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Abstract

In this paper, we present an experimental study of local search for constraint solving.
For this purpose, we experiment with two algorithms based on Simulated Annealing (SA)
and Tabu Search (TS) for solving the maximal constraint satisfaction problem. These two
algorithms were tested on various large random instances going from 100 to 300 variables
with 10 to 30 values per variable. Experimental results show that the TS algorithm
dominates the SA algorithm on all the tested instances in terms of solution quality and
solving speed. We propose empirical arguments to explain the difference of performances.

Keywords: Local Search, Simulated Annealing, Tabu Search, Constraint Solving.

1 Introduction

Constraint solving either for satisfaction or optimization purpose occupies a very important
place in Artificial Intelligence (AI) and Mathematics. Informally, constraint solving consists
in finding assignment of values to variables while respecting some constraints and eventually
optimizing a cost function.

Constraint problems embody many well-known problems such as graph coloring and
satisfiability, and numerous practical applications related to resource assignment, planning,
scheduling and so on. Constraint problems are in general NP-complete or NP-hard. Therefore,
it is unlikely there exists any efficient solution for these problems. Given their theoretical and
practical importance, many efforts have been devoted to constraint solving in recent years.

A constraint solving method is either complete (exact for optimization) which guarantees
the completeness of the resolution or incomplete (non-exact for optimization) which sacrifices
the completeness to gain efficiency. A complete method for constraint satisfaction explores
systematically, though very often implicitly, the whole search space. To do this, most complete
methods construct in a step-by-step way a solution and backtrack in case of a failure [7, 17,
20, 25]. These methods use usually various heuristics to guide the choice of the next variable
to be instantiated and its value, and employ powerful filtering techniques to achieve different
levels of consistency. Similarly, exact methods for constraint optimization are usually based
on the branch-and-bound principle and try to eliminate heuristically as many as possible



solutions not leading to an optimum [4, 16, 26]. Complete and exact methods have in general
exponential time complexity. The solving time required by such a method may thus become
prohibitory for large size problems.

An incomplete (non-exact) method does not explore systematically the whole search space.
Instead, it tries to examine as rapidly as possible a large number of search points according
to a selective or random strategy. Local search (LS) is one of the most popular examples
of this family of methods. In general, these methods don’t guarantee the completeness of
the resolution, but require no exponential time complexity. They constitute in fact a very
interesting alternative for practical solving of many hard and large size problems.

Local search has been applied to particular classes of constraint problems such as graph
coloring [9, 1, 13] and the maximal satisfiability problem (Max-SAT) [6]. The work presented
in [18] was one of the first efforts in Al to apply local search (called “repair method” in [18])
to constraint satisfaction. The proposed “min-conflicts” heuristic realizes a descent following
a specific neighborhood. The work presented in [22] gives a successful application of the same
heuristic to the satisfiability problem. In [23], the “min-conflicts” heuristic is extended by
introducing the “random-walk” strategy which proves to be highly effective. Other extensions
and improvements of repair heuristics are reported in [19, 8, 27].

In this work, we are interested in practical solving of general constraint problems by two
well-known local search meta-heuristics: Simulated Annealing (SA) and Tabu Search (TS). In
particular, we develop SA and TS algorithms for the maximal constraint satisfaction problem.
We carry out empirical comparisons of these algorithms on large random instances and study
their behaviors. This work constitutes a continuation of the study reported in [11].

The paper is organized as follows. After the introduction of the constraint problems in
Section 2, we review briefly the principles of SA and TS in Section 3. We present the SA and
TS algorithms for constraint solving in Section 4. We give experimental results in Section 5
and we conclude the paper in the last section.

2 Constraint Problems

Constraint problems can be conveniently defined with the notion of constraint network. A
constraint network CN is a triplet < V, D, C > where:

o V ={V1,V5..V,} is a finite set of variables XS;
e D ={Dy,D;y...D,} is a finite collection of value domains associated to the variables;

o C ={Cy,C5...C},} is a set of constraints, each being a subset of the Cartesian product
of the domains of some variables specifying allowed (or forbidden) value combinations.

