5 5.00 6.26 5 5.00 3.87 5 5.00 1.28
glassy-d 7 7.45 14.2 7 8.34 12.0 7 7.10 8.96 7 7.00 14.5 7 7.70 2.98 7 7.00 4.97
glassy-e 6 6.14 2.85 6 6.69 6.84 6 6.00 1.08 6 6.00 3.98 6 6.00 4.78 6 6.00 6.87
glassy-f 8 8.38 14.1 8 9.26 2.54 8 8.15 13.7 8 8.00 9.85 8 8.75 20.5 8 8.30 8.97
glassy-g 7 7.26 3.96 7 8.00 3.92 7 7.00 3.28 7 7.00 12.7 7 7.07 10.5 7 7.00 5.97
glassy-h 9 9.06 9.5 9 9.96 2.18 9 9.00 4.01 9 9.00 6.87 9 9.00 5.98 9 9.25 10.6
glassy-i 7 7.12 15.6 7 7.97 0.74 7 7.00 1.89 7 7.00 7.12 7 7.00 2.98 7 7.10 9.60
glassy-j 6 6.29 8.42 6 6.89 0.71 6 6.00 2.86 6 6.00 11.2 6 6.20 8.89 6 6.00 4.23

18

and 3 instances, respectively. AdaptNovelty+ performs slightly better than
our AMLS algorithm and it can reach the best objective values for 5 in-
stances. However, the three other algorithms G2WSAT, IRoTS and RoTS
performs worse than AMLS in terms of both the best and average objec-
tive values. These results demonstrate that our AMLS algorithm is quite
competitive for solving this set of weighted MAX-SAT problems.

We present in Table 4 the computational results of our AMLS algorithms
on the set of UnWeightedMaxSat instances. The symbols are the same as
in Table 3. Table 4 indicates that our AMLS algorithm performs quite
well on this set of instances. Specifically, for the 14 difp instances, both
versions of AMLS can obtain the best objective values fbest for 10 and
12 instances, respectively, while AdaptNovelty+ and AdaptG2WSATp can
obtain the best objective values fbest only for one instance and the remaining
two algorithms IRoTS and RoTS cannot obtain the best objective values
for any instance. However, one notice that AdaptNovelty+ can obtain better
average objective values favr although it is inferior to our AMLS algorithm in
terms of finding the best objective values. When it comes to the 3 mat and 10
glassy instances, both versions of AMLS can find the best objective values
under this stop condition, while IRoTS has difficulty in finding the best
objective values for 3 mat instances. In sum, this experiment further confirm
the efficiency of our AMLS algorithm for solving the general unweighted
MAX-SAT problems.

Finally, we present in Table 5 the computational statistics of our AMLS
algorithm on the set of 29 DIMACS Satisfiable instances. In this experiment,
we only compare our AMLS algorithm with AdaptG2WSATp due to the
space limit and the reason that AdaptG2WSATp performs much better than
other three reference algorithms for almost all these satisfiable instances. In
this comparison, we use a tabu tenure as shown in Eq. (7) in our AMLS
algorithm. In addition, we disable the perturbation operator in our AMLS
algorithm (i.e., Maxpert = 1) and run our local search algorithm until the
stop condition (i.e., the total number of iterations) is satisfied. According
to the size and difficulty of these considered instances, column 2 gives the
total number of iterations for each instance.

Columns 3 to 11 respectively give the computational results for the three
algorithms: AdaptG2WSATp, AMLS1 and AMLS2. For each algorithm, the
following three criteria are presented: the success rate over 100 independent
runs (suc), the average number of flips for the success runs (#steps) and
the average CPU time (in seconds) for each success run (time). The best
results for an instance and each criterion is indicated in bold.

