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Abstract

Tabu Search (TS) has always been a very popular algorithm fohgmlpring, both
as a stand-alone optimizer as well as a subroutine inside population-hds&brhethods.
We present two TS extensions that could allow previous TS algorithms to iepiner
behavior at almost no additional computational cost. First, we integrate twevauation
functions which employ supplementary (structural or dynamic) informationlditian to
the conventional objective function (the number of edges with both erttie shme color).
These new evaluation functions allow the search process to differentiigurations not
distinguished by the conventional evaluation function. The second éxteosncerns a
reactive mechanism for improving the tabu list management. Theoreticahargs show
that this reactive component completely eliminates the risk of getting blockethtpop
plateaus. Numerical experiments show that the two proposed TS extenaiothe very
useful inside a stand-alone TS optimizer, as well as inside TS subroutisteg¢es of-the-art
hybrid methods.

1 Introduction

The graph (vertex) coloring problen€¢loring) requires finding the chromatic number of a
graph, i.e. the minimum number of colors needed to conséraotoring without conflicts (with
no edge having both ends of the same color). The gkapbloring problem §-Coloring), the
decision version o€oloring, is to decide whether or not there is a coloring with no cotslic
usingk colors.Coloring is one of the 21 fundamental computer science problems wNdse
completeness was proved in the early 1970s [25]. Except sfpewial cases (trees, bipartite
graphs, etc.), no polynomial algorithm can solve or appnate Coloring within a constant
factor unlessP = NP. In practice,Coloring and k-Coloring constitute a convenient and
powerful model for formulating numerous applications, @sdxample: frequency assignment
in cellular networks, timetabling, register allocationdampilers, scheduling problems, and
many others—see references in [28, 3, 33].

Since the early 1970s, numerous coloring algorithms haea bleveloped and important
progress has been made. Exact algorithms do not usuallyndagraphs of more than 100
vertices [28], and so, heuristic algorithms are often egadicfor coloring larger graphs. Exist-
ing (meta-)heuristic coloring algorithms belong to five maolving approaches: (i) sequential
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constructive heuristics (e.g. some of the best are RLX and XRBH, (ii) local search (tabu
search [20, 12, 3], simulated annealing [5, 23], iterat@al search [30, 7, 6], variable neigh-
borhood search [1, 19], local search with forward checkBigj,[distance and position guided
search [33], etc.), (iii) population-based hybrid algomits [29, 13, 10, 15, 17, 27, 26, 32, 34],
(iv) neural networks approaches [22, 36], (v) swarm irgeltice algorithms [8, 11, 4, 31], (vi)
independent set extraction [38], and (vii) distributed &gdrid quantum annealing [37].

Among these coloring approaches, one of the most effecticenaost popular choices
is represented by Tabu Search or by algorithms incorpa@ydi@bu Search. Many of the best-
known results available today have been obtained with dyhathods that employ Tabu Search
as a local optimizer [15, 17, 27, 26, 32]. One observes tlaasatal TS coloring algorithms are
quite simple and “lightweight”: they do not make use of “hgawachineries” such as linear
programming relaxations, distributed computing, ant sagrevolutionary computing, niching
or fitness sharing techniques, etc. One wonders then whath&rcoloring algorithm can be
further boosted by improving some of its key ingredientsilevkeeping it reasonably simple.

This paper introduces two TS extensions: well-informedwet#on functions and a simple-
but-effective reactive tabu list. The classical objectivaction (the number of conflicts) is
essential because it defines the landscape and guides tloh peacess (together with the
neighborhood). However it makes no distinction among nworek-colorings with the same
number of conflicts but with a different potential of leaditiga solution. As such, we in-
vestigate two new evaluation functions that use suppleangiriformation: (i) the degrees of
the conflicting vertices, and (ii) the frequencies of colbarges during a first stage of the
execution.

Regarding the tabu list tunning, we observed that the egistiell-established techniques
can still be improved, as looping problems can still occuinag¢s. For this reason, we introduce
a new reactive technique[2] that allows the search procesgdid getting blocked indefinitely
looping on plateaus. The resulting algorithm (hereaftiarred to as IRTS—Informed Reactive
Tabu Search) reaches good results as a stand alone algaaitliit can also be very useful as
a local optimizer in state-of-the-art hybrid methods.

The rest of the paper is organized as follows. In Section 2gme preliminary definitions
and we present in detail the TS variant we use. Sections 3 aen@ 4levoted to the new
evaluation functions and to the reactive tabu list, respelgt In Section 5, we perform an
experimental study of the proposed ideas, followed by amichs in the last section.

2 Generic Tabu Search fork-Coloring

2.1 Preliminary Definitions

LetG = (V, E) be a graph with” and E being respectively the vertex and edge sets. We recall
the following definitions.

Definition 1. (k-Coloringand Coloring Given a graphG = (V, E) and a positive integek,
the graphk-coloring problemrequires deciding if7 is k-colorable, i.e. if there is a function
C:V = {1,2,---  k} such thatC(v) # C(v') V{v,v'} € E. Thegraph coloring problem
requires finding the chromatic number@f i.e. the smallest such that(s is k-colorable.