Given a constraint network CN < V, D, >, different problems can be defined. First, the
associated constraint satisfaction problem (CSP) consists in finding one or more assignments
of the values of D to the variables of V such that all the constraints of C' are satisfied
simultaneously! [17]. Second, the mazimal constraint satisfaction problem (MCSP) is an
optimization problem which looks for assignments which maximize the number of satisfied
constraints (or minimize the number of violated constraints) [4]. Finally, it is possible to as-
sociate to each constraint a weight and to define the weighted maximal constraint satisfaction
problem (WMCSP) for which we look for assignments which maximize the total weight of

!Given the incompleteness of local search, we are not interested in the problem of solubility.



satisfied constraints (or minimize the total weight of violated constraints). Clearly, a MCSP
is a WMCSP whose constraints have the same weight of 1.

In this work, we are essentially interested in the solving of MCSPs. It is easy to show that
the approach presented here is directly applicable to CSPs and WMCSPs.

3 Local Search

3.1 Introduction

Local search, or neighborhood search represents a very important class of incomplete, heuristic-
based methods for combinatorial optimization [21]. Traditionally, local search constitutes a
powerful tool to tackle well-known hard problems such as the Traveling Salesman Problems
and many applications. Over the last ten years, impressive progresses have been achieved
due to the discovery of a class of new meta-heuristics. These new meta-heuristics are based
on some general concepts and are applicable to a wide range of problems. SA and TS are
the most representative examples of these meta-heuristics. Thanks to these modern meta-
heuristics, one is able to deal with today much larger classical combinatorial problems as well
as many applications intractable before [15].

To apply local search to a problem instance (,f) defined by a search space S and a cost
function f, one needs first a neighborhood function.

¢ Definition: Let S be the set of the configurations of a given instance, a neighborhood
over S'is any function N : § — 25. A configuration s is a local minimum with respect

to Nif f(s) < f(s’) for all s’ € N(s).

A typical LS procedure begins with an initial configuration in .S, and carries out a series
of moves consisting in replacing the current solution by one of its neighbors, often taking into
account the cost function f. This iterative process stops and returns the best configuration
encountered when some predefined conditions are satisfied, for instance, when a fixed number
of iterations or moves is reached or a sufficiently good configuration is found. For a given
neighborhood, different LS methods employ different strategies to search the neighborhood.

3.2 Simulated Annealing

Simulated annealing is an advanced LS method which finds its inspiration from the physical
annealing process studied in statistical mechanics [14]. A SA algorithm repeats an iterative
repairing procedure which looks for better configurations while offering the possibility of
accepting in a controlled manner worse configurations. It is this second feature that allows
SA to escape from local optima.

More precisely, at each iteration, a neighbor s’ € N(s) of the current configuration s is
generated randomly and a decision is then taken to decide whether s’ will replace s. If s’ is
better than s i.e. A = f(s’) - f(s) < 0 (for minimization), we move from s to s’, otherwise,
—A)/t This probability depends on two factors: 1) the
degree of the degradation A (smaller the degradation, greater the accepting probability), and
2) a control parameter ¢ called temperature (higher temperatures lead to higher accepting

we move to s’ with the probability el

probabilities and vice versa).

The temperature is controlled by a cooling schedule specifying how the temperature should
be progressively reduced. Typically, a SA algorithm stops when a fixed number of non-
improving iterations is realized with a temperature or when a limit of iterations is reached.



The performance of a SA algorithm depends critically on the cooling schedule used. There
exist theoretical schedules guaranteeing asymptomatic convergence of the algorithm towards
an optimal solution. However, these schedules are not practicable since they require an infinite
computing time. This is why much simpler schedules are preferred in practice even if they
don’t guarantee an optimal solution. One example consists in decreasing the temperature by
steps, each temperature being kept for a certain number of iterations before being reduced. In
such a case, the cooling schedule is entirely defined by 2 functions for reducing the temperature
and for defining the number of iterations for each temperature.

3.3 Tabu Search

Tabu Search is another advanced LS meta-heuristic. Compared with SA where randomness
is extensively used, TS is based on the belief that intelligent searching should embrace more
systematic forms of guidance such as memorizing and learning. A typical TS algorithm begins
with an initial configuration s in S and then proceeds iteratively to visit a series of locally
best configurations following the neighborhood function N. At each iteration, a best neighbor
s’ € N(s)is sought to replace the current configuration even if s’is no better than the current
configuration in terms of the cost function. To avoid the problem of possible cycling and to
allow the search to go beyond local optima, TS introduces the notion of tabu list, one of the
most important components of the method.