When comparing our results with those obtained by AdaptG2WSATp,

19

Table 5: Computational results on the DIMACS Satisfiable benchmark instances
AdaptG2WSATp AMLS1 AMLS2

Instance Iter
#suc #steps time #suc #steps time #suc #steps time

ais8 105 96 31889 0.043 100 15458 0.018 99 20167 0.032

ais10 106 91 323812 0.711 100 224846 0.430 98 318071 0.786

ais12 107
71 3810914 9.625 65 3671783 9.380 47 4174483 11.27

bw large.a 106 100 9635 0.012 100 11579 0.018 100 6846 0.008

bw large.b 106 100 81615 0.128 96 254110 0.426 100 138123 0.240

bw large.c 107
100 1303511 2.992 34 3922871 8.73 94 2746692 5.892

bw large.d 107
100 1948941 5.990 18 4102525 12.14 59 4049814 11.64

f1000 106
96 419463 0.335 83 397006 0.535 62 431452 0.550

f2000 107 84 3950685 7.772 99 2920372 3.782 19 5975934 7.702

f3200 108 57 43978432 38.65 100 13416486 20.25 6 32411411 47.74

flat200-1 106 100 50662 0.033 100 35797 0.032 100 43960 0.042

flat200-2 106 93 343990 0.255 95 321643 0.303 95 248619 0.240

flat200-3 106 99 114717 0.077 100 124379 0.125 100 101609 0.105

flat200-4 106 89 361486 0.275 100 192106 0.185 95 217268 0.210

flat200-5 107 69 3883019 5.895 100 1791504 1.612 90 3626992 3.310

logistics.a 106 100 51440 0.056 100 89405 0.120 100 162293 0.241

logistics.b 106 100 50710 0.036 100 133716 0.190 94 292362 0.421

logistics.c 107 100 107137 0.115 100 705501 1.050 100 1319925 1.972

logistics.d 107 100 121331 0.137 4 7843512 21.65 100 2916208 5.050

par16-1-c 108
100 12899883 8.359 44 46162634 64.34 6 41464972 47.56

par16-2-c 108
59 65850012 51.38 37 46484788 58.92 5 72062553 114.8

par16-3-c 108
88 43677124 28.24 35 47293115 57.62 4 29702870 46.53

par16-4-c 108
95 33141448 21.78 53 39980734 47.65 5 68242170 104.3

par16-5-c 108
93 38197528 24.85 62 27056467 58.75 4 54002044 88.12

par16-1 109 56 747646999 281.6 82 321157528 470.1 4 523418603 791.6

par16-2 109 42 507322537 574.1 76 449727827 524.6 0 — —

par16-3 109 47 466264326 298.1 62 286739791 446.6 5 332755276 520.4

par16-4 109 36 465727526 318.5 83 356592452 416.6 6 393824484 589.6

par16-5 109 41 481204281 315.2 96 343774441 412.2 4 312170271 1169

one observes that for the 29 tested instances, AMLS1 and AMLS2 reaches
the solutions with a higher (respectively lower) success rate than AdaptG2WSATp

for 13 and 6 (respectively 11 and 17) instances, with equaling results for
the remaining 5 and 6 instances. Globally, AMLS1 and AdaptG2WSATp

perform better than AMLS2 for this set of instances, demonstrating the ad-
vantage of breaking ties by favor of the least recently flipped variables and
the first two algorithms are comparable with each other.

Roughly speaking, AMLS1 performs better than AdaptG2WSATp with
respect to almost all the three criteria for the three sets ais, f and flat of
instances. However, AdaptG2WSATp obtains better success rate than both
AMLS1 and AMLS2 for the bw large and logistics instances. The 10 parity
instances named par16∗ are challenging for many SAT solvers. Interestingly,
AMLS1 obtains solutions with a higher (respectively lower) success rate
than AdaptG2WSATp for 5 (respectively 5) instances (i.e., AMLS1 performs
better on the par16 instances while AdaptG2WSATp works better on the
par16-c instances). On the other hand, one notice that AMLS2 performs
quite bad for this set of instances. Therefore, it is another interesting topic
to investigate the different performance of the two versions of AMLS.

To summarize, our AMLS algorithm (especially AMLS1) is quite com-

20

petitive for solving this set of challenging satisfiable instances.

5. Discussion and Remark

Our AMLS algorithm shares some similar components as the previous
local search algorithms. First of all, AMLS incorporates both the intensifi-
cation of GSAT to select the best variable to flip [23] and the diversification
of WalkSAT to always pick a variable from one random unsatisfied clause
to flip [22]. Secondly, AMLS adopts the adaptive mechanism introduced
in [9] to enhance its robustness and utilizes the information of the recent
consecutive falsification of a clause of [15] to strategically select the second
best variable to flip. In addition, the famous “random walk” strategy is also
used as one of the main tools to diversify the search in our AMLS algorithm.

