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Abstract. The problem of curriculum-based course timetabling is stud-
ied in this work. In addition to formally defining the problem, we present
a hybrid solution algorithm (Adaptive Tabu Search–ATS), which is
aimed at minimizing violations of soft constraints. Within ATS, a new
neighborhood and a mechanism for dynamically integrating Tabu Search
with perturbation (from Iterated Local Search) are proposed to ensure a
continuous tradeoff between intensification and diversification. The per-
formance of the proposed hybrid heuristic algorithm is assessed on two
sets of 11 public instances from the literature. Computational results
show that it significantly improves the previous best known results on
two problem formulations.
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1 Introduction

In recent decades, timetabling has become an area of increasing interest in the
community of both research and practice [11]. In essence, timetabling consists
of assigning a number of events, each with a number of features, to a limited
number of timeslots and rooms subject to certain (hard and soft) constraints.
In this paper, we consider one of the problems in the category of educational
timetabling–the so-called curriculum-based course timetabling (CCT), the for-
mulation of which was recently proposed as the third track of the Second Inter-
national Timetabling Competition (ITC–2007)1. This competition aims to close
the gap between research and practice within the area of educational timetabling.

The general course timetabling problem is known to be difficult and has been
proved to be NP-hard [4]. In this context, exact solutions would be only possible
for problems of limited sizes. Instead, algorithms based on metaheuristics have
shown to be a highly effective approach to this kind of problems (see e.g. [1,3,15]).

� This algorithm is ranked the second place for the track 3 of the Second International
Timetabling Competition (ITC–2007).

1 http://www.cs.qub.ac.uk/itc2007/
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Interested readers are referred to [9] for a comprehensive survey of the automated
approaches for university course timetabling presented in recent years.

In this paper, we present a hybrid Adaptive Tabu Search (ATS) algorithm for
the CCT problem. We introduce a combined use of two neighborhoods includ-
ing an original and very powerful double Kempe chain neighborhood. Moreover,
we devise a mechanism for dynamically combining TS with a perturbation op-
erator in order to adaptively escape from local optima and to automatically
make more intensive search when promising regions of the search space are vis-
ited. Consequently, it ensures a continuous tradeoff between intensification and
diversification for the search process. The performance of the ATS algorithm
is assessed with the two sets of 11 instances from the literature, showing very
competitive results.

The rest of this paper is organized as follows. Section 2 describes the first
mathematical formulation of the CCT problem. Section 3 presents the hybrid
heuristic–Adaptive Tabu Search algorithm. In Section 4 computational experi-
ments are carried out. Conclusions are drawn in the last section.

2 Curriculum-Based Course Timetabling

2.1 Problem Description

The CCT problem of the ITC–2007 consists of scheduling all lectures of a set of
courses into a weekly timetable, where each lecture of a course must be assigned a
period and a room in accordance with a given set of constraints. In this problem,
all hard constraints must be strictly satisfied and the number of soft constraint
violations should be minimized. A feasible timetable is one in which all lectures
have been scheduled at a period and a room, so that the hard constraints are
satisfied. The four hard constraints H1∼H4 and four soft constraints S1∼S4 are
defined as follows:

• H1. Lectures. All lectures of a course must be scheduled to a distinct period
and a room.

• H2. Room Occupancy. Any two lectures cannot be assigned in the same
period and the same room.

• H3. Conflicts. Lectures of courses in the same curriculum or taught by the
same teacher cannot be scheduled in the same period, i.e., any period cannot
have an overlapping of students or teachers.

• H4. Availability. If the teacher of a course is not available at a given period,
then no lectures of the course can be assigned to that period.

• S1. Room Capacity. For each lecture, the number of students attending
the course should not be greater than the capacity of the room hosting the
lecture.

• S2. Room Stability. All lectures of a course should be scheduled at the
same room. If this is impossible, the number of occupied rooms should be as
few as possible.
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• S3. Minimum Working Days. The lectures of a course should be spread
into the given minimum number of days.

• S4. Curriculum Compactness. For a given curriculum a violation is
counted if there is one lecture not adjacent to any other lecture belong-
ing to the same curriculum within the same day, which means the agenda of
students should be as compact as possible.