A tabu list is a special short term memory that maintains a selective history H, composed
of previously encountered solutions or more generally pertinent attributes of such solutions.
A simple TS strategy based on this short term memory H consists in preventing solutions of
H from being reconsidered for next kiterations (k, called tabu tenure, is problem dependent).
Now, at each iteration, TS searches for a best neighbor from this dynamically modified
neighborhood N(H,s), instead of N(s)itself. Such a strategy prevents Tabu from being trapped
in short term cycling and allows the search process to go beyond local optima.

Tabu restrictions may be overridden under certain conditions, called aspiration criteria.
Aspiration criteria define rules that govern whether a solution may be included in N(H,s)
if the solution is classified tabu. One widely used aspiration criterion consists of removing
a tabu classification from a move when the move leads to a solution better than the best
obtained so far. Other forms of criteria may be defined over subsets of solutions that belong
to common regions or that share specified features. Aspiration constitutes an important
element of flexibility in TS.

There are other interesting and important techniques available such as intensification and
diversification [5]. In this paper, we show that a basic Tabu algorithm based on the above
mentioned elements may be very effective and robust.

TS uses an aggressive search strategy to exploit its neighborhood. Therefore, it is crucial
to have special data structures and techniques which reduce the effort of finding best moves
and allow fast updatings after a move.

4 SA and TS Algorithms for Constraint Solving

In order to present our SA and TS algorithms for constraint problems, we describe first the
common components of the two algorithms: problem encoding (configuration), search space,
neighborhood and cost function.



4.1 Common Components

For the constraint problems MCSP, CSP and WMCSP, a simple and natural configuration
structure can be defined as follows:

¢ Configuration: Given a constraint network < V, D, >, a configuration s is any
assignment defined by s = {< Vi,v; > | V; € Vet v; € D;}.

Therefore, the search space S'is composed of all the possible assignments of the network. It is
easy to see there are [[7, | D;| configurations in S. From this configuration, a neighborhood
function can be introduced as follows.

e Neighborhood: Let s be a configuration in S, the neighborhood N : S — 25 is such an
application that for each s € S, s’ € N(s)if and only if s and s’ are different at the value
of a single conflicting variable?.

Using this neighborhood, a neighbor in N(s) can be easily obtained by changing simply
the current value of a conflicting variable in s. A move can be thus characterized by the couple
< variable,value >. It should be clear that the size of this neighborhood varies during the
search according to the number of conflicting variables.

e Cost function: The cost function fto be minimized is defined as follows:

f(s) = zﬂ pi x x(C;), C; € C and p; = the weigth of C;
11f C; 1s vioalted
X(Ci) =

0 otherwise

For a MCSP (a WMCSP respectively), f(s) corresponds to the number (weighted number
respectively) of violated constraints by the configuration s. A CSP can then be simply dealt
with as a MCSP having a optimal cost of zero.

4.2 SA Algorithm

We present now the remaining components of the SA algorithm: configuration evaluation,
functions to determine temperatures and step lengths. The general algorithm is given in
Figure 1.

¢ Configuration evaluation: Each time a neighbor s’€ N{(s)is picked randomly, the cost
difference A = f(s’) - f(s) must be calculated. To do this, it is sufficient to re-examine
only the constraints containing the modified variable. This has a time complexity of
O(|V] x| D]) in the worst case. In practice, this complexity is much lower and bounded
by the density of the constraint network.

¢ Temperature function o: A temperature function allows a series of decreasing positive
values to be calculated. After having tested several functions, the following one seems
to be appropriate o: T — T where T C R is the set of possible temperatures. More
precisely, let ¢ € T be the current temperature, one calculates (at iteration 7) the next
temperature by o(t) = t+(1—4) where A is a control parameter. With this function, the
reduction rate of temperatures is slowed down progressively when the search progresses.

