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Abstract. This paper presents a SVM-based local search (SVM-LS) ap-
proach to the problem of gene selection and classification of microarray
data. The proposed approach is highlighted by the use of a SVM classifier
both as an essential part of the evaluation function and as a “provider”
of useful information for designing effective LS algorithms. The SVM-LS
approach is assessed on a set of three well-known data sets and compared
with some best algorithms from the literature.

Keywords: Microarray gene expression, Feature selection, Local search,
Support vector machines.

1 Introduction

With the fast advances of DNA Microarray technologies, more and more gene ex-
pression data are made available for analysis. These data can be used for various
purposes, for instance, in classification of tissue samples using gene discriminator
between normal and cancer samples [612].

Gene expression data are known to be of very high dimensions (thousands of
gene expressions at least) with a small number of samples (typically under one
hundred). This characteristic, known as the “curse of dimensionality”, induces
a difficulty for classification and requires special techniques to reduce the data
dimensionality (gene selection) in order to obtain reliable predictive results.

Gene selection is a kind of feature selection [10], aiming at identifying a (small)
subset of informative genes from the initial data in order to obtain high clas-
sification accuracy. In the literature there are two main approaches for feature
selection: the filter approach and the wrapper approach.

In the filter approach [5], feature selection is performed without taking into
account the classification algorithm that will be applied to the selected features.
A filter algorithm generally relies on a relevance measure that evaluates the
importance of each feature for the classification task. A typical filter algorithm
ranks all the features according to their interestingness for the classification
problem and selects the top ranked features. The feature score can be obtained
independently for each feature, as it is done in [6] which relies on correlation
coeflicients between the class and each feature. The drawback of such a method
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is to score each feature independently and to ignore the relations between the
features.

In contrast, the wrapper approach selects a subset of features that is “opti-
mized” for a given classification algorithm. So the classification algorithm, that is
considered as a black box, is run many times on different candidate subsets, and
each time, the quality of the candidate subset is evaluated by the performance of
the classification algorithm trained on this subset. The wrapper approach con-
ducts a search in the space of candidate subsets. For this search problem, genetic
algorithms have been used in a number of studies, see e.g. [I2ITTI§]. Embedded
methods, a variant of the wrapper approach, use feature selection as a part of the
training process in which the learning algorithm is no more a simple black box.
One example of an embedded method is proposed in [7] with recursive feature
elimination using support vector machines (SVM-RFE).

In this paper, we present a Local Search approach guided by SVM which can
be considered as an embedded method. In this approach, a SVM classifier is
used not only to evaluate a candidate gene subset, but also to provide the local
search algorithm with useful information for its search operators. As we show in
the experimentation section, despite its simplicity, this SVM-based Local Search
(SVM-LS) approach allows us to obtain highly competitive results on three well-
known data sets when compared with some best algorithms from the literature.

2 SVM Classification and Gene Selection

It is common in wrapper approaches to use a classifier to evaluate the quality
of a proposed gene subset. SVM classifiers can be used for such a purpose. In
our SVM-based Local Search approach, a SVM classifier is used not only in the
evaluation function of gene subsets but also in the design of LS strategies. SVM
is thus a key component of our SVM-LS approach. For this reason, this section
recalls the main characteristics of SVM and explains how a feature selection
process can be guided by useful information provided by a SVM classifier.

2.1 Support Vector Machines

SVMs represent a class of state-of-the-art classifiers [4] that have been success-
fully used for gene selection and classification [7J13]. SVMs solve a binary classifi-
cation problem by searching a decision boundary that has the maximum margin
with the examples. SVMs handle complex decision boundaries by using linear
machines in a high dimensional feature space, implicitly represented by a kernel
function. In this work, we only consider linear SVMs because they are known to
be well suited to the datasets that we consider.

For a given training set of labeled samples, a linear SVM determines an op-
timal hyperplane that divides the positively and the negatively labeled samples
with the maximum margin of separation. A noteworthy property of SVM is that
the hyperplane only depends on a small number of training examples called the
support vectors, they are the closest training examples to the decision boundary
and they determine the margin.
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Formally, we consider a training set of n samples belonging to two classes; each
sample is noted {X;,y;} where {X;} is the vector of attribute values describing
the sample and y; the class label.