We present below a first mathematical formulation of the problem which is
missing in the literature.

2.2 Problem Formulation

The CCT problem consists of a set of n courses C = {c1, c2, . . . , cn} to be
scheduled in a set of p periods T = {t1, t2, . . . , tp} and a set of m rooms R =
{r1, r2, . . . , rm}. Each course ci is composed of li lectures (of one timeslot) to be
scheduled. A period is a pair composed of a day and a timeslot and p periods
are distributed in d week days and h daily timeslots, i.e., p = d × h. In addition,
there are a set of s curricula CR = {cr1, cr2, . . . , crs} where each curriculum crk

is a group of courses that share common students.
For the solution representation, we chose a direct solution representation to

make things as simple as possible. A candidate solution consists of p×m matrix
X where xi,j corresponds to the course label assigned at period ti and room rj .
If there is no course assigned at period ti and room rj , then xi,j = −1. With this
representation we assure that there will be no more than one course assigned
to a room in any period, meaning that the second hard constraint H2 is always
satisfied. For courses, rooms, curricula and solution representation X , a number
of notations and definitions are presented in table 1.

Table 1. Table of symbols and variables

Symbol Description
stdi the number of students attending course ci

li the number of lectures of course ci

tci the label of the teacher instructing course ci

mwdi the number of minimum working days of course ci

capj the capacity of room rj

crk the kth curriculum including a set of courses {ck1, . . . , ckv}
unai,j whether course ci is unavailable at period tj . unai,j = 1 if it is unavailable, unai,j = 0

otherwise
xi,j the label of the course assigned at period ti and room rj

nri(X) the number of rooms occupied by course ci for a candidate solution X
ndi(X) the number of working days that course ci takes place at for a candidate solution X
crak,i(X) crak,i(X) = 1 if one lecture of any course in curriculum crk is scheduled at period ti,

crak,i(X) = 0 otherwise.

Given these notations, we redescribe the CCT problem in a formal way for a
candidate solution X . The four hard constraints and four soft constraints are:

• H1. Lectures. ∀ck ∈ C, ∑

i,j

slk(xi,j) = lk
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slk(xi,j) =
{

1, if xi,j = ck;
0, otherwise.

• H2. Room Occupancy. this hard constraint is automatically satisfied in
our solution representation.

• H3. Conflicts. ∀xi,j , xi,k ∈ X, xi,j = cu, xi,k = cv,

(∀crq , cu /∈ crq ∨ cv /∈ crq) ∧ (tcu �= tcv)

• H4. Availability. ∀xi,j ∈ X, xi,j = ck,

unak,i = 0

For the four soft constraints, their penalty costs are represented as:

• S1. Room Capacity. ∀xi,j ∈ X, xi,j = ck,

frc(xi,j) =
{

α1 · (stdk − capj), if stdk > capj;
0, otherwise.

• S2. Room Stability. ∀ci ∈ C,

frs(ci) = α2 · (nri(X) − 1)

• S3. Minimum Working Days. ∀ci ∈ C,

fmd(ci) =
{

α3 · (mwdi − ndi(X)), if ndi(X) < mwdi;
0, otherwise.

• S4. Curriculum Compactness. ∀xi,j ∈ X, xi,j = ck,

fcc(xi,j) = α4 ·
∑

crq∈CR

c crk,q · isoq,i(X)

where

c crk,q =
{

1, if ck ∈ crq;
0, otherwise.

isoq,i(X)=
{
1, if (i%h = 1 ∨ craq,i−1(X) = 0)∧(i%h = 0 ∨ craq,i+1(X) = 0);
0, otherwise.

% is the modulo operator. One observes that in S4 the calculation is only
limited within the same day. isoq,i(X) = 1 means that there is no any course in
the curriculum crq scheduled adjacent (before or after) to the timeslot i%h in the
[i/h]th day (h denotes the total number of timeslots per day). More specifically,
curriculum crq does not appear before (after) period ti means that ti is the first
(last) timeslot of a working day or crq does not appear at ti−1 (ti+1).