2 A variable is said to be conflicting if it is implied in some unsatisfied constraints.



e Step length function w: This function is defined as follows: w: I — L where [, C Z*
is the set of possible lengths. Formally, let [ be the current length, the next length is
determined by w(l) = [+ (14 £) where A is the same parameter as the one used in the
temperature function. Using this function, the number of iterations per temperature
increases progressively when the search progresses (when the temperature decreases).

SA Algorithm

begin

Pick randomly an initial configuration sg;
Determine an initial temperature tg;
Determine an initial step length Ig;

nb_iter — 0; nb_mv «— 0 ;

s« 5g; 8F «— 8,1 — g

L — 1o leount — 1

while ( (nbomv < maz) and (f(s) # 0) )
do
while (l.ount # 0) do

Pick randomly s’ € N(s)such as s’ # s;

A= f(s)- f(s);
if ((A<0)Or ((A>0)and (Probability e(=2)/* is verified) ) ) then
§— s
it (f(s) < f(s*) ) then
s* — s

nb_mv «— nb_mv + 1;

nb_iter «— nb_iter + 1;

L lcount — lcount - 1a
t —o(t);
l —w(l);
L lcount — la
output(s*);
end

Figure 1 : SA algorithm for constraint solving

Let us make three remarks about the SA algorithm. First, the algorithm stops when
the given number of moves (maz) is reached or when the cost value zero (0) is found (the
given instance is then satisfiable). Second, in order to decide if a worse neighbor is accepted,
a random number r € (0,1] is generated and then compared with the probability e(=2)/t,
Third, an iteration here does not always lead to a move. Indeed, the number of iterations for
a move increases in general when the temperature decreases and when there are fewer better
neighbors in the neighborhood.

4.3 TS Algorithm

We introduce now the components of the TS algorithms: configuration evaluation, tabu list,
and aspiration criterion. The general TS algorithm is given in Figure 2.

e Configuration evaluation: At each iteration, TS looks for a best neighbor in N(s)
to make a move. It is therefore essential to be able to evaluate the neighbors in N(s)
quickly. To do this, we use a technique inspired by [3]. This technique is based on a
|[V[*|D| matrix 6 where each element ¢[7, j] indicates the cost variation (called move



value) if the corresponding move < V;,v; > is made. Therefore, the cost f(s’) of any
s’ € N(s) can be obtained by a simple summation of the cost f(s) and the value of the
corresponding element in §. To obtain a best neighbor, it is now sufficient to search the é
matrix in time O(|N(s)|). After a move, the matrix can be updated in time O(|V|#D])
in the worst case.

e Tabu list: Recall that a move is characterized by a couple < V,v; >, V; and v; being
respectively a variable and a value for the variable. When a move replacing v; by v/ for
V; is carried out, the couple < V;,v; > is recorded and the value v; is forbidden to be
re-assigned to V; for the next k iterations®. In order to implement the tabu list, we use a
|V|*|D| matrix 7" where each element 7'[¢, j] corresponds to a possible move < V;,v; >.
Fach time a move < V;, v; > is realized, T'[¢, 7] is set to the current number of iterations
plus the tabu tenure k. In this way, it is very easy to know if a move is tabu or not by
simply comparing the current iteration with that recorded in T.

¢ Aspiration criterion: In some cases, a move classified tabu may prevent interesting,
non visited configurations from being considered. To overcome this problem, a simple
aspiration criterion is used: the tabu status of a move is removed if the move leads to a
neighbor configuration which is better than the best configuration ever found so far.

TS Algorithm

begin

Pick randomly an initial configuration sg;
nb_mv — 0;

5 «— 8g; 8* «— s

while ( (nb_mv < maz) and (f(s) #0) )
do
Pick a best neighbor s’ € N(s) characterized by < V;, v; >

among the non-tabu moves and the moves verifying the aspiration criterion ;
T[i,j] = nbomv + k ; /* move < V;,v; > becomes tabu, v; being the lost value */
s — s

Update the 6 matrix ;

it (f(s) < f(s*) ) then

s* — s;

| nb.mv — nb.mv 4+ 1;

output(s*);
end
Figure 2 : TS algorithm for constraint solving

Let us make two remarks about the TS algorithm. First, this algorithm uses the same
stop condition as SA. Second, contrary to SA, each TS iteration leads always to a move.