It is clear thatk-Coloring and Coloring are two tightly related problems. A possible ap-
proach to deal witlColoring consists of solving a series of increasingly-diffick#Coloring
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problems: start with a very large initidl and iteratively decremerit after solving eactk-
Coloring instance. Thek-coloring problem becomes more and more difficult until ib ¢
longer be solved by the algorithm. The béstor which k-Coloring is solved constitutes an
upper bound to the chromatic number@f

In the following, we represent a coloring functien : V- — {1,2,--- k} as an array
C=1[C(1),C(2),...,C(|V])]. We say that is ak-coloring forG, or a configuration.

Definition 2. (Conflicts) The conflicts (the conflicting edges) of-eoloring C' are given by
&(C) = {{v,v'} € E: C(v) = C(v')}. The set of conflicting vertices i/ (C) = {v € V'
W e Vs.ti{v,v}e&C)}.

The conflict numberof C is denoted by&(C)], or simply by|&], i.e. the argument is
omitted when no confusion is possible. A colorifigs conflict-free if and only if&’| = 0.

Definition 3. (Conflicting degree of a vertex) Letbe a vertex, its degree, and’ a config-
. . — , , — V., .

urac;uorg We defing, = {v/ € V|{v,v'} € &£(C)}. We call‘d—v| the conflicting degree of

underC.

It is easy to see thdt < |#/,| < d, Vv € V. The minimal valug?,| = 0 is reached for
non-conflicting vertices? ,| = d, indicates that vertex is conflicting with all its neighbors.
Moreover, the following relation holds for any coloringj&| = 3", ., [7.|.

Finally, notice that we solvé-Coloring as an optimization problem. GivenkaColoring
instance(G, k), the optimization problem is determined by the coupld . &sf.), where: (i)
S is the search space composed of all |ﬂ7fé" possiblek-colorings; (i) f. : S — IN is the
objective function counting the number of conflicts usingriala below.

fo(C) =[£(C)

NCeS 1)

Accordingly, any configuratio®* € S such thatf(C*) = |&(C*)| = 0 corresponds to a
conflict-free or legak-coloring, asolutionof the givenk-Coloring instance.

2.2 Key Components of the TS Coloring Procedure

Tabu Search [18] was first applied teColoring in 1987, leading to the well-known Tabucol
algorithm [20]. Since then, the approach has inspired séwther TS variants and important
progress has been made. We here discuss two of the most anpionprovements, as they are
tightly related to our study. First, [13] introduced an e#fitt incremental evaluation technique
for streamlining the calculations. Secondly, more elatsotabu-list management techniques
have been developed [10, 15, 9]. A historical presentatfarabucol as well as a comprehen-
sive analysis of some of the best local search algorithmseaiound in [16]. Experimental
comparisons of TS with other coloring heuristics are alsailalle in the literature [21, 6].
Finally, one should be aware that other TS variata®xist (e.g. the PartialCol algorithm [3]
using partial colorings), but these variants are not dyeetated to our approach.

2.2.1 Fast neighborhood evaluation via calculation streafiming

Given ak-coloring C, a neighboringt-coloring C’ can be obtained by simply changing the
color C(v) of a conflicting vertex v into a new colorC’(v). We denote by(v, C’(v)) the
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transition fromC' to C’. By focusing on conflicting vertices, this neighborhood kel search
process to concentrate on influential moves and to avoildwaat ones, i.e. changing the color
of a non-conflicting vertex would not directly improve thegedtive functionf.. Furthermore,
this neighborhoodV (C) has a cardinal of N (C)| = (k — 1)| 7|, which is considerably lower
than the cardinal of a neighborhood in whieatyvertex could change its color (i.k—1)|V|).

To rapidly choose the best next coloring fraW{(C'), we use dV| x k tableI" such that
'y cr(vy indicates the number of conflicts of vertexf v would receive coloC’(v). As such,
Lycrw) — Tocv) represents thg. variation that would be induced by changing the colov of
from C'(v) to C’(v). Since we only deal with conflicting vertices, the best mevedarched by
going through all elements, ¢,y with v € ¥ (i.e. (k — 1) - /| elements). After performing
amove' can be updated i@(|V]) time (because only columidg(v) andC'(v') might require
updating inl'). This incremental evaluation technique proves to be ¢issdar a practically
viable examination of the complete neighborhood.

2.2.2 Tabu list management

A tabu list is commonly regarded as a first-in-first-out ste recording recent configurations
or recent moves. In our case, it is more convenient to impferiteising a|V'| x k tableT
in which each elemerif,, ¢, corresponds to a possible moye C’(v)). Each time a move
(v,C"(v)) is performedy receives the new cold@r’(v) and the lost color of becomes forbid-
den (tabu) for the nextl (tabu tenure) iterations. In practice, each elemerif oécords the
current iteration number plus the tabu tentireConsequently, in order to check out whether or
not a move(w, C'(v)) is tabu, it is enough to compalg (. to the current iteration counter.
A well-established tenure [15, 10] in graph coloringtis= « - |&| + random(1, A). The
termrandom(1, A) makes reference to a routine returning a random integerdagtivand A;
itimposes a quality independent tenure to all moves. Theawala - |£| depends on the current
coloring: this term aims at penalizing moves associatedwet quality configurations. Our
new reactive component for tunning the tabu list is intraatlim Section 4.