α1, α2, α3 and α4 are the unit penalty point for each of the soft constraints.
Notice that α1∼α4 are fixed in the problem formulation and should not be
confused with the penalty parameters used by some solution procedures. In
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the literature, there are two versions of the CCT—old version and ITC–2007
competition version. We call them formulation I and II respectively. The old
version ignores the second soft constraint S2 and fixes the values of α1∼α4 as:

α1 = 1, α2 = 0, α3 = 5, α4 = 1

The competition version used in ITC–2007 sets α1∼α4 as:

α1 = 1, α2 = 1, α3 = 5, α4 = 2

With the above formulation, we can then calculate the total soft penalty cost for
a given candidate feasible solution X according to the cost function f defined
in Eq. (1). The goal is then to find a feasible solution X that minimizes the
following function.

f(X) =
∑

xi,j∈X

frc(xi,j) +
∑

ci∈C

frs(ci) +
∑

ci∈C

fmd(ci) +
∑

xi,j∈X

fcc(xi,j) (1)

3 Hybrid Heuristic Algorithm for CCT

The basic idea of our hybrid heuristic algorithm is to combine the advantageous
features of Tabu Search (TS) [8] and Iterated Local Search (ILS) [10]. Similar
to the idea of [13], we devise in this work an Adaptive TS algorithm whose
components and mechanisms are described in the following subsections.

TS is based on the belief that intelligent searching should be systematically
based on adaptive memory and learning. TS can be used with both long and
short computing budgets. In general, long computing budgets would lead to
better results. However, if the total computation time is limited, it would be
preferred to combine short TS runs with some robust diversification operators.

Interestingly, ILS provides such diversification mechanisms to guide the search
to escape from a local optimum and move towards new regions in the solution
space. When the best known solution cannot be improved any more using the
TS algorithm, we employ a penalty-guided perturbation operator to destruct the
obtained local optimum.

Note that starting from an empty timetable, we generate first an initial feasible
solution by means of a graph coloring greedy heuristic. Because of the page limit,
the details of this greedy heuristic are omitted here. We simply mention that for
all the tested instances, this greedy heuristic can easily obtain feasible solutions.
Once a feasible timetable that satisfies all the hard constraints is reached, our
ATS algorithm is used to minimize the soft constraint cost function (Eq. (1))
without breaking hard constraints any more. Therefore, the search space of our
ATS algorithm is limited to the feasible timetables.

One interesting issue concerns the influence of the initial solution on the final
solution reached by ATS. Experimentations (not reported here) show that ATS
is not sensitive to the quality of the initial solution.
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3.1 Neighborhood Structure

In a neighborhood search procedure, applying a move mv to a candidate solution
X leads to a new solution denoted by X

⊕
mv. Let M(X) be the set of all possible

moves which can be applied to X and does not create any infeasibility, then the
neighborhood of X is defined by: N(X) = {X

⊕
mv|mv ∈ M(X)}. For the CCT

problem, we use two distinct moves denoted by SimpleSwap and KempeSwap. Re-
spectively, two neighborhoods denoted by N1 and N2 are defined as follows.

Neighborhood N1: A SimpleSwap move consists in exchanging the hosting
periods and rooms assigned to two lectures of different courses. Applying the
SimpleSwap move to two different courses xi,j and xi′,j′ for the solution X
consists in assigning the value of xi,j to xi′,j′ and inversely the value of xi′,j′ to
xi,j . Note that moving one lecture of a course to a free position is a special case
of the SimpleSwap move where one of the swapping lectures is null and it is also
included in our neighborhood N1.

Neighborhood N2: Our KempeSwap move is defined by interchanging two
Kempe chains. If we focus only on courses and conflicts, each problem instance
can be seen as a graph G where nodes are courses and edges connect courses
with students or teacher in common. In a feasible timetable, a Kempe chain is
the set of nodes that form a connected component in the subgraph of G induced
by the nodes that belong to two periods. A KempeSwap produces a new feasible
assignment by swapping the period labels assigned to the courses belonging to
two specified Kempe chains. Once courses have been scheduled to periods, the
room assignment can be done by solving a bipartite matching problem [15,16]. In
this paper, we implement an exact algorithm–the augmenting paths algorithm
introduced in [15,16].

