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Abstract. Landscape is an important notion to study the difficulty of a
combinatorial problem and the behavior of heuristics . In this paper, two
new measures for landscape analysis are introduced. These measures are
based on Hamming distance of iso-cost levels. Sampling techniques based
on neighborhood search are defined in order to carry out approximation
of these measures. These measures and techniques are used to analyze
and characterize the properties of random landscapes of the Maximal
Constraint Satisfaction Problem.

1 Introduction

Large combinatorial problems are often hard to solve since such problems may
have a huge search space. To tackle a large combinatorial problem, heuristics such
as neighborhood search methods constitute one of the most powerful approaches.
Though heuristics have proven to be very successful, there are few studies allowing
to explain such a performance. The notion of landscape is among the rare existing
concepts which help to understand the behavior of heuristics and to characterize
the difficulty of a combinatorial problem.

The landscape concept has been first introduced by Wright in 1932 [17]. Since
then, the term has been re-used by several researchers, with sometimes different
meanings [5, 11]. Numerous measures have been proposed to analyze landscapes
and to understand their difficulty for heuristics. In what follows we introduce the
landscape notion and its measures. To be general, we first define search space.

1. Search Space: Given a combinatorial problem P, a search space associated
to a mathematical formulation of P is defined by a couple (5, f) where S is
a finite set of configurations and f a cost function which associates a real
number to each configuration of S. Only a small number of measures are
available for this structure. The minimum and the maximum costs are the
two most common.

2. Search Landscape: Given a search space (S, f), a search landscape is
defined by a triplet (S, v, f) where v is a neighborhood function which verifies
v: S — 25 — {(}. This landscape, also called energy landscape in [5], can
be considered as a “neutral” one since no search process is involved. This
landscape can be conveniently viewed as a weighted® graph G = (S, v, f).

3 Note that the weights are defined on the nodes, not on the edges.



Search landscape has been the subject of some studies. Several measures
have been defined: the number and distribution of local minima* [13, 10],
and autocorrelation which quantifies the ruggedness of a landscape, 7.e. the
variation of the cost values between the neighbors in the graph [12, 16].

3. Process Landscape: Given a search landscape (S, v, f), a process landscape
is defined by a quadruplet (S, v, f, ¢) where ¢ is a search process. The process
landscape represents a particular view of the neutral landscape (S, v, f) seen
by a search process. This notion of landscape was first introduced in [11]
for the purpose of studying the genetic operators of a genetic algorithm.
Autocorrelation of a random walk [14] and fitness distance correlation (FDC)
are well known measures for process landscape [11].

Though these measures produce interesting and useful information about a
landscape, it seems that they give only a partial picture of the landscape. In
particular, these measures fail to answer such important questions as: 1) How
many configurations in the search space are there for a given cost? 2) Are the
configurations in the search space scattered or gathered in some specific areas?
3) What is the “accessibility” of a configuration from another one?

Thanks to a measure called “density of states” recently proposed in [1],
the first question is now answered. This measure, belonging to search space
level, gives the number of configurations per cost value. In a previous study
[4], we applied this state density measure to study the search space of random
instances of the Maximal Constraint Satisfaction Problem (MAX-CSP). The
estimation of state density reveals that the configurations of a given random
MAX-CSP instance follow a gaussian distribution. This distribution constitutes
an explanation of landscape difficulty for heuristics. Indeed, configurations are
concentrated in certain cost zones attracting the heuristic and hindering its
evolution towards less dense cost zones. Another important point is that this
measure allowed us to introduce a stratified model for the search space (see
Fig. 2 of Section 6). In this model, each cost value c¢ is associated to the set
of configurations having the cost ¢, which we call an iso-level. Simple distances
based on cost values are also defined for the model.