5 Experimentation and Results

In this section, we present experimental results of the SA and TS algorithms on the maximal
constraint satisfaction problem. We introduce first the test instances and the protocol used
to fix the parameters of the SA and TS algorithms.

INote that classifying < Vi, v; > tabu will forbid more than one configurations to be visited for the period
defined by the move’s tabu tenure k.



5.1 Tests

Test instances used in this work correspond to random, binary constraint networks generated
according to a standard model [24]. A network class is defined by < n,d, py, p; > which has
n variables, d values per variable, p;.n.(n — 1)/2 constraints taken randomly from n.(n —1)/2
possible ones (p; is called the density), and p,.d? forbidden pairs of values taken randomly
from d? possible ones for each constraint (p; is called the tightness). For each given class
< n,d,p1, p2 >, different instances can be generated using different random seeds.

A constraint network may be under-constrained, or over-constrained. A phase transition
in solubility occurs in between when the network is critically constrained [2, 10, 24]. Under-
constrained networks tend to be easily satisfiable (cost f = 0) and consequently not interesting
for optimization. Over-constrained networks are usually unsatisfiable (cost f > 0). Critically
constrained networks may or may not be satisfiable and are usually hard to solve from
a satisfaction point of view. These different regions are characterized by a factor called

constrainedness [12]:
n—1 1 ( 1 )
)
9 p1log,, 1 _ Ps

£ = 1 delimits under- (x < 1) and over- (k > 1) constrained networks. Networks with x ~ 1
corresponds to critically-constrained ones.

For the purpose of this work, only over- (k > 1) or critically (x = 1) constrained networks
are interesting. Note however that, from an optimization point of view, little is known about
the difficulty in finding optimal solutions in these regions.

K =

5.2 Parameter Tuning

It is well known that SA and TS are sensitive to parameter tuning. To obtain good values for
the parameters of SA and TS, the following protocol was followed. For each parameter, an
interval of reasonable size is first determined. Then a best value is sought for a limited number
of moves (50,000 moves in this study). This value is finally used for the final experiments
(200,000 moves).

The main parameter for the TS algorithm is the tabu tenure k. The first step of the
parametric study gave the interval of [5..50]. Different values of the interval with a step of 5
were then tested and the best one was finally selected. We also experimented several functions
to tune dynamically the tabu tenure. However, we have not found a satisfactory function.

The tuning for SA proved to be more complicated for SA since there are three inter-
dependent parameters: the initial temperature Zy, the initial step length Iy and the control
parameter A used in the temperature function and step function. For the tested instances, a
preliminary study showed that A = 1,000 was a stable value whatever the values taken by
and [lo. This value was thus used to tune tg and [j.

To tune #p and Iy, two intervals were first identified: [1..3] for ¢ and [1600..2500] for /,.
Then a number of selected combinations (limited to 15 in this study) were tested and the best
of them was finally chosen.

5.3 Results

We present in this subsection comparative results of SA and TS on random instances generated
according to the above mentioned model*. To carry out our experimental studies, both

*Our instance generator is available from the first author of the paper.



individual instances of different classes and different instances of a same class were used.
These instances belong to 3 groups characterized by the number of varibales in a constraint
network: 100, 200 et 300 with 10 to 30 values per variable.

Each algorithm was run 10 times on each instance, each run being given 200,000 moves.
The parameters of each algorithm were fixed according to the protocol explained above. Two
criteria are used to carry out our experimental studies:

e Quality : the quality of the final result, i.e. the minimal cost value in terms of
unsatisfied constraints, found by an algorithm;

¢ Running time: the CPU time used by an algorithm to carry out a given number
of moves (200,000 in this study). Note that using iterations instead of moves as a
comparison criterion will be unfair with respect to SA.

Table 1 presents comparative results of SA and T'S on 15 instances (generated with random
seed = 0) belonging to different classes of networks. (Results on different instances of a same
class are given below in Table 3.) These classes are chosen in such a way that their instances
are not easily satisfiable (f = 0) and the cost value of these instances is not too high (f <

30).

Problem K TS SA TS-SA
k cost to o cost
min. ave. max. min. ave. max. | min. | ave. | max.