More formally, let K1 and K2 be two Kempe chains in the subgraph with re-
spect to two periods ti and tj , a KempeSwap produces an assignment by replacing
ti with (ti\(K1∪K2))∪(tj∩(K1∪K2)) and tj with (tj\(K1∪K2))∪(ti∩(K1∪K2)).
For instance, figure 1 depicts a subgraph deduced by two periods ti and tj
and there are four Kempe chains: Ka = {c1, c2, c7, c8, c10}, Kb = {c3, c6, c9},
Kc = {c4, c11, c12} and Kd = {c5}. Then, if we swap two Kempe chains Kb

and Kc, a KempeSwap produces an assignment by moving {c3, c4, c6} to tj and
{c9, c11, c12} to ti.

It is noteworthy to notice that our double Kempe chains interchange can be
considered as a generalization of the single Kempe chain interchange known in
the literature. In the previous definition of single Kempe chain neighborhood,
each move concerns only one connected component, i.e., one of the two Kempe
chains in our definition is empty [3,2,5,12]. Formally, it means replacing ti with
(ti\K) ∪ (tj ∩ K) and tj with (tj\K) ∪ (ti ∩ K) where K is the non-empty
Kempe chain [3,2,5,12]. Consequently, the single Kempe chain interchange is a
special case of our KempeSwap move and it is included in our neighborhood N2.
Although not mentioned in this paper, a detailed analysis and comparison of
those and other neighborhoods is conducted, showing the efficiency of the newly
proposed double Kempe chains neighborhood.



268 Z. Lü and J.-K. Hao

Fig. 1. Kempe chain illustrations

3.2 TS Using a Combined Neighborhood

The basic search engine of our ATS algorithm is of course based on TS. The
TS procedure exploits the two neighborhoods N1 and N2 in a token-ring way
[7]. More precisely, we start the TS procedure with one neighborhood. When
the search ends with its best local optimum, we restart TS from this local op-
timum, but with the other neighborhood. This process is repeated until no im-
provement is possible and we say a TS phase is achieved. In our case, the TS
procedure begins from the basic neighborhood N1 and then neighborhood N2:
N1→N2→N1→N2....

Within TS, a tabu list is introduced to forbid the previously visited moves.
At each iteration, a best non-tabu move mv is applied to the current solution
X even if X ′ = X

⊕
mv does not improve the solution quality. In our TS,

when moving one lecture from one position (period-room pair) to another (N1),
or from one period to another (N2), this lecture cannot be moved back to the
original position (N1) or period (N2) for the next tt iterations (tt is called tabu
tenure). Tabu tenure tt of a lecture x is tuned adaptively according to the current
solution quality f and the frequency of the move freq(x), i.e.

tt(x) = f + ϕ · freq(x)

where ϕ is a parameter that lies in [0, 1]. The aspiration criterion accepts a tabu
move if it improves the current best result or the set of non-tabu moves is empty
in the current neighborhood. The TS procedure based on each neighborhood
stops when the best solution cannot be improved within a given number of steps
(denoted by θ) and we call this number the depth of TS. The basic TS procedure
is described in algorithm 1:
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Algorithm 1. Tabu Search procedure: TS(X0,θ)
1: //X0 is the feasible initial solution
2: //θ is the depth of TS
3: repeat
4: X∗ = TSN1(X0) based on N1 with depth of TS θ

5: X∗′
= TSN2(X

∗) based on N2 with depth of TS θ/3
6: X0 = X∗′

7: until (no improvement is reached)

Because of the high computational effort in neighborhood evaluation of N2,
TS uses a much smaller depth (empirically fixed at θ/3) (line 5) when N2 is
used. Note that the token-ring search based on TS stops when no improvement
is possible. At this point, a TS phase is finished.

3.3 Perturbation

When a Tabu Search phase terminates, we employ a perturbation operator to
destruct the reached local optimum in order to restart a new TS phase from this
perturbed solution. Our perturbation operator consists of randomly selecting a
given number of SimpleSwap or KempeSwap moves, where at least one of the
moved lectures belongs to the first k highly-penalized ones. Specifically, when
the current TS phase terminates, all the lectures are ranked in a non-increasing
order according to their soft costs involved. Then, a certain number of lectures are
selected from the first k-ranked (highly-penalized) ones. Notice that constraining
the choice to highly-penalized lectures is essential because it is these lectures that
contribute strongly to constraint violations (and the cost function).