In this paper, we try to answer the second and the third questions. Based on
the above iso-cost level model, two new measures are proposed for landscapes:
Hamming Distance In a Level (HDIL) and Hamming Distance Between Levels
(HDBL). HDIL measures the similarity (or diversity) of configurations within an
iso-cost level. This distance translates in some sense the idea of the “width” of
the landscape. Similarly, the distance between iso-cost levels (HDBL) measures
the accessibility of configurations and reflects in some sense the “length” of the
landscape. These two measures together give another picture of a landscape.

At this stage, we notice that, there are some similarities between our work
and the recent study concerning neutral networks reported in [2], though the
two studies have quite different objectives and estimation techniques. Indeed,
the model of neutral networks is close to the iso-cost level model. Measures such

* s € S is a local minimum with respect to the neighborhood v if V s' € v(s), f(s) <
f(s").



as neutral dimension and percolation index share some common ideas with our
measures HDIL and HDBL.

Like in [4], we use the very general Maximal Constraint Satisfaction Problem
as a test problem for our experimentation. The measures HDIL and HDBL are
applied to landscapes corresponding to random MAX-CSP instances. Experimental
results show that the configurations of a given iso-cost level are separated by a
large distance. The results show also that the distance between iso-cost levels
change depending on whether high cost or low cost levels are considered.

This paper is organized as follows: Section 2 defines our new measures.
Section 3 introduces sampling techniques. After a recall of the MAX-CSP in
Section 4, experimental results on random instances are given and discussed in
Section 5. Finally, conclusions and future work are presented in Section 6.

2 Measures and Approximations

In this section, we will introduce two new measures for studying landscapes.
We define Hamming distance in a level (HDIL) which measures the average
variation of distances for configurations having the same cost. Then we define
Hamming distance between levels (HDBL) which measures the average distances
to go from a configuration to another one having a different cost. These two
measures translate respectively the width and the length of a landscape.

2.1 Generalities

Given a search space (S, f), the neighborhood relation Ny: § — 25 — {}} and
the Hamming Distance are defined as follows:

— Neighborhood N
N, is defined as follows: two configurations s(sy..., s, ) and s'(s]..., s, ) involving
n components (variables) are neighboring if they differ by a single value of
a variable; more precisely, if and only if 3!(z, j)/s; # 5.

— Hamming Distance
Hamming distance associated to this neighborhood is:

n

dH(Sas/) = dH(Slvs) = Zé(sivsé) (1)

i=1

Lif a4y
where 6(z.y) = {0 otherwise
The Hamming distance dg (s, s’) between two configurations s and s’ counts
the number of components having different values between s and s’.
— iso-cost level

C C S is an iso-cost level of cost ¢ & Vs € (C), f(s) = c.



2.2 Hamming Distance In an iso-cost Level - HDIL

The distance in a set A can be defined by the average distance between the
elements of A.

D(A):ﬁ S d(s,s) 2)

(s,s")EC?

In particular, the Hamming Distance In an iso-cost Level C is defined by the
distance in a set with A = C and d = dpy. It corresponds to a measure of
landscape width. This distance, denoted by D(C') represents the diversity (or
similarity if one replaces § by ¢’ = 1 — §) of configurations of C'. The HDIL
measure differs from autocorrelation by the fact that it measures the variation
of distance for a fixed cost while the autocorrelation measures the cost variation
for a fixed distance. This measure has two advantages : it concerns all costs areas
and it is not dependent on instance’s size.

2.3 Hamming Distance Between iso-cost Levels - HDBL

The Hamming distance between two sets A and A’ can be defined by the average
distance between the elements of A and A’'.