Aspiration criterion  Notice that it would be quite unreasonably to forbid a mo\a thould
lead to a new best coloring. In this case, we make use of aratispi criterion that removes
the tabu status of the corresponding move.

2.3 TS Formal Specification

Algorithm 1 presents the general E&oloring procedure, including the components presented
above. For a giveR-coloring instance(, k), our TS variant starts out with an initial (random)
k-coloringC. The main steps of an iteration are: (A) Uséo pick up an acceptable move (i.e.
non-tabu, or tabu but satisfying the aspiration criteritaf minimizes the number of conflicts,
(B) set the current color af as tabu, (C) execute the move and (D) updatecordingly. The
process stops when a legal coloring is found or when a timegj@tion) limit is reached. The
new evaluation functions will be integrated in this alglonitat Step 5.A, see Section 3.3 below.
The reactive tabu list will be integrated at Step 5.B.



Algorithm 1 Tenplate of the classical Tabu Search
I nput: graph G, integer k;
Return: f.(C*) the best conflict nunber ever found;
Variables: C (current coloring), C* (best coloring found so far), T

(tabu Table), ¢/ (tabu tenure), T (table of nove values), iter_counter (the
current iteration);

Begi n

1. T = Oyixk /+*no nove is tabu when startingx/
2. C = arandominitial k-coloring

3. ¢c*=C

4. Initialize I /*see §2.2.1x/
5. while (f.(C)>0 and time/iteration limt not reached)

A Use I to select a best neighbor C’ in O(k|7|): if nore noves |ead

to a best conflict nunmber, C’ is selected using a probabilistic
choi ce guided by the evaluation function (see Section 3.3

B. T,cw) =iter_counter +t I+*mark (v,C(v)) tabu, see §2.2.2 and §4x/
C. Cv)=0C'(v)
D. Update T [in O(|V]) time, see §2.2.1x/
E. if (f(C)<f(C*) then C*=C / *better coloring found«/
6. return f.(C")
End

3 New Evaluation Functions

The functionf, (Equation (1)) is commonly used as the evaluation and dbgefttnction. Since
f. only counts the number of conflicts, it has an inherent inearence: it makes no distinction
between all configurations with the same conflict number.eéat] these configurations are
equivalent forf. even if they may have different potential for leading to alegploring.

To overcome this difficulty, we propose to enrighwith additional information. We intro-
duce a heuristic functioh : S — [0, 1) and combine it withf. by the following simple linear
form, leading to a new evaluation functign

f(C) = [.(C) = h(C) (2)

whereh is a heuristic that can discriminate configurations eqeivain terms off.., as exem-
plified in Sections 3.1 and 3.2 below. By considerir{g’) < 1 for any coloringC', we obtain

[F(O)] = [e(C).

3.1 A Degree-Based Evaluation Function

Let us first consider the example from Figure 1 showing 3wemloringsC; andC’, of a small
graph. The edges in conflict are respectivglyb} for C; and{a, c} for Cy. Consequently,
|&(C1) | = |& (Cy) | = 1 and the two configurations are thus equivalentfforHowever, it is
easier to solve thg-coloring problem fronC; than from(s.

Indeed, since the degreelois small, one can assign éca color not used by its neighbors
(i.e. black or white) to solve théa, b} conflict onC;. That can be done in one step and it does
not introduce any other conflicts. Solving the ¢} conflict onCs is more difficult because any
color change on vertex or ¢ would perturb one of its more numerous neighbors. Intuijve



Figure 1: Two3-coloringsC; andC, with one conflict (marked with a thicker line). It is easier
to solve the gray on&(;, left) than the black onel{;, right) even if both configurations have
just a single conflict.

the more neighbors a vertex has, the more difficult it is tangeaits color without perturbing
the rest of the configuration.

More precisely, for each conflicting vertex, we can use itgrée to define a penalty term:
the higher its degree is, the smaller the heuristic teiing, and the higher the value of the
evaluation function becomes, see also (4) below. In ordéake all the conflicting vertices
into account, we use the following heurisﬂgto define the penalty df-coloring C":

h(C) = 7 A7 )

vey

According to the notation of conflicting degree of vertic&g¢tion 2.1, Definition 3), we
see that, (C) gives the total of the cgnflicting degrees of all the confhigtvertices of”'. Our
first degree-based evaluation functincan now be defined as follows:

Fi(C) = £.(C) = hi (O) (4)

|V| coefficient in (3) is to keep the value 6f in [0, 1). Thereforefl

preserves thef, ordering: f; (C) < f1 (C") wheneverf, (C) < f.(C"). The new evaluation
function should only help the search process choose betagighbors with the same conflict
number; it should not introduce penalties that outweighniin@ber of conflicts.

The only role of the:-

3.2 An Evaluation Function Based on Search History

We propose here a second heurigtjonvhich takes into account information collected during
the search process. The considered information is the nuoflbmolor changes per vertex.
Basically, if a vertexo changes its color frequently, the evaluation should giveenweeight to
v, SO as to help the search process fix its color.