A soft-margin linear SVM classifier aims at solving the following optimization
problem:
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subject to y; (w-X; +b)>1—& and & >0,i=1,....n.

In this formulation, w is the weight vector that determines the separating
hyperplane; C is a given penalty term that controls the cost of misclassification
errors. To solve this optimization problem, it is convenient to consider the dual
formulation [4]:
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The decision function for the linear SVM classifier with input vector X is
given by: o(X) =w - X + b with w = Z?:l oy X and b=y, —w - X;.

The weight vector w is a linear combination of training samples. Most weights
a; are zero and the training samples with non-zero weights are the support
vectors. The maximum margin M is given by:

M:m (3)

2.2 Gene Ranking by SVM

As discussed in [7], the weights of a linear discriminant classifier can be used to
rank the genes for selection purposes. More precisely, in a backward selection
method, one starts with all the genes and removes iteratively the least informa-
tive gene. To determine the feature to be removed at each iteration, one considers
the gene that has the least influence on the cost function of the classification
process. For a linear SVM, the cost function is defined by ||w|[?. So given a
SVM classifier with weight vector w, one can define the ranking coefficient vector
c given by:

Vi, ci = (w;)? (4)

Intuitively, in order to select informative genes, the orientation of the sepa-
rating hyperplane found by a linear SVM can be used. If the plane is orthogonal
to a particular gene dimension, then that gene is informative, and vice versa. As
we show in the next section, the coefficient vector ¢ contains very useful ranking
information that can be used to design a dedicated LS strategy.
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3 SVM-LS for Gene Selection and Classification

In this section, we present our SVM-based LS approach for gene selection and
classification of Microarray data. We explain the basic ingredients and their
underlying rational. Our method begins by a pre-selection step where we use a
filter criterion (in our case, the BW ratio introduced in [5]) to obtain a group G,
of p (typically p > 75) top ranked genes. Then our SVM-LS approach is applied
to select, from G, a gene subset of smaller size (typically less than 20 genes).

3.1 Representation and Search Space

A candidate solution s = < s9,s¢ > is composed of two parts s and s¢ called
respectively gene subset vector and ranking coefficient vector [8]. The first part,
s9 = (g1,92..-gp), i1s a binary vector of fixed length p. Each g; € {0,1} (i =
1...p) corresponds to a particular gene and indicates whether or not the gene
is selected. The second part, s¢ = (¢1,¢2...¢p), is a positive real vector of fixed
length p and corresponds to the ranking coefficient vector ¢ (Equationd Section
22) of the linear SVM classifier. s¢ indicates thus for each selected gene the
interestingness of this gene for the SVM classifier.

Therefore, a solution represents a candidate subset of genes with additional
ranking information on each selected gene. The gene subset vector of a solution is
evaluated by a linear SVM classifier and the ranking coefficients obtained during
this evaluation will be used in our specialized LS strategies.

For the group G, of p pre-selected genes, the search space is given by the set
2 =2P (i.e. all the possible gene subsets of p genes).

3.2 Evaluation Function

Given a candidate solution s = < s9,s° >, the quality of s (more precisely, of
the gene subset part s7) is assessed by an evaluation function f according to two
criteria: the ability of s to obtain a good classification with this gene subset (C)
and the maximum margin (M) given by the SVM classifier (Equation [3)). More
formally, the evaluation function can be written as follows:

f(s) =< fc(s), fa(s) > (5)
where

— fel(s) is the classification accuracy of the SVM classifier using the set of
genes and applied to the given training data,

— fum(s) is simply the maximum margin of the SVM classifier, given by Equa-
tion B (Section 2T]).

Now given two candidate solutions s and s, it is possible to compare them:
f(s) is better than f(s'), denoted by f(s) > f(s'), if the following condition is
satisfied: f(s) > f(s') < fo(s) > fo(s') or fo(s) = fo(s') A farls) > Fic(s').

So the dominating criterion is the classification accuracy, ties are broken by
comparing the maximum margins, with a preference for a larger value (a larger
margin indicates a better discrimination between the two classes).