1 .
D(AA)= ——— E d(s,s'
( ’ ) |AXA’| (875) (3)
(s,s')EAXA’

We define the Hamming Distance Between iso-cost Levels C' and C' by the
Hamming distance between sets with A = C', A’ = C” and d = dp. This distance
is denoted by D(C,C") hereafter. This measure could give very large distances
and has little meaning if it is used to study the behavior of search algorithms.
The “vertical” Hamming Distance between two levels, defined in the following
formula, seems to be more relevant.

d(s,s) (4)

where s’ € C' is a configuration reachable from s by a search process ¢. Thus, this
distance concerns configurations ‘linked’ by a search process. The measure D¢ -
informs us about the distance between two successive levels C' and C'+6C. Using
this measure, it is now possible to know the potential ancestor of a configuration.
Note that the measure D¢ is different from FDC since Dc ¢ concerns distance
variations while FDC concerns the relationship between distance variation and
cost variation. Moreover, in Dccr, the distance is measured with respect to a
set of configurations, whereas FDC has a single reference configuration.



2.4 Estimators

Because of the large number of configurations of a given cost value ¢, it is difficult
to calculate exactly the distances D(C'), D(C,C") and Dccr. We can nevertheless
approximate these values by using sufficiently large and representative subsets
E C C and E' C C'. The corresponding estimators D(C'), D(C,C") and Decr
are defined as follows:

1

b(c):@ > du(s,s) (5)
(s,8")EE?
o 1
DEC.C) =g 2. dnl(s) (6)
(s,s")EEXE’
. 1
Deer = 1E] > d(s,(s) (7)
SEE)(s)EE’

where ¢(s) is the first configuration of E’ encountered by the search process .

3 Sample Construction

Sample construction is a decisive stage for approximation validity. As our measures
are related to the level C' of a cost ¢, we need a sampling process which is able to
reach configurations of the cost c. Moreover, the sampling process must be able to
reach sufficiently diversified configurationsin order to constitute a representative
sample E of C. Theoretically, random search may be an interesting sampling
process. However, random search is not viable in practice since it is unable to
reach configurations in low cost areas (for minimization). In this work, we adopt
neighborhood search methods including Metropolis, Simulated Annealing and
Tabu Search to reach low cost areas. Let us notice that these methods have
been used successfully to resolve the MAX-CSP problem [7, 9]. Two sampling
techniques are proposed, the first technique may use any “neighborhood heuristic”,
while the second technique is based on Metropolis algorithm.

3.1 Sampling with Re-run

Sampling with re-run consists to build a representative sample by keeping only
one configuration per run (execution) of any neighborhood heuristic. Thus,
to build a sample E, at least |E| runs are needed. Indeed, we notice that
a single run of any neighborhood search process does not gather a sufficient
number of configurations of a given cost. In order to increase this number we
run the heuristic (Tabu, Simulated Annealing and Metropolis) as many times as
necessary until a sample of sufficient size is obtained.

This simple technique does not require any tuning effort (except to reach
the wanted cost value). Moreover, as configurations of the sample come from
different runs, this method insures the configurations independency. However,
this technique may be very time consuming.



3.2 Sampling without Re-run

Sampling without re-run consists to build a sample of a given cost ¢ in only
one run (execution) of a given “neighborhood heuristic”. This task is not easy
because most of time, neighborhood search methods generate only few configurations
for a given cost value in one run.

However, there exists a neighborhood heuristic for which a special phenomenon
occurs. As shown in [4], Metropolis applied on MAX-CSP random instances
stagnates around an average cost value which depends only on the temperature
used. Fig. 1 shows the phenomenon with different temperatures T' = {35, 15, 5,0.5}.
For example, for T = 0.5, 0.075% of the encountered configurations in one run
have a cost of 32. Therefore, in order to give a sample of size K with a cost of
32, it is sufficient to run the Metropolis process with T = 0.5 for N iterations
(K =0.075% x N).

probtilly
2

Fig. 1. Metropolis for different temperatures

The technique of sampling without re-run can be very useful: it is a fast
method (only one run is sufficient). However, the sampled configurations are not
completely independent.

In what follows, we define the Maximal Constraint Satisfaction Problem -
a very general optimisation formalism. We then go on to apply the proposed
measures to comparing binary MAX-CSP landscapes.