Obviously, the perturbation strength (denoted by γ) is one of the most impor-
tant ingredients of ILS and determines the quality gap between the two solutions
before and after perturbation. In our case, γ is adaptively adjusted and takes
values in an interval [γmin, γmax] (set experimentally γmin = 4, γmax = 15). For
acceptance criterion in the perturbation process, we use a strong exploitation
technique, i.e., only better solutions are accepted.

3.4 Combination of TS with Perturbation

The depth of TS θ and the perturbation strength γ are two essential parameters
which control the behavior of the ATS algorithm. On the one hand, a greater
θ value ensures a more intensive search. On the other hand, greater γ corre-
sponds to more possibility of escaping from the current local minimum. In order
to get a continuous tradeoff between intensification and diversification, we de-
vise a mechanism to dynamically and adaptively adjust these two important
parameters according to the historical search records. Note that in this paper
the initial values of these two and other parameters are empirically set and they
are all instance-independent. It is possible that better solutions would be found
by using a set of instance-dependent parameters. However, our aim is to design
a robust solver which is able to solve efficiently a large panel of instances.



270 Z. Lü and J.-K. Hao

At the beginning of the search, we take a basic TS where the depth of TS θ is
a small positive number, say θ = θ0 (θ0 = 10). When TS cannot improve its best
solution, perturbation is applied to this best solution with a weak strength (γ =
γmin). When the search progresses, we record the number of TS phase iterations
(denoted by ξ) for which no improved solution has been found. The depth of
TS θ and the perturbation strength γ are dynamically adjusted as follows: When
the local minimum obtained by TS is promising, i.e., when it is close to the
current best solution (f ≤ fbest + 2), the depth of TS is gradually increased
to ensure a more and more intensive search until no improvement is possible,
i.e., θ = (1 + η)θ at each iteration (η = 0.6). Similarly, perturbation strength is
gradually increased so as to diversify more strongly the search if the number of
non-improving TS phase iterations increases.

In this paper, we use the timeout condition required by the ITC–2007 com-
petition rules (see next Section). Finally, our hybrid ATS algorithm is described
in algorithm 2.

Algorithm 2. Adaptive Tabu Search scheme
1: X0 is a feasible solution, X∗ is the best solution found so far
2: set ξ = 0, θ = θ0, γ = γmin

3: apply TS to X0 with depth of TS θ: X∗ = TS(X0, θ)
4: repeat
5: perturb X∗ with perturbation strength γ, get X ′

6: apply TS to X ′ with depth of TS θ, get X∗′

7: if the local minimum solution X∗′
is promising, i.e., f(X∗′

) ≤ f(X∗) + 2 then
8: repeat
9: call the TS procedure with a gradually increased θ: θ = (1 + η)θ

10: until no better solution is obtained
11: end if
12: if better solution X∗′

has been found, i.e., f(X∗′
) < f(X∗) then

13: accept X∗′
as the current best solution: X∗ = X∗′

14: reset to the basic TS (θ = θ0) with weak perturbation (γ = γmin)
15: else
16: reset to the basic TS: θ = θ0

17: ξ = ξ + 1
18: update the perturbation strength: γ = min{γmin + λ · ξ, γmax}
19: end if
20: until (timeout condition is met)

4 Experiments and Comparisons

4.1 Problem Instances and Experimental Protocol

To evaluate the efficiency of our proposed ATS algorithm, we carry out experi-
ments on two different data sets. The first set (4 instances named test1∼test4)
was previously used in the literature for the old version of the CCT problem [7].
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The second set (7 instances named comp01∼comp07) is from the Second Inter-
national Timetabling Competition mentioned in the introduction. All these 11
instances can be downloaded from http://tabu.diegm.uniud.it/ctt/index.php.

Our algorithm is programmed in C and compiled using Dev C++ on a PC
running Windows XP with 3.44GHz CPU and 2G RAM. To obtain our com-
putational results, our ATS algorithm is run 100 times on each instance with
different random seeds. The stop condition is just the timeout required by the
ITC–2007 competition rules. On our PC, this corresponds to 390 seconds.