SVM-LS for Gene Selection and Classification of Microarray Data 503

3.3 Move and Neighborhood

One of the most important features of a local search algorithm is its neighbor-
hood. In a local search algorithm, applying a move operator mv to a candidate
solution s leads to a new solution s’, denoted by s’ = s ® mv. Let I'(s) be the
set of all possible moves which can be applied to s, then the neighborhood N (s)
of s is defined by: N(s) = {s @ mv|mv € I'(s)}.

In our case, the move is based on the drop/add operation which removes
a gene g; from the solution s and add another gene g;. Moreover, the move
operator is defined in such a way that it integrates semantic knowledges of the
gene selection and classification problem. More formally, let s =< s9, s¢ > with
s? = (g1, 92...9p) and s® = (c1, ¢2...cp), define:

—i= ATgMinj{cj|cj € s°Ae¢;j # 0}, i.e. i identifies the gene g; which has the
smallest ranking coefficient ¢; and thus is the least relevant gene,

— O ={jlg; € s9Ng; =0}, i.e. O is the set of non selected genes in the current
solution s

Then our move operator drops, from the current solution, g; (identified by the
above index ) which is the least informative gene among the selected genes
and adds a non selected gene g; (j € O). This can be formally written as:
mo(i,j) = (g::1 —0;g;: 0 —1).

Clearly, for two neighbor solutions s =< s9,s¢ > and s’ =< §'9,5'“ >, the
hamming distance between s9 and s'9 is exactly two. Moreover, one sees that
the size of this neighborhood is equal to |O| and bounded by p, the length of s.

3.4 Local Search Algorithms

Local search (LS) is a class of general and powerful heuristics methods [9]. For
our SVM-LS approach, we implemented three LS algorithms: steepest descent
(SD), Tabu Search (TS) and Iterative Local Search (ILS).

Steepest Descent (SD): Given the current solution s, the steepest descent
moves at each iteration to the best improving neighboring solution s’ € N(s)
such that f(s") > f(s) and Vs“ € N(s), f(s”) < f(s). Notice that SD needs no
parameter and stops when no improving neighbor can be found in the neighbor-
hood, at which point the last solution is the best solution found and corresponds
to a local optimum.

Tabu Search (TS): From the steepest descent SD, one can obtain a basic
TS algorithm by adding a tabu list (see below). At each iteration, the current
solution s is replaced by the best neighboring solution s’ that is not forbidden
by tabu list, i.e. s € N(s) such that Vs“ € N(s), f(s”) < f(s') and s’ ¢ S where
S is the set of solutions currently forbidden by tabu list. Notice that contrary
to the SD algorithm, the selected neighbor s’ may or may not be better than s.
The TS algorithm stops when a fixed maximum number of iterations is reached
or when all the moves become tabu.
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The main role of a tabu list is to prevent the search from cycling. In our case,
the tabu list is implemented as follows. Each time a move muw(i, j) is carried out,
i.e. gene g; is dropped and gene g; is selected, g; is recorded in the tabu list for
the next k iterations. Consequently, g; cannot be reselected during this period.
The value of k is determined experimentally and varies typically from k,,;, to
kmaz- Notice that such a tabu list does not forbid a newly selected gene g; to
be removed soon after its selection if its ranking coefficient is very weak.

Iterate Local Search (ILS): ILS uses a local search strategy (e.g. Descent or
TS) to reach a local optimum s*, at which point the search applies a perturbation
operator to the local optimum solution to allow further search progress. ILS can
be combined with any local search algorithm. Here, we consider the combination
with TS, denoted by ILS™® because this is the best combination we have found.
More precisely, ILST iterates two phases: a TS phase to reach a local optimum
s* and a perturbation to diversify the search. Our perturbation operator changes
the best local optimum s* in a controlled way and is based on the evaluation
function; the second to the fifth best neighbors are successively tried in order to
continue the search process. Otherwise the search stops.

3.5 Initial Solution

The initial candidate solution can be randomly created with a risk of being of bad
quality. For this reason, we devise a simple way to obtain a “not-too-bad” initial
solution as follows. We generate randomly [ solutions such that the number of
genes in each solution varies between p % 0.9 and p % 0.6 (p being the number of
pre-selected genes by a filter, see the beginning of Section Bl), from which the
best solution according to the evaluation function (see Equation [ is taken.