More precisely, let us consider a first stage of the searditivé basic evaluation function
f.. For each vertex, we compute a frequency coefficiefiteq (v) which is a scaling of the
number of color changes applied orduring the first stage. The heuristig and the second
new evaluation function can now be defined as follows:

F2(C) = £.(C) — hs ) -3 17,

vey

freq ()



Given two colorings with the same conflict number, the evteiadma‘unctionf; prefers the
one whose conflicting vertices had lower frequencies ofrath@nge in the past. We consider
the vertices with high frequencies of color changes to beencatical: the new function en-
courages the search process to first assign a color to theeseby giving them more weight
in the evaluation. As such, usirfg results in more frequent color changes on vertices that were
“quite fixed” during the first stage; it has an implicit divgication effect.

3.3 Specific TS Integration and Comparison with Related Literature

To be able to integrate the calculation/gfor i, in TS, the additional computational overhead
should be limited—TS needs to remain a very fast algoritre®,aso Section 2.2.1. For this
purpose, IRTS uses the following formula to compute any efttto heuristics (denoted ).

= Z|7U| ~hy, = Z (hUTth’)a

veV {vp'}eé

whereh,, is the penalty associated with vertexi.e. h, = for the first function, on,

|V| dy
fTeq for the second. Using (2), we observe that any new fungt(aih) can be calculated with
the formulafc( ) —h(C) = Z{U ez L = 2 1p.ez (o + hy). Before launching the search

process, one constructs a taffleso thatf(C) = > (vr)ed T, The only difference between

the calculation off, and is the initial value of7". To be specific, one usés, = 1Vv,v' € V
to computef., or 7, = 1 — h, — h, to computef. Matrix 7 can be integrated in the
streamlined calculation df (see Section 2.2.1), so as to perform an incremental evatuat

A different integration issue arises from the inherent infigetions of the heuristics. The
fact thatf (C) < f (Cs) should ideally imply that the probability to reach a legalocimg is
greater when the search runs frarh than when it runs fronC,. Unfortunately, due to the
complexity of the fitness landscape, this probability isnmkn; as such, the computation of
an exact evaluation is very difficulk( andh, are only heuristics).

Such imperfections render slightly more complicated the afsf in Tabu Search. If one
directly inserts a very discriminativg in Step 5.A. of Algorithm 1, the number of choices
for iteratively selecting the next coloring’” could be very limited—Ileading to insufficient
diversification. As mentioned in Step 5.A. of Algorithm 1gethext coloringC’ is selected
from among those that minimise the number of confligt§C;)]; if more moves satisfy this
condition, we perform a tie-breaking choice guidedﬁﬁyConsider the set of all neighboring
coloringsC; minimizing the number of conflicts. The next colori6gis selected from this set:
eachC; can be chosen with a probability proportionalt@;). This choice can be seen as an
instance of a fithess-proportional selection in the evohary computing terminology.

IRTS seems to be the first algorithm that uses new evaluatioctibns within a Tabucol-
based TS, making appeal to a specific integration methogoldgwever, degree information
was also used in a different form in the constructive heigristroduced by [18]; the authors
proposed to wait to color low degree dependent verticed alhtother vertices are colored.
The Impasse coloring algorithm [29, 27] is based on a diffeemcoding, but it also intends to
first color high degree vertices, leaving more vertices adlgen degree in the uncolored class.
Completely different evaluation functions can also be founthe literature, as for example
fasie = — S5 |CF| + 328, 2|CY||&4], whereC" is the set of vertices having coloand&; is
the set of conflicts of color[23].



4 A Simple-but-Effective Tabu Tuning Technique

It is well known that the tabu list must be managed with caneSéction 2.2.2, we indicated a
well-established formula for calibrating the tabu tendte= o - |&| + random(1, A). We here
provide the rationale for integrating an additional reacttomponent.

Let us consider a plateau with configurationsCt, Cs, ..., C,, having the same conflict
number|&|. A tabu list of length at least is necessary to break a cycle of lengthC;, —
Cy... — C, — (. If the classical Tabu tenure verifi@saxt! < n, the Tabu mechanism
can no longer stop the search process from repeatedly penfgrthe above cycle. As such,
a larger-than-expected plateau is able to completely ioglalgorithm. Indeed, experiments
confirm that the classical TS reaches sooner or later a peiydrd which it can not longer
make any progress (see Section 5.2.2).

To overcome this difficulty, we consider a reactive tabu lishen the conflict number
stays constant during a number of iteratidng,., we increment the length of the tabu tenure
for all subsequent iterations. In other words, when we oleséy,,. consecutive transitions
Cy — Cs... = Cp,, such thatf, (Cy) = f.(Cy) = --- = f.(Cp,.), the tabu tenure becomes
tl + 1 for the forthcoming iterations. If the conflict number staymstant for anothePax
iterations, the tabu tenure beconmks?2; after anothef’,, .« iterations it becomes 43, etc. The
tabu tenure is thus continually incremented as long as thiicimumber remains constant. We
reset it to the originall value only whery, changes again. This way, we guarantee that, sooner
or later, the tabu list is increased to a value that can breakla of any length. Theoretically,
in the worst casetl would be incremented indefinitely and this would lead to aitid that
contains all possible moves. In this exceptional case, darmnmove is performed and we
consider that the resulting random walk coulat lead to periodic cycles.