100.10.15.25 | 0.93 | 30 | 0(4) 0.6  1(6) | 2 | 2000 | 0(3) 0.8  2(1) 0 | -02| -1
100.10.20.25 | 1.24 | 25 | 19(10) 19  19(10) | 2.5 | 2000 | 19(4) 20 22(1) | © -1 3
100.15.10.45 | 1.64 | 25 | 11(4) 11.7 13(1) | 2 | 2000 | 12(1) 13.3 14(4) | -1 | -1.6 | -1
100.15.20.30 | 1.3 | 20 | 25(1) 26.4  28(2) | 2.5 | 2000 | 26(3) 27.7 29(4) | -1 | -1.3 | -1
100.15.30.20 | 1.22 | 20 | 18(2) 19  20(2) | 2 | 2000 | 22(2) 23.7 25(3) | -4 | -4.7 | -5
200.18.20.13 | 0.96 | 25 | 4(3) 5.6  8(1) | 2 | 2200 | 5(4) 5.9 8(1) | -1 | 03 0
200.20.12.22 | 0.99 | 35 | 8(1) 9.6 11(2) | 2 | 2000 | 11(2) 12.3 14(1) | -3 | -2.7 | -3
200201814 | 09 | 15 | 0(1) 1.5  3(1) | 2.5 | 1800 | 2(5) 2.8 4(3) | -2 | -1.3 | -1
200202611 | 1 | 25 | 9(1) 11.6 14(1) | 2 | 2300 | 11(3) 13 15(1) | -2 | -1.4 | -1
200.20.20.15 | 1.08 | 30 | 21(1) 23.1  25(1) | 2.3 | 2000 | 23(2) 26.7 29(1) | -2 | -3.6 | -4
300.20.10.18 | 0.99 | 40 | 14(1) 17  20(1) | 2 | 2100 | 16(1) 184 21(1) | -2 | -1.4 | -1
300.25.18.10 | 0.92 | 25 | 2(2) 2.8  3(8) | 2 | 2000 | 2(4) 3.3  5(3) 0 | -05] -2
300.28.12.16 | 0.94 | 85 | 9(1) 11 12(3) | 2 | 2000 | 11(2) 12 14(3) | -2 | -1 2
300.30.16.12 | 0.9 | 25 | 4(1) 5.7  7(2) | 2.3 | 2000 | 4(1) 6.6  8(3) 0 | -1.1| -1
300.30.20.10 | 0.93 | 85 | 11(3) 12  14(1) | 2 | 2000 | 11(2) 13.3 18(1) | 0 | -1.3 | -4

Table 1 : Comparative results of SA and TS for 200,000 moves

Let us notice first that the instances used here are quite large compared with those usually
used in the literature. The optimal costs of these instances are unknown since they cannot
be solved to optimality by current exact algorithms due to their large size. Nevertheless, we
have an evident lower bound which is 0.

For each instance, we indicate the constrainedness x°. For both algorithms, we give the
value of each parameter used: tabu tenure £ for TS and the initial temperature o and initial
step length Iy for SA. We give then the minimum, average and maximum value of the cost
function with in parenthesis the number of times a value is reached (over 10 runs). The last
three columns indicate the difference between the cost function of TS and SA, in minimum,
average and maximum.

From the data of Table 1, we observe that the minimal cost found by TS is better (smaller)
than that of SA for 10 instances out of 15 with a difference of 1 to 4 for costs of 0 to 25. For

®These networks are all near the critical value 1 or greater than 1, implying that they are either critically
constrained or over-constrained.



4 instances out of 5 where SA finds the same minimal costs as TS does, TS finds them more
often. In terms of the value of average costs, TS gives always better results with a difference
of -0.2 to -4.7. Finally the maximal cost of TS is always smaller (better) than that of SA
except one instance with a difference of 1 to 5.

Figure 3 gives a more global picture of the difference of performance of the two algorithms
for an instance of the class 100.15.20.30. X-axis gives the number of moves from 0 to 200,000
with a step of 20,000 and Y-axis the best cost found by each algorithm at a given number of
moves. We observe that for a same number of moves, TS finds always better solutions than
SA. We observe also that to reach a given cost value, SA needs higher number of moves than
TS. These comments are valid for all the tested instances.
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Table 2 presents the CPU times (averaged over 10 runs) required by RS and TS to carry
out 200,000 moves. Times are indicated in seconds and obtained with a SPARC 5 station

(32Mb RAM and 75MHz)S.