3.6 The General SVM-LS Procedure

The general SVM-LS procedure is shown in Algorithm [ It is composed of
two repeated main phases: SVM-LS phase for gene selection (Line 7) and gene
reduction phase (Line 8). At line 7, a SVM-LS algorithm (with any of the above
LS algorithms) is used to search for the best gene subset of a given size. After
each LS phase, gene reduction is achieved by deleting the least relevant gene
(i.e., the gene with the least ranking coefficient) from the best gene subset given
by the SVM-LS phase, from which point a new SVM-LS search is re-applied.
This two-stage process stops when removing the least interesting gene worsens
the classification accuracy on the training data.

4 Experimental Results

In this section we present two comparative studies. The first compares the differ-
ent LS algorithms presented in Section Bt SD, TS, ITS”S. In the second study,
we compare the results of our SVM-LS approach with SVM-RFE as well as three
other state-of-the-art algorithms from the literature.
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Algorithm 1. General SVM-LS Procedure

Input: Gp, i.e. a group of p pre-selected genes with a filter

Output: s9, the set of selected (most informative) genes

Generate an initial set of genes s? (section B35

repeat
Evaluate s? using the SVM classifier on the training data (section [2]) and fill s°
s = (s9,s°) /* s is the current solution */
s= SVM-LS(s) /* LS phase: apply SVM-based local search to improve current
solution s = (s9,s°) */

8: 9 =59 —{gi} /* Gene reduction phase: remove the least informative gene from

the best solution found by SVM-LS phase */
9: until (stop condition is verified)

4.1 Data Sets

We applied our approach on three well-known datasets that concern colon cancer,
leukemia and lymphoma. These data sets have largely been used for benchmark-
ing feature selection algorithms, for instance in [T4T3ITT].

The colon cancer data set, first studied in [2], contains 62 tissue samples (22
normal and 40 anomal), each with 2000 gene expression values. The data set is
available at http://www.molbio.princeton.edu/colondata

The leukemia data set, first studied in [6], consists of 72 tissue samples, each
with 7129 gene expression values. The samples include 47 acute lymphoblastic
leukemia (ALL) and 25 acute myeloid leukemia (AML). The original data are
divided into a training set of 38 samples and a test set of 34 samples. The data
set is available at http://www-genome.wi.mit.edu/cancer/

The lymphoma data set, first analyzed in [I], is based on 4026 variables describ-
ing 96 observations (62 and 34 of which are respectively considered as abnormal
and normal). The data set is available at http://www.kyb.tuebingen.mpg.de/-
bs/people/weston /10

Notice that prior to running our method, we apply a linear normalization
procedure to each data set to transform the gene expressions to mean value 0
and standard deviation 1.

4.2 Protocol for Experimentations and Comparison Criteria

To avoid the problem of selection bias which leads to over-optimistic estimations,
we adopt the experimental protocol suggested in [3]. For each SVM-LS algorithm
and each data set, 50 independent experiments are carried out. For each of these
experiments, the data set samples are first randomly partitioned into a training
set L and a testing set T' ((L, T') respectively fixed at (50,12), (38,34) and (60,36)
for “Colon”, “Leukemia” and “Lymphoma”). The training set L is then used by
the SVM-LS algorithm to determine the best gene subset G (smallest size and
highest classification accuracy on the samples of L). Finally, the selected gene
subset G is evaluated on the testing samples of 7" using the SVM classifier. The
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resulting classification accuracy and the size of G are used for calculating the
averaged statistics.

For comparison, we use two criteria: averaged classification accuracy (Acc) on
the testing samples and the averaged number of selected genes (NG) over these
50 independent experiments. Computing time is not reported, but let us mention
that one experiment on one data set takes about 20 minutes on a typical PC
(Pentium Centrino Duo, 1.2MB).