However, our AMLS algorithm also possesses several distinguished fea-
tures. First of all, it integrates all the above components into a single solver
in a systematic way such that it can achieve a better tradeoff between in-
tensification and diversification. Secondly, we introduce a penalty function
guided by clause falsification and satisfaction information to refine our vari-
able selection rule. Thirdly, our AMLS algorithm employs a dynamic tabu
tenure strategy. Fourthly, AMLS extends the Hoos’s adaptive mechanism
[9] to automatically adjust the two diversification parameters p and wp. Last
but not the least, an adaptive random perturbation operator is proposed to
diversify the search when the search reaches a local optimum.

Although our AMLS algorithm has demonstrated good performance on
a large set of public benchmark instances, it has several limitations. First
of all, like other local search heuristic algorithms in the literature, AMLS
has difficulty in solving some highly structured instances. Secondly, the
adaptive parameter adjusting mechanism used in our algorithm uses several
predefined parameters, whose tuning may require first-hand experience.

There are several directions to improve and extend this work. First,
it would be instructive to get a deep understanding of the behavior of the
algorithm. Second, it would be valuable to explore other search strategies
like variable and clause weighting (e.g., [20, 21, 27]). Furthermore, it would
be worthwhile to investigate the look-ahead strategy [16] and other neigh-
borhoods based on higher-order flips [32]. Finally, it would be valuable to
know whether integrating AMLS within the memetic framework would lead
to improved performance.

21

6. Conclusion

In this paper, we have aimed to study various memory structures and
their cooperation to reinforce the search efficiency of local search algorithms
for solving the MAX-SAT and SAT problems. For this purpose, we have
introduced the adaptive memory-based local search algorithm AMLS. Var-
ious memory-based strategies are employed to guide the search in order to
achieve a suitable tradeoff between intensification and diversification. In
addition, an adaptive mechanism is used to adjust the two diversification
parameters in the AMLS algorithm according to the search history. Exper-
imental comparisons with four leading MAX-SAT solvers (AdaptNovelty+,
AdaptG2WSATp, IRoTS and RoTS) demonstrate the competitiveness of
our algorithm in terms of the considered criteria.

The study reported in this work demonstrates the importance of memory
as a source of pertinent information for the design of effective intensification
and diversification strategies. It also confirms the usefulness of the adaptive
mechanism proposed in [9] for dynamical parameter tunings.

Acknowledgment

We are grateful to the referees for their comments and questions which
helped us to improve the paper. The work is partially supported by the
regional MILES (2007-2009) and RaDaPop projects (2009-2012).

References

[1] R. Battiti, M. Protasi, Reactive Search, a history-based heuristic for
MAX-SAT, ACM Journal of Experimental Algorithmics 2 (1997) 130–
157.

[2] B. Borchers, J. Furman, A two-phase exact algorithm for MAX-SAT and
weighted MAX-SAT problems, Journal of Combinatorial Optimization
2(4) (1999) 299–306.

[3] D. Boughaci, B. Benhamou, H. Drias, Scatter search and genetic algo-
rithms for MAX-SAT problems, Journal of Mathematical Modelling and
Algorithms 7(2) (2008) 101–124.

[4] C. Fleurent, J.A. Ferland, Object-oriented implementation of heuristic
search methods for graph coloring, maximum clique, and satisfiability, In
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation
Challenge, American Mathematical Society, 26 (1996) 619–652.

22

[5] F. Glover, M. Laguna, Tabu Search, Kluwer Academic Publishers,
Boston, 2004.

[6] P. Hansen, B. Jaumard, Algorithms for the maximum satisfiability prob-
lem, Computing 44(4) (1990) 279–303.

[7] H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Appli-
cations, Morgan Kaufmann, 2004.

[8] H. Hoos, On the run-time behaviour of stochastic local search algorithms
for SAT. In Proceedings of AAAI-99 (1999) 661–666.

[9] H. Hoos, An adaptive noise mechanism for WalkSAT, In Proceedings of
AAAI-2002 (2002) 655–660.