Problem Mean running time | SA/TS |
TS SA
100.10.15.25 208 263 1.3
100.10.20.25 361 691 1.9
100.15.10.45 585 1546 2.6
100.15.20.30 844 2440 2.9
100.15.30.20 | 1020 3952 3.9
200.18.20.13 | 1668 2039 1.2
200.20.12.22 | 1717 3256 1.9
200.20.18.14 | 1697 2182 1.3
200.20.20.15 | 1904 6538 3.4
200.20.26.11 | 2084 3163 1.5
300.20.10.18 | 3013 6571 2.2
300.25.18.10 | 3522 7689 2.2
300.28.12.16 | 7339 15981 2.2
300.30.16.12 | 9074 13224 1.5
300.30.20.10 | 5682 10735 1.9

Table 2 : Average running times of SA and TS for carrying out 200,000 moves

From the table, we observe that the running times of TS are much smaller than those of
SA to carry out 200,000 moves, even if intuitively a TS iteration is more expensive than a SA
iteration. Roughly speaking, TS needs only half the time of SA to realize the same number of
moves. The main reason is the following. TS and SA require almost the same effort to carry

SBoth algorithms are programmed in C++.

10



out an iteration (c.f. Section 4.2 and 4.3). At the same time, a TS iteration leads always to a
move while this is not the case for SA. Indeed, not only a SA iteration doesn’t lead to a move,
the number of iterations needed for SA to make a move increases rapidly when the search
progresses. Figure 4 shows the typical evolution of the ratio iterations/moves of SA during
the first 200,000 moves. The figure is obtained for an instance of the class 200.20.20.15.

We observe that the ratio “iterations/moves” increases sharply following a logarithmic
function. For example, before 10,000 moves (x-axis), a move needs at most 5 iterations (y-
axis). However, this number reaches 20 at 70,000 moves and 31 at 190,000. In other words,
in order for SA to catch up TS for a move, SA must be at least several (> 5) times faster for
each iteration. However this seems very difficult since the time complexicity of a TS iteration
is already quite low thanks to the move-value matrix é (Section 4.3).

To finish this subsection, we show in Table 3 comparative results of 6 instances taken
randomly from a same class (the class 100.15.10.45, k = 1.64). The last number of each
instance indicates the random seed used to generate the given instance. We observe once
agian that TS finds better solutions for the same number of moves. Further experiments (data
not reported here) confirm also that TS needs fewer moves than SA to produce solutions of
the same quality.

Problem Tabu SA Tabu-SA
k cost to lo cost

min. ave. max. min ave. max. | min. | ave.
100.15.10.45.0 | 25 | 11(4) 11,7 13(1) | 2 | 2000 | 12(1) 13,3 14(4) | -1 | -1,6
100.15.10.45.1 | 25 | 10(2) 11.3 13(1) | 2 | 2000 | 12(1) 13.3 15(1) | -2 | -2
100.15.10.45.2 | 25 | 10(2) 11.2 12(4) | 2 | 2000 | 11(1) 12.9 15(1) | -1 | -1.7
100.15.10.45.3 | 25 | 8(1) 9.9 11(2) | 2 | 2000 | 10(4) 112 13(1) | -2 | -1.3
100.15.10.45.4 | 25 | 8(1) 10 11(3) | 2 | 2000 | 8(1) 10 14(1) | 0 0
100.15.10.45.5 | 25 | 9(4) 9.8 11(2) | 2 | 2000 | 9(3) 104 13(1) | 0 | -1.6

Table 3 : Comparative results of SA and TS for different instances of a same class

5.4 Discussions

Influences of parameters

It is well known that the parameters play a important role for SA and TS. This point is
confirmed in this study. Figures 5, 6 and 7 show the influences of parameters on the quality
of solutions for the SA and TS algorithms.
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Figure 5 : Influence of tabu tenure

Figure 5 shows the variations of the results (minimum, average, maximum) of the cost
function (y-axis) for an instance 100.15.20.30 when the tabu tenure varies (x-axis). We
observe that a size too small (<15) or too big (>45) leads to bad results. In the contrary,
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values between 15 and 45 are more interesting. In particular, the value 20 gives the best cost
25 for this instance.
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Figure 6 : Influence of the initial
temperature of SA on the cost function

Figure 7 : Influence of the initial step
length of SA on the cost function

In a similar way, Figures 6 and 7 give the same results when the initial temperature and
step length of the SA algorithm are changed. Like for TS, we observe always an interesting
interval whose values give good results. At the same time, we observe that there are more
than one values giving the same minimum (26). This implies that SA is less sensitive to its
parameters to obtain its results.