4.3 Results and Comparisons

Comparison of the Three LS Algorithms. Table[l shows the results of our
SVM-LS approach using the three different LS algorithms: SD, TS and ILSTS.
One can rank these LS algorithms as follows: ILS” > TS > SD (> means
“better than”). Indeed, ILST® performs globally the best even if for Leukemia,
SD obtains a better prediction accuracy (92.52% against 91.94%), but requires
more genes (6.04 against 3.14). The results of TS are also globally good, followed
by the simple descent. Comparing these results with those showed in the next
two tables will allow us to better assess the interest of the SVM-LS approach.

Table 1. Comparison of SVM-LS algorithms based on the classification accuracy on
test set (Acc) with standard deviation and the number of selected genes (NG) with
standard deviation

SD TS s 7%

Dataset Acc NG Acc NG Acc NG
Colon 84.84%+9.17% [15.32+1.83[85.50% +8.21%[11.16+2.81|87.00%+7.36%|08.20+2.09
Leukemia [92.52%+3.42%|06.04+£1.38(92.47%+3.36%|04.74+1.32| 91.94%+4.06% | 3.14+1.08
Lymphome| 92.11%+2.20% |17.04+2.44|92.44%+1.86%(14.32+2.21|95.44%+2.15%|12.46+1.58

Table 2. Results of SVM-RFE algorithm

Colon Leukemia Lymphoma
Acc [ NG Acc [ NG Acc [ NG
SV M — RFE|85.16%%8.11%[18.32£6.07]92.35%£3.25%|4.82+2.39[92.33%£3.96%]16.40£2.51

Comparison with SVM-RFE. The proposed approach is somewhat related
to the well-known SVM-RFE approach [7]. With SVM-RFE, one starts with all
features and remove iteratively the “least relevant” feature (according to the
SVM classifier). Notice that SVM-RFE is fully greedy; a wrongly eliminated
gene can never be reselected afterwards. Table [2] shows the results of SVM-RFE
obtained under the same experimental conditions. Comparing Tables 2] and [,
one observes that SVM-RFE performs better than the pure decent algorithm,
but is outperformed by TS and ILST®. This confirms the interest of using LS to
explore the search space of a fixed size before gene elimination.

Comparison with State-of-the-art Approaches. Table[3]shows the results
of three other best performing selection algorithms [I4T3I1T]. We have chosen
these references because they use the same or similar experimental protocol to
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Table 3. Comparison with three other SVM-based based selection methods (the sym-
bol - indicates that the paper gives no information for the concerned dataset)

ie ] m
Dataset Acc NG Acc NG Acc NG

Colon 85.83%+2.0%| 20 [82.33%+9%| 20 |81.00%+8.00% |4.4441.74
Leukemia - - - 190.00%+6.00%|3.1641.00
Lymphome|91.57%+0.9%| 20 [92.28%+4%| 20 |93.00%44.00%|4.42+2.46

avoid selection bias. Once again, one observes that the SVM-LS approach (in
particular with TS and ILS”®) is very competitive since its results often dom-
inate these reference methods with a higher classification accuracy and smaller
set of selected genes.

5 Conclusion

In this paper, we have presented a SVM-based Local Search approach for gene
subset selection and classification with two distinguished and original features.
First, the evaluation function of our LS algorithms is based not only on the
classification accuracy given by the SVM classifier, but also on the its maxi-
mum margin. Second, the ranking information provided by the SVM classifier
is explicitly exploited in the LS strategies. These two features ensure that the
SVM-LS approach is fully dedicated to the targeted problem and constitute its
basic foundation.

Using an experimental protocol that avoids the selection bias problem, the
SVM-LS approach is experimentally assessed on three well-known data sets
(Colon, Leukemia and Lymphoma) and compared with four state-of-the-art gene
selection algorithms. The experimental results clearly show that the proposed
approach competes very well with the reference methods in terms of the classi-
fication accuracy and the number of selected genes. The proposed approach has
an additional and important advantage over the filter methods and SVM-RFE.
Indeed, SVM-LS allows us to generate multiple gene subsets of high quality,
which can be used for further analysis and data mining purpose.

This study shows that local search constitutes a simple, yet powerful approach
for gene selection and classification of microarray data. Its effectiveness depends
strongly on how semantic information of the given problem is integrated in its
basic operators such as neighborhood and evaluation function. Finally, it is clear
that the proposed approach can easily be combined with other ranking and
classification methods.
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