Let us remark that using a large tabu list all the time wouldeha negative effect; outside
large plateaus, it could encourage the algorithm to leawmsing regions too early. Here, the
algorithm learns from its own search evolution, and resores larger tabu list only when it is
necessary. This simple mechanism enabled TS to solve iamgddoping problems without
affecting its performance outside plateaus. More disomssabout the practical impact of our
reactive tuning are given in the experimental part (Sedi@m?).

To our knowledge, while reactive tabu techniques were afieed in other problems [2],
they have not been typically applied to graph coloring. Heevein the context of a different
TS variant (based on partial configurations [3]), the loearsh process is considered trapped
if the objective function fluctuation stays a long perioddsla certain threshold; this threshold
is set by a separate tuning phase along with two other paeasngftthe reactive scheme. IRTS
takes this approach even further by only using one paraniBtgy) that can be tunned quite
easily (see Section 5.1.2). More distantly related, therélym from [9] uses some different
ideas to detect looping, focusing on the identification afiges causing loops.

5 Experiments and Discussions

In this section, we report empirical results of the Infornfisehctive TS algorithm on the com-
plete set of DIMACS coloring benchmarks.



G k|G k|G k|G k
dsjcl25.1 5 |[r125.1 5 ||1e450.5a 5 || flat300.20.0 20
dsjcl25.5  17||r125.5 36||1e450.5b 5 || flat300.26 26
dsjcl25.9  44|r125.1c 46 || 1e450.5¢ 5 || flat1000.50 50
dsjc250.1 8 ||r250.1 8 ||1e450.5d 5 || flat1000.60 60

dsjc250.5  28||r1000.1 20(|[e450.15a 15| schooll 14
dsjc250.9  72|/r1000.1c 98| [e450.15b 15||schooll.nsh 14
dsjrb00.1  12|[le450.25a 25
1e450.25b 25

Table 1: Easy DIMACSk-coloring instances. For these graphs, numerous othergagmort
legal colorings with exactly the same valuesiotut there is no mention of a solution using
k — 1 colors (for flatX.Y andleX.Y graphs, we even know the chromatic number).

5.1 Experimental Conditions
5.1.1 The DIMACS benchmark

The Dimacs competition benchmark [24] is composed of 46lggdpm the following fami-
lies: (i) random graphds;cX.Y with X vertices and density Y; (i) flat graphs, generated
partitioning the vertex set intf, classes and by adding edges only between vertices of differ-
ent classesf(latX.Y, where X denote$l/| and Y is the chromatic numbét,); (iii) Leighton
graphs with450 vertices and with known chromatic number ¥X.Y, they have a clique of
sizeY); (iv) two families of random geometrical graphs generdiggicking points uniformly

at random in the unit square and by joining any 2 points saiatithin a certain distance
(dsjrX.Y andrX.Y, where X is|V| andY is the distance threshold); (v) huge random graphs
(C2000.5 and C'4000.5) with up to 4 million edges; (vi) class scheduling grapk&hpoll,
schooll.nsh) and a latin square graphu(in_square_10).

Easy instances and hard instances Table 1 presents the easy grapitoloring instances;
they can be rapidly solved by all our TS versions with a suscate ofl00% . In what follows,
we focus on the rest of 18ard instances, as most coloring research papers do.

5.1.2 Parameters

Recall that IRTS requires only three parametefso and Pa. The first two are inherited
from previous TS versions, as they are utilized to compugetéibu tenuret( = o - |&] +
random(1, A), see Section 2.2.2). We simply used the following valuessaly reported in the
literature [15]:A = 10 anda = 0.6.

The third parameteF,,ax represents the number of iterations with constant conflintimer
necessary to assume the search process is stuck, i.e thgeemmponent is only activated
after Py iterations with no conflict number variation (see Section We setPyax = 1000,
but there are many safe values one could use. We empiridadigreed that each time the con-
flict number stayed constant for 1000 iterations, it remaise indefinitely (with the classical
tunning). Larger values aoF,,o would only render the reactive reaction less prompt. Smalle



values can trigger reactive reactions more often than sacgsthus risking to influence the
search process without proper reason.

5.2 Influence of the Proposed TS Extensions

Let us first present preliminary experiments and argumesgarding the positive impact of
the new evaluation functions and of the reactive tabu list.il§\Viine new functions aim at
better guiding TS toward promising regions, the objectizéhe reactive tabu list is to unlock
the search process from looping. As such, the two proposedxie&hsions are completely
independent and complementary to one another.

5.2.1 Impact of the new functions w.r.t. instance charactastics

Our preliminary experiments showed that the influence ofihe functionfl is more visible
on certain instances than on others. Generally speakiadyeht improvement is seen on the
most difficultinstances and on certain specific graph classes. An exarmhgi®d performance
is given by the random geometrical graptsji-X.Y andrX.Y); f. is clearly dominated by

in all our experiments—see also Table 2 and Table 3 below.