4.2 Comparative Results and Discussion

Table 2 shows the results of the ATS algorithm on the 11 instances of the two data
sets for both formulations (see Section 2.2) as well as the previous best known
results available in the literature [7,6,14]. For the ATS algorithm, we indicate
the following information: the best score fmin, the average score fave and the
standard deviation σ over 100 independent runs. For the reference algorithms in
[7,6,14], only the best results fmin are available. It should be mentioned that the
stop conditions of the three reference algorithms are also the timeout condition
of the ITC–2007.

The algorithms in [7,6] are developed by the ITC–2007 organizers while that
in [14] is the winner solver of the ITC–2007 competition. The algorithms of
[7,6] employ a dynamic Tabu Search which allows unfeasible assignments during
the problem solving and the neighborhood is the simple one that moves one
lecture to a different period and/or a different room. One observes that this
neighborhood is just the subset of our basic neighborhood N1. The algorithm
in [14] is composed of a constructive phase, a Hill Climbing algorithm and the
Great Deluge technique and uses six specialized moves (neighborhoods).

From table 2, one observes that our ATS algorithm dominates the algorithms
of [7,6] for 8 out of 11 instances (in bold). For the 3 remaining cases whose
optimum is known, the optimum is reached by the ATS algorithm within several
seconds. Moreover, the standard deviations of ATS for all the tested instances
are small, showing its robustness.

If we compare ATS and the winner algorithm of the ITC–2007 in [14] on
the 7 competition instances (results not available in [14] for the 11 instances of
Formulation I and the first set of 4 instances of Formulation II), one observes
that the results of both algorithms are quite comparable. For these 7 instances,
ATS reaches better (respectively worse) results than the algorithm in [14] for 2
(respectively 3) instances, with equaling results for the 2 remaining instances.
Notice that ATS is ranked the second place for the track 3 of ITC–2007 2.

Let us mention that we also studied the behavior of the proposed ATS algo-
rithm concerning the influence of the penalty-guided perturbation mechanism
(Section 3.3) and the different adaptive mechanisms (Section 3.4). Moreover, a
detailed study was conducted to analyze several neighborhoods (including those
used in this paper) and the different ways of combining them. This analysis
showed that the newly proposed double Kempe chains neighborhood N4 and its
2 This result is available at http://www.cs.qub.ac.uk/itc2007/winner/finalorder.htm
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Table 2. Computational results and comparison on the 11 instances

Formulation I Formulation II
Instance ATS Heuristic Best in [7, 6] ATS Heuristic Best in [6] Best in [14]

fmin fave σ fmin fmin fave σ fmin

test1 212 212 0 213 224 229.5 1.8 234 —
test2 8 8 0 8 16 17.1 1.0 17 —
test3 35 35.3 0.3 36 73 82.9 4.1 86 —
test4 28 32.8 2.1 43 76 89.4 5.8 132 —

comp01 4 4 0 4 5 5 0 5 5
comp02 22 24.5 2.3 35 34 60.6 7.5 75 43
comp03 41 44.8 3.5 52 70 86.6 6.3 93 72
comp04 19 21.8 2.8 21 38 47.9 4.0 45 35
comp05 224 229.4 5.1 244 298 328.5 11.7 326 298
comp06 25 27.6 3.1 27 47 69.9 7.4 62 41
comp07 4 6.3 2.4 13 19 28.2 5.6 38 14

token-ring combination with the simple neighborhood N1 contribute greatly to
the efficiency of the ATS algorithm.

5 Conclusions

We have provided a mathematical formulation of the curriculum-based course
timetabling problem and presented a highly effective hybrid Adaptive Tabu
Search algorithm for solving this difficult problem. The effectiveness of the ATS
algorithm comes from a number of original features. First, we have introduced
the double Kempe chain neighborhood structure for the CCT problem. Sec-
ond, for our TS procedure, we have devised a combined exploitation strategy
of the Kempe chain neighborhood and the basic swap neighborhood. Third, we
have proposed a mechanism for adaptively combining TS and perturbation. The
computational results on 11 instances on two formulations show that our hybrid
ATS algorithm dominates the reference algorithms in [7,6] and competes very
well with the winner solver of the ITC–2007 in [14]. Let us comment that most
of the ingredients proposed in this paper remain general and would be directly
applicable or adapted to other combinatorial problems.
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