4 Maximal Constraint Satisfaction Problem (MAX-CSP)

4.1 Problem Definition

The MAX-CSP can be conveniently defined with the notion of constraint network.
A constraint network CN is a triplet < V, D,C > where:

- V= {V, V...V, } is a finite set of variables;
- D= {Dl,Dz...Dn} is a finite collection of value domains associated to the
variables;



- C={C,C,...C, } is a set of constraints, each being a subset of the Cartesian
product of the domains of some variables specifying allowed ( or forbidden)
value combinations.

Given such a constraint network CN < V, D,C >, the MAX-CSP is to find
an assignment of the values of D to the variables of V such that the number of
satisfied constraints is maximized [6]. In practice, the equivalent minimization
version is often used, ¢.e. one minimizes the number of violated constraints
instead of maximizing satisfied constraints. The MAX-CSP can be formulated as
a couple (S, f) where S is the set of all possible assignments of values of D to the
variables of V and f is the number of unsatisfied constraints of C. Note that the
classical Constraint Satisfaction Problem (CSP) is a special case of MAX-CSP
for which the optimal cost f* = 0.

5 Experimentation

5.1 Random Instances Generation

Test instances used in this work correspond to random, binary constraint networks
generated according to a standard model [15]. A network class is defined by
< n,d,p1,p2 > which has n variables, d values per variable, p;.n.(n — 1)/2
constraints taken randomly from n.(n — 1)/2 possible ones (p; is called the
density), and ps.d® forbidden pairs of values taken randomly from d? possible
ones for each constraint (p, is called the tightness). For each given class <
n,d,p1,py >, different instances can be generated using different random seeds.

A constraint network may be under-constrained, or over-constrained. A phase
transition in solubility occurs in between when the network is critically constrained
[15]. Under-constrained networks tend to be easily satisfiable (cost f* = 0).
Over-constrained networks are usually unsatisfiable (cost f* > 0). Critically
constrained networks may or may not be satisfiable and are usually hard to
solve from a satisfaction point of view. These different regions are characterized
by a factor called constrainedness [8]:

n—1 1 .
5P IOgd(l—pz)

R =

k = 1 delimits under- (k < 1) and over- (k > 1) constrained networks. Networks
with £ = 1 corresponds to critically-constrained ones. For the purpose of this
work, we use over- (k > 1) or critically (k & 1) constrained networks.

Two distance measures are applied on the search landscape (S, v, f) of random
MAX-CSP instances. HDIL and HDBL are calculated and analyzed for various
cost values. The random instance < 100.10.15.25 >° is used as an example.
This instance has a known optimal value of (f*)=0 [9] and a central level of
cost Cy, = 186 [4]. The MAX-CSP landscapes are supposed to be isotropic, the
calculations confirm this assumption.

5 This instance is generated with a random seed equal to 3.



5.2 Hamming Distance In an iso-cost Level

The purpose of the following experiment is to estimate Hamming Distances
in various levels of the studied instance < 100.10.15.25 >. Sampling with re-
run with Simulated Annealing (SA) and Tabu Search (TS) is used to sample
configurations of given costs. Preliminary tests were carried out to determine the
number of configurationsin a sample E. It has been found that 5000 configurations
are sufficient to make the statistics stable. Therefore, both SA and TS are run
5000 times for each fixed cost of the target cost level. Table 1 gives the results
of TS for different cost levels running from the average instance cost 186 to
the cost 12. For each level, we count the number of execution (called size) that
meet the considered level among the 5000 tries, and its Hamming distance. The
experiments are repeated 10 times. The first thing one can notice is that some
re-runs failed to reach configurations of the wanted cost. For example, for 5.000
executions, TS reaches the cost value 183 only 332 + 19 times. However, the
size increases when cost value decreases. It reaches 4932 & 4 for cost level 12.
Concerning the Hamming distances, large magnitudes (Table 1) are obtained.
Similar results are observed for costs lower than 12.