The explanation of this performance variation lies in threcttre of the graphs, more ex-
actly in the degree variation. For the geometrical graphstimeed above, the maximum de-
gree can be by an order of magnitude higher than the minimwredge.g. fords;jr500.5)
and this makes any degree-based differentiation veryteféecindeed, we observed that the
average graph class effectivenessfptan be ranked according to the degree variation, from
the highest to the lowest: geometrical graphs, Leightoplisarandom graphs, flat graphs.
An extreme case is the Latin square graph which is regular ¢pnstant degree). the new
degree-based evaluation function brings no new distindigtween vertices.

5.2.2 Influence of the reactive tunning

To evaluate the influence of the new reactive tabu list, wéyaad and compared the classical
tabu tuning (Section 2.2.2) with the reactive tabu tuningcdRehat the objective of the reac-
tive component is to avoid looping dncolorings with the same conflict number. Using several
representative graphs from each important family, we peréal between 20 and 100 execu-
tions of the TS algorithm equipped with the classical talmirtg and we counted how many of
them got stuck before reaching 20 million iterations. Here consider that the search process
is stuck from the moment when the conflict number does no lovagate. The conclusion of
this experiment was very cleamore thart0% of all executions got stuck looping on a plateau
before reaching 20 million iterations.

By introducing the reactive part, these looping problemssateed and the TS algorithm
could successfully escape all plateaus. This allows theslsgaocess to effectively take profit
from longer running times—without reactive tuning, thereuld be no much use to run IRTS
more than 20 million iterations (regardless of the evatratuinction). We empirically observed
that the reactive component is triggered only a few timesillians of iterations, and so, there
is virtually no negative interference with other algoritlmomponents. Another positive point
of our reactive scheme is the simplicity: only one parametgy is needed and it can be easily
assigned a safe value—i.e. any valiesatisfying the property that if the conflict numbjéf|
stays constant fok iterations,|€| remains constant indefinitely.
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5.3 Results on Short Term Stopping Conditions

To assess the potential impact of IRTS inside more sophtstichybrid algorithms, we consider
a limit of 1.000.000 iterations and we analyse the runnirmafileralong these iterations. A local
search coloring algorithm can visit millions of coloringsrpninute, and so, the chosen iteration
limit corresponds to the relatively short running timesi¢gtly allowed for internal subroutines
of hybrid algorithms.

Table 2 reports the average conflict numbers along thes®.D@Diterations with all three
functions on 10 representative graphs from different feawil Rather then reporting only the
minimum conflict number, this average information offersettér view of the global behavior
of the algorithm over the considered number of iterations.dl¥serve that the average conflict
number is always smaller fgf than for f.. The conclusion is that the new evaluation function
usually allows the search process to visit more rapidlyods of higher quality.

Graph k Average Number of Conflicts Statistical Confirmation
fl f2 fc [fl]gé[fc] [fQ]ié[fc]
dsjc250.5 28 8.138 7.133 9.878 Yes Yes
dsjc500.5 48 24.9 28.5 26.6 Yes Yes
ds7¢1000.5 87 35 32.2 37.7 Yes Yes
dsjr500.5 122|| 5.106 8.875 10.46 Yes Yes
r1000.5 234\ 16.02 25.76 29.09 Yes Yes
le450_25¢ 25 9.38 9.524 12.97 Yes Yes
le450_25d 25 9.183 13.94 13.74 Yes No
flat300-28_0 |30 21.63 23.87 22.13 No No
flat1000_76_0 | 86 30.39 29.02 32.04 Yes Yes

Table 2: Average conflict number of the colorings visitedinigithe first1000000 iterations
with all three functions. In most cases, the modified fumijoin particularf;, allow the
algorithm to visit colorings with (statistically) fewer oficts.

Indeed, the differences between these averages were cedflgna statistical test. We
considered the null hypothesis that the average of the confimbers obtained witl (or f;
respectively) is equal to the average obtained viithUsing a very confident level of signif-
icance ofa = 0.1%, this hypothesis was rejected in most of the cases, confirthiat most
reported differences are statistically significant—sesldist two columns of Table 2.

In the best cases, the conflict numbers of the configuratisited by f,-IRTS can even be
half of those visited byf.-IRTS. The second functiof, also shows an improvement on two
thirds of instances, but with a smaller amplitude (recak th-IRTS is equivalent tgf>-IRTS
in the first half of the search, during the first 500.000 itera).

5.4 Long-term Results and Comparison with the Best Algorithms

In this section, we provide detailed results (Table 3) withtaee evaluation functions for all
hard instances. For each instance, we perform 10 execuytaamsched from different random
colorings) and we report the success rate, as well as thageeomputing effort for finding
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a conflict-free coloring. We allow the algorithm a maximumméi limit of 10 hourst In the
coloring literature, it is a common practice to use time tgrf several hours; this is also the
case for many state-of-the-art algorithms from Table 4. &l@v, one should be aware that it is
difficult to make local search algorithms substantially i their empirical performance by
allowing more than one hour of running time (if there are gdats looping problems).