[10] F. Hutter, D. Tompkins, H. Hoos, Scaling and probabilistic smoothing:
Efficient dynamic local search for SAT, In Proceedings of AAAI-2000
(2002) 233–248.

[11] K. Inouea, T. Sohb, S. Ueda, Y. Sasaura, M. Banbara, N. Tamura,
A competitive and cooperative approach to propositional satisfiability,
Discrete Applied Mathematics 154(16) (2006) 2291–2306.

[12] Y. Kilani, Comparing the performance of the genetic and local search
algorithms for solving the satisfiability problems, Applied Soft Computing
10(1) (2010) 198–207.

[13] F. Lardeux, F. Saubion, J.K. Hao, GASAT: a genetic local search
algorithm for the satisfibility problem, Evolutionary Computation 14(2)
(2006) 223–253.

[14] C.M. Li, W.Q. Huang, Diversification and determinism in local search
for satisfiability, Lecture Notes in Computer Science 3569 (2005) 158–172.

[15] C.M. Li, W. Wei, Combining adaptive noise and promising decreasing
variables in local search for SAT, In SAT 2009 competitive events booklet:
preliminary version (2009) 131–132.

[16] C.M. Li, W. Wei, H. Zhang, Combining adaptive noise and look-ahead
in local search for SAT, Lecture Notes in Computer Science 4501 (2007)
121–133.

[17] M. Mastrolilli, L.M. Gambardella, Maximum satisfiability: how good
are tabu search and plateau moves in the worst-case? European Journal
of Operational Research 166(1) (2005) 63–76.

23

[18] B. Mazure, L. Säıs, E. Grégoire, Tabu search for SAT, In Proceedings
of AAAI-97 (1997) 281–285.

[19] D. McAllester, B. Selman, H. Kautz, Evidence for invariants in local
search, In Proceedings of AAAI-97 (1997) 321–326.

[20] D.N. Pham, J. Thornton, C. Gretton, A. Sattar, Advances in local
search for satisfiability. Lecture Notes in Computer Science 4830 (2007)
213–222.

[21] S. Prestwich, Random walk with continuously smoothed variable
weights, Lecture Notes in Computer Science 3569 (2005) 203–215.

[22] B. Selman, H.A. Kautz, B. Cohen, Noise strategies for improving local
search, In Proceedings of AAAI-94 (1994) 337–343.

[23] B. Selman, D. Mitchell, H. Levesque, A new method for solving hard
satisfiability problems, In Proceedings of AAAI-92 (1992) 440–446.

[24] S. Seitz, P. Orponen, An efficient local search method for random 3-
satisfiability, Electronic Notes in Discrete Mathematics 16 (2003) 71–79.

[25] K. Smyth, H. Hoos, T. Stützle, Iterated robust tabu search for MAX-
SAT, Lecture Notes in Artificial Intelligence 2671 (2003) 129–144.

[26] D. Taillard, Robust taboo search for the quadratic assignment problem,
Parallel Computing 17(4-5) (1991) 443–455.

[27] J. Thornton, D.N. Pham, S. Bain, V. Ferreira, Additive versus multi-
plicative clause weighting for SAT, In Proceedings of AAAI-2004 (2004)
191–196.

[28] D. Tompkins, H. Hoos, UBCSAT: An implementation and experimen-
tation environment for SLS algorithms for SAT and MAX-SAT, Lecture
Notes in Computer Science 3542 (2004) 305–319.

[29] M. Tounsi, S. Ouis, An Iterative local-search framework for solving con-
straint satisfaction problem, Applied Soft Computing 8(4) (2008) 1530–
1535.

[30] W. Wei, C.M. Li, H. Zhang, A switching criterion for intensification and
diversification in local search for SAT, Journal on Satisfiability, Boolean
Modeling and Computation 4 (2008) 219–237.

24

[31] Z. Wu, B.W. Wah, Global-search strategy in discrete lagrangian meth-
ods for solving hard satiafiability problems, In Proceedings of AAAI-2000
(2000) 310–315.

[32] M. Yagiura, T. Ibaraki, Efficient 2 and 3-flip neighborhood search algo-
rithms for the MAX SAT: Experimental evaluation, Journal of Heuristics
7(5) (2001) 423–442.

25