This remark seems valid across different instances of different classes (see Table 1). Indded,
from the data of Table 1, we observe also that the tabu tenure £ varies notably according to
instances, ranging from 15 to 40. the averaged tabu tenure seems to increase with the size
of instances (24 for the instances of 100 variables, 28.75 for the 200 variables and 32 for the
300 variables). A possible explanation may be the following. Tabu list is designed to avoid
cycles. However, it is possible that larger instances have larger cycles. In order to avoid such
cycles, the tabu tenure should be increased. Concerning the parameters of SA, they seem
more stable across all the instances tested.

Influences of neighborhoods

The neighborhood is another critical element for the performance of any local search algorithm.
In this study, the neighborhood (noted N3)is defined over a subset of particular variables, that
is, the set of variables involved in some unsatisfied constraints. Another natural neighborhood
(noted Ny) consists in including all the variables of the instance, that is, sand s’are neighbors
if s’ can be obtained by changing the current value of a single (whatever) variable in s. It is
clear that N; is a subset of N1 and contains in general much fewer neighbors than Ny.

Experiments have been carried out to compare the performance of these two neighborhoods.
Figures 8 and 9 show the differences in terms of solution quality for both the SA and TS
algorithms. For example, with the same test condition, the neighborhood N3 allows SA to
get a minimal cost of 14 while N; leads to a cost of 15. The influence of neighborhood seems
even more important for TS since there is a difference of 2 in terms of minimal cots found
with Ny and Ns.

It is interesting to see that the smaller neighborhood Ny does better than the large one N;.
One intuitive reason is that Ny allows an algorithm to concentrate on promising moves and
to avoid a large number of moves which don’t lead to any improvement of the cost function.
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More studies may be needed to give a more satisfactory explanation. For example, a study
about the topology of local optima of the two neighborhoods may be highly helpful.
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Figure 8 : Performance comparison Figure 9 : Performance comparison
of two neighborhoods for SA of two neighborhoods for TS

Finally, note that other neighborhoods are equally possible. For example, a dynamic
mixing of N1 and Ny may be interesting and remains to be investigated.

Configuration evaluation

For both algorithms, the evaluation of configurations is the most time-consuming step. This
step is ever crucial for TS since TS looks at many neighboring configurations at each iteration.
Efficient data structures are therefore indispensable to achieve a good performance. The
6 matrix for move values used by TS is one example. Thanks to this data structure, TS
can carry out an iteration with a time complexicity similar to that of SA. Without this
structure, the running time of TS will become much more important and its performance

may be compromised. Similarly, the partial and local evaluation technique used by SA is also
indispensable for its performance.

6 Conclusions

In this study, two local search algorithms based on simulated annealing and tabu search
have been investigated for solving constraint problems, in particular, maximal constraint
satisfaction problems. Essential components and techniques used in these algorithms are
presented in details so that the work can be reproduced. Extensive experiments have been

carried out to compare empirically the performance of these algorithms for solving random
MCSP instances of large size. Results have showed that:

o TS gives better solutions than SA for a fixed number of moves;
o TS needs fewer moves to get solutions of the same quality as SA;
o TS is faster in terms of running time to carry out a same number of moves.

These results are consistent with previous comparative studies on special classes of constraint
problems such as graph coloring [1, 9, 13] and Max-SAT [6].

This study confirms that an appropriate neighborhood and good data structures are
indispensable for good performance of an algorithm. It confirms also the importance and
difficulty of an appropriate tuning of the parameters.
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Finally it remains to know how and to which extent these results can be generalized to
other constraint networks (for instance, highly over-constrainted networks, i.e. K >> 1) and
other constraint problems.
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