Graph k f1-RCTS f.-RCTS f»-RCTS
#Hits | #lters| Time || #Hits | #lters| Time || #Hits | #lters| Time
[/10]| [10° | [h] ||[/20]| [10° | [h] ||[/ 0] [10°] | [h]
dsjc500.1  [12 [[10/10] 96 | < I [[10/10] 64 [ < 1 [[10/10] 64 | <1
dsjc500.5 |48 || 1/10|1352(6.33 || 0/10| — | — || 0/10| — | —
dsjc500.9  |126|| 9/10 | 360 | 1.6710/10| 457 | 2.4 ||10/10| 466 | 2.5
dsjc1000.1 |21 |[10/10, 1 | <1 |/10/10 <3ill10/100 2 | <1
dsjc1000.5 |87 || 1/10| 873 | 7 | 0/10| — | — || 0/10| — | —
dsjc1000.9 |224| 4/10| 420 | 7.5 || 1/10| 321 | 5 | 3/10| 492 | 7.33
dsjr500.1c |85 || 5/10| 470 | 1.2 || /10| 7 |<i|110| 7 | <1
dsjr500.5 |122|| 7/10| 469 | 2.4 || 0/10| — | — || 0/10| — | —
r250.5 65 |[10/10] 99 | <1 ] 0/10) — | — ||0/10| — | —
r1000.5 237|| 2/10|1059| 75 || 0/10| — | — ||0/10| — | —
le450.15¢ |16 || 8/10| 11 | <% | 9/10| 17 | <1 | 910| 17 | <
le450.15d |16 [|10/10] 1 | < 7 |/10/10] <1 | < ||10/10] <1 | < 3
le450.25¢ |25 || 9/10| 621 | 1.1 || 6/10| 572 | 1.2 || 6/10| 203 | 1.2
1e450.25d |25 || 9/10| 937 | 2 || 2/10|1895| 4.5 || 2/10| 1895| 4.5
flat1000.76 |87 |/10/10| 290 | 2.3 ||10/10| 265 | 2 |/10/10| 265 | 2
flat300.28 |30 || 4/10|1183| 4.5 || 6/10 | 538 | 2.33|| 8/10| 737 | 3.1
latin_square|100|| 6/10 | 641 | 3 | 4/10|1005| 5 5/10| 1141| 5.5
C2000.5 162|| 4/10 | 237 | 3.63|| 1/10| 601 | 9.5 || 2/10| 477 | 8
C'4000.5 305|| 4/10| 88 |4.75| 2/10| 85 | 4.5 || 2/10| 98 | 5.5

Table 3: Detailed results of IRTS with a time limit of 10 hotwsall three evaluation functions.
f1-IRTS finds better solutions thafa-IRTS on25% of graphs and has a improved success rate
on anothe5% of graphs. The difference betweé¢nIRTS andf.-IRTS can only be visible on
instances that require more than 5 hours (the last thred giadl000.9).

The first two columns of Table 3 denote th&oloringinstance, i.e. the graph and the num-
ber of colorsk. For each evaluation function, we provide the success Gaki(hns 3,6,9) and
the average computation efforts needed to solve the instdne average number of iterations
in millions (Columns 4, 7, 10) and the average time in hours(@wis 5, 8, 11).

First, we observe thaf;-IRTS reaches bettér-colorings (i.e. with a smallek than f,.-
IRTS) for more thar25% of the instances—i.e. 5 graphs our of 19. Furthermore, werebs
that f,-IRTS obtains a success rate twice as good.d®TS for anotheR5% of graphs. Thus,
one can say that the new evaluation functj@rbrings important improvement on half of the
instances (i.e. 10 out of 19).

The most important progress can be observed on graph claibeslarge degree variation.
Indeed, on random geometrical grapfisIRTS can quickly (in less than one hour) reach upper

1We used a 2.8 GHz Xeon processor. The programs were writ@@m-nand compiled with the -O2 optimiza-
tion option—the gcc compiler, version 4.1.2 under Linux (leversion 2.6).
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bounds thatf.-IRTS did not find in 10 hours—see grap®50.5. Furthermorefl-IRTS solves

the difficult instanceds;r500.5, 122) in less than two hours and with a stable success rate. Ou
of the best fifteen algorithms from the literature (see aksold 4), this instance was previously
solved only by very few (much more sophisticated and vergm&calgorithms [27, 32, 26].
Similar observations apply ta000.5 or r250.5: to the best of our knowledge, IRTS is the first
local search capable of finding high quality upper boundstfese graphs.

The advantage of the evaluation functignover f. is less pronounced on certain graphs.
This is not very surprising, a%-IRTS diverges from/.-IRTS only in the second half of the
search, after 5 hours of computation. Consequently, theesaleported by/.-IRTS and f5-
IRTS are completely identical on instances that never regquore than 5 hours. By considering
now only the 4 instances that often require more than 5 haheslgst three ands;c1000.9),
one observes thgt has an improved success rate for 3 instances out of 4.