In the same way, Table 2 gives the results obtained with SA. Once again, we
observe large magnitudes for Hamming distances. Similar results are obtained
by the sampling without re-run using Metropolis. The Hamming distances are
very close to those generated by Simulated Annealing Table 2. Similar results
are observed for costs lower than 12.

At this stage, some conclusions can be made. The measure of HDIL discloses
some interesting aspects of the landscape for random instances. A so large width
(HDIL) within a level shows that configurations are not clustered in one group
(which does not mean that they do not belong to large clusters). One implication
of this result is that a single configuration can not represent a whole level.
Another point is that, HDIL obtained over one run are always smaller than
those obtained by our sampling method therefore our results can be considered
as upper bounds on the considered instance. Moreover, Hamming distances
obtained by Simulated Annealing and Metropolis are smaller than those obtained
by Tabu as showed in Table 1 and Table 2. Simulated Annealing and Metropolis
reach more frequently the desired (low) cost levels. Therefore, Tabu explores a
larger low cost area of the landscape. In addition to these considerations, one
should notice that though Tabu search is faster than Metropolis and Simulated
Annealing, all these calculations are very time consuming (Table 1 and Table 2).

5.3 HDIL on other instances

We have measured Hamming distance in an iso-cost level of different random
MAX-CSP instances (Table 3). These instances have sizes ranging from 100 to
300 variables with x around 1. For each instance, we give the near optimal cost
value (f*), the central cost value (C),), the Hamming distance in a level of cost



Tabu(30)

cost 12 32 82 125 159 183

size 1932 £ 4 4766 £ 13 | 1902 £31 | 1219 £25 906 =+ 19 332 £ 19
distance[0.862 +1073]0.882 + 10~°[0.895 =+ 10~°[0.898 = 10~>]0.899 + 10~°[0.899 + 10~3

Table 1. Hamming Distance In an iso-cost Level (HDIL) by sampling with re-run (Tabu)

Simulated Annealing

cost 12 32 82 125 159 183

size | 4738 | 4260 £30 | 3465 26 2048 £ 30 | 2519 £36 | 1303 £42
distance[0.8188(0.851 & 103 [0.886 + 103 [0.896 = 10.73[0.899 + 10~ 3]0.899 £ 103

Table 2. Hamming Distance In an iso-cost Level (HDIL) by sampling with re-run (Simulated
Annealing)

Cym (D(Cr,)). We applied sampling with re-run method using Tabu search to
approximate HDIL.

We observe from Table 3 that for all instances HDIL is about 0.9, which
corresponds to a large diversity. This consistency may have something to do with
random generation. Even if this measure may be conditioned by the approximation
technique used, it seems possible that the original value is large.

K f* Cm D(cm) D(cmTif') D(f*) Df*,Cm
(a) 100.10.15.25/0.93 0 186|| 0.89 0.89 0.86 52
(b) 100.10.20.25|1.24 19 248 0.90 0.89 0.85 54
(c) 100.15.10.45[1.64 11 223[] 0.93 0.93 0.90 55
(d) 100.15.20.30{ 1.3 25 297|| 0.93 0.93 0.90 60
(e) 100.15.30.20[1.22 18 297 0.93 0.93 0.89 56
(f) 200.20.20.15]1.08 21 597|| 0.94 0.94 0.93 119
(g) 200.20.18.14[{ 0.9 0 501|| 0.95 0.94 0.93 112
(h) 300.20.10.18]0.99 14 807|| 0.95 0.94 0.93 168
(7) 300.30.16.12| 0.9 4 861( 0.96 0.96 0.96 172

Table 3. HDIL on other instances

5.4 Hamming Distance Between iso-cost Levels

Hamming distance between levels expresses the length of a landscape. We would
like to answer questions like: can one estimate the distance between two levels?
If yes, can one draw up a distance map? Or are levels at equal distances? Can
one know the potential ancestors of a given configuration? Do these distances
change with the search heuristic?