5.4.1 Direct comparison with state-of-the-art algorithms

Graph Local Search Algorithms Population-based Hybrid Algorithms Ants
IRTS llIs | Vns| Als | PCol| Vss | TS-Div/Int || Dcns| Hga | Hea | Amcol | Mmt | MCol | EvoDiv || Abac| ALSC
[7.30]] [1] | [9] | [3] | [19] (33] [29] | [14] | [15] | [17] |[27] | [26] | [32] (4] | [31]
2002 | 2003| 2008| 2008| 2008| 2010 1996| 1996| 1999| 2008 | 2008| 2010 | 2010 || 2008| 2009
dsjc500.1 12 12 — 13 12 12 12 — — — 12 12 12 12 13 12
dsjc500.5 48 49 49 50 | 48 | 48 48 49 49 48 48 48 48 48 50 48
dsjc500.9 126 126 — | 128 | 126 | 126 126 — — — 126 | 127 | 126 126 127 | 127
dsjc1000.1 21 — — | 21| 20 | 20 20 — | — | 20 20 20 | 20 20 21 20
dsjc1000.5 87 89 90 89 89 88 85 89 84 | 83 84 83 83 83 91 86
dsjc1000.9 224 — — | 230 | 225 | 224 223 226 | — | 224 | 224 | 224 | 223 | 223 229 | 225
r250.5 65 — — — 66 | — — 65 69 | — — 65 65 65 — —
7r1000.5 237 — — — | 248 | — — 241 | 268 | — — 234 | 245 237 - —
dsjr500.1c 85 —_ —_ —_ 85 85 —_ 85 85 | — 86 85 85 85 85 85
dsjr500.5 122 124 | — — | 126 | 125 — 123 | 130 | — 125 | 122 | 122 122 128 | 125
1e450.15¢ 16 15 15 | — 15 15 15 15 15 15 15 15 15 15 15 15
1e450.15d 16 15 15 | — 15 15 15 15 15 | — 15 15 15 15 — 15
le450.25¢ 25 26 — | — | 25| 26 25 25 | — | 26 26 25 | 25 25 26 26
1e450.25d 25 26 — — 25 26 25 25 | — — 26 25 25 25 26 26
flat300.28 30 31 31| — | 28 | 28 28 31| 33 | 31 31 31 | 29 29 - 29
f1at1000.76 87 —_ 89 | — 88 86 85 89 84 | 83 84 82 82 82 - 85
latin_square | 100 99 — | = = | = — 98 | 106 | — 104 | 101 | 99 98 100 -
C2000.5 162 — — | = = | — — 165 | 169 | — — — | 148 | 148 - -
C'4000.5 305 — — — — — — — | 313 | — — — 272 271 - —

Table 4: Upper bounds reached by IRTS (with a time limit of Dils) compared to those
reported by 15 state-of-the-art papers. Certain bounds €olamns 3-17 represent the best
performance of more than one algorithm, with very diversping conditions.

Table 4 contrasts the resuitsf IRTS with the best results of fifteen other algorithms (six
local search approaches, seven evolutionary hybrid d@lgos and two ant-based methods).
IRTS competes well with most previous local search methdadgaches three upper bounds
that were never found before with local search (on geonatgi@phs, seés;jr500.5, 71000.5,
or r250.5). Regarding the hybrid approaches, one should be awarehise tllgorithms out-
performmostlocal search methods @everalgraphs. For instance, af3;jc1000.5, all (recent)
hybrid methods reach upper bounds with 3-4 colors less thamxssting local search (except

2The colorings reported by IRTS are publicly available \atw. i nf o. uni v- angers. fr/ pub/
por unbel / graphs/irts/
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TS-Div/Int). The advantage of IRTS is that it is quite simale it can be directly employed as
a local optimizer in other hybrid algorithms (we alreadydiaedegree-based function in [32]).

6 Conclusions

This paper proposed two extensions of the classical Tabicl&amplate for vertex graph col-
oring: new well-informed evaluation functions and a simblg-effective tabu list. The new
functions integrate additional information related to graph structure (degrees of conflict-
ing vertices, forf;), or dynamic knowledge acquired along the search (freqasraf color
changes, forf;). The most important positive effect of the evaluation fimt f; can be ob-
served on the (geometrical) graphs with the largest degneation. Furthermore, the proposed
reactive tabu list completely eliminates the risk of loapindefinitely on plateaus; as such, TS
is effectively allowed to take profit from longer computingné.

Tabu Search is routinely used for graph coloring, both asadstlone algorithm, as well
as a local optimizer inside state-of-the-art hybrid methothis paper shows how integrating
new evaluation functions in Tabu Search can help it perfoetteb in both cases. Compared
to previous local search algorithms, IRTS is capable of figdieveral upper bounds that were
never reached before. Furthermore, the proposed TS estensould be profitably used by
the TS internal routine of any existing hybrid algorithmtlasir induced overhead is negligible
(see Sections 3.3 and 4).

Finally, let us comment that the idea of using artificial waformed evaluation functions,
although often partially overlooked, could be very useful meta-heuristics in general. A
carefully designed evaluation function, using probleraesfic knowledge, would permit to en-
hance our capacity of solving hard and large combinatopah@zation problems.
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