The goal of this experiment is to compute the Hamming distances between
levels for the descent using sampling with re-run. Let us recall that, the descent



process begins with a random initial configuration sy, then at each iteration,
moves to a better neighbor. The process stops when a local optimum is reached.
We run 1000 executions of this strict descent algorithm and we compute distances
between levels in the form of a map of distances using formula (7). We analyze
the results on two levels areas. The area (A) (Table 4, left) corresponds to a
high cost area (around the average cost level Cy,, = 186). The area (B) (Table 4,
right) corresponds to a low cost area. The results are interpreted as follows.
For b179,177, if the search process wants to go from a configuration of cost
179 to a configuration of cost 177, a distance of 1.3 is necessary to make this
change. The results shows that for a given cost value variation, configurations
are more separated in lower cost levels. For instance, by comparing the distances
D179 177 and Dgg 37 which both have a cost variation of 2, we observe that
D179 177 < Dgg 37. This comparison is valid for other distances between levels.

The increase of Hamming distance between levels shows the flat structure of
this landscape in low cost areas.

De o177 178 179 180 181 182 183 De o/[37 38 39 40 41 42 43
179 (13 1 0 1 1.4 1.7 2.2 39 [19 1 0 1 1.82836
180 (1.8 1.3 1 0 1 1.3 1.7 40 (2819 1 0 1 1927
181 |22 1.8 14 1 0 1 14 41 (362818 1 0 1 1.9

Table 4. Distance map between levels for high and low cost areas

5.5 HDBL on other instances

Similar calculi have been carried out for the instances (a) to (i) of Table 3. Given
the fact that the computing of HDBL distance map is quite long, we limited our
computing to the distance between a cost level C), and the cost level f*. We
used the sampling technique with re-run with the following ”reversed” random
walk: one begins with an optimal solution and then makes a random walk at
each step.

Again, the obtained HDBL results look rather similar to those for instances
with the same number of variables. This consistency may have something to do
with random generation. At the same time, C), — f* is not the same for all
instances. Therefore, gi:’_‘}* may be used to compare instances. However, our
actual sampling processes are not fast enough to have a precise approximation
of this measure.

6 Conclusions and Future Work

In this paper, we have proposed two measures called Hamming Distance In a

Level - HDIL and Hamming Distance Between Levels - HDBL to analyze the



search landscape (S, v, f). Both distances concern links between components of
configurations. However, Hamming distance in a cost level quantifies the diversity
of configurations or the width of a landscape whereas Hamming distance between
cost levels translates the accessibility of configurations or the length of the
landscape. Hamming distances in a level and between levels can be represented
as follows Fig. 2: .

heuristic

t HDBL
cost

Fig. 2. Iso-cost level model for search space (5, f)

To estimate these distances, sampling techniques based on neighborhood
search were developed. Notice that depending on the required precision, the
approximation of the HDIL and HDBL measures may be quite time consuming.

These measures have been applied to a number of random MAX-CSP instances.
Experimental results showed that within a level, the configurations have a large
distance (about 0.9 for a maximum of 1). This distance remains stable for
different cost levels.

Experiments with HDBL disclose that the distance between two different
cost levels of high costs is smaller than the distance between two levels of low
costs. Moreover, these distances change for different instances.

Such information may be used as a criterion to compare the structure of
different instances. The information may also help to predict the possible adaptation
of heuristics on the landscape.

Currently, we are working on two points. First, we study other search landscapes
with the measures proposed in this paper. Second, we are working on measures
for the process landscape (S,v, f,¢). In particular, we are studying a measure
called Average Cost / Temperature function (AC/T function) [3]. This measure
is based on statistical features obtained with Metropolis sampling at different
temperatures. It allows one to associate a curve with each process landscape,
and consequently to compare process landscapes.
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