Study of Genetic Search for the Frequency
Assignment Problem*

Jin-Kao Hao and Raphaél Dorne

LGI2P
EMA-EERIE
Parc Scientifique Georges Besse
F-30000 Nimes
France
email: {hao, dorne}@eerie.fr

Abstract. The goal of this paper is twofold. First, we present an evolu-
tionary approach to a real world application: the Frequency Assignment
Problem (FAP) in Cellular Radio Networks. Second, we present an em-
pirical study on the effectiveness of crossover for solving this problem.
Experiments carried out on a set of real-size FAP instances (up to 300
cells, 30 frequencies and 30,000 interference constraints) show the in-
terest of KEAs. At the same time, empirical evidence suggests that the
contribution of crossover is marginal for this application.

1 Introduction

The Frequency Assignment Problem (FAP) in cellular radio networks is a very
complex application in the field of telecommunications. Although different ver-
sions can be defined for FAP, the main goal consists in assigning one or more
frequencies, a very limited resource, to each radio cell in a cellular radio network
while minimizing electromagnetic interferences due to the reuse of frequencies
by adjacent cells. The difficulty of this application comes from the fact that an
acceptable solution of FAP must satisfy a set of multiple constraints, some of
these constraints being orthogonal. The most severe constraint concerns a very
limited radio spectrum consisting of a small number of frequencies (or channels).
Indeed, telecommunications operators such as France Telecom must cope with
only up to 60 frequencies for their networks whatever the traffic volume to cover
may be, and this, in agreement with national and international regulations. In
addition to this frequency constraint, two other types of constraints must be
satisfied to insure good communication quality:

1. the traffic constraint for each cell corresponding to the minimum number of
frequencies required by the cell to cover the communications of the cell.
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2. two categories of frequency interference constraints:
- Co-cell constraints: any pair of frequencies assigned to a radio cell must
have a certain distance between them in the frequency domain.
- Adjacent-cell constraints: the frequencies assigned to two adjacent cells?
must be sufficiently separated in the frequency domain.

The basic FAP can be shown to be NP-complete because, in its simplest form,
it is reduced to the graph coloring problem [9]. So far, many methods have been
proposed to solve FAP, including 1) classic methods: graph coloring algorithms
[9, 8] and integer programming; 2) heuristic methods: neural networks [12, 7],
genetic algorithms (GAs) [4, 11], local search such as simulated annealing (SA)
[6, 1] and Tabu search (TS) [10], and constraint programming (CP) [3].

The goal of this paper is twofold. First, we present various (hybrid) evolu-
tionary algorithms (EAs) and their performances on real-size FAP instances (up
to 300 cells, 30,000 interference constraints with only 30 frequencies). Second,
we investigate empirically the effects of crossover for this application.

The paper is organized as follows. In Section 2, FAP is modelled as an opti-
mization problem. In Section 3, the different components of our EAs are sum-
marized. In Section 4, experimental results are presented and compared. Con-
clusions and perspectives are given in the last section.

2 Modelling the Frequency Assignment Problem

2.1 Notations and Model
In this paper, the following notations will be used to simplify the presentation.

N the number of cells
NF the number of available frequencies in the spectrum
NCIT the number of interference constraints defined for adjacent cells
NC the number of constraints (NC=NCI+N)
fi.m the m'? frequency assigned to the cell C;

FAP can be modelled with a quadruple FAP = <X, D,C, F> representing an
optimization problem with:

X = {C; | C; is a cell of the network, i € [1..N]}.
D = {F; | F; is an available frequency of the spectrum, i € [1..NF]}.
C=TUI

T = {T; | T; minimal number of frequencies necessary for C;, i € [1..N]}.
I = {I; | I; interference constraints of frequencies, i € [1..NC]}.

f = cost function of a frequency assignment.

Finding a solution to FAP = <X, D,C, F>> means assigning one or more fre-
quencies in D to each cell C; of X in such a way that the constraints of C' are
simultaneously satisfied and the cost fis minimized.

2 Two cells are adjacent if they emit within a common area even if they are not
geographically adjacent.



2.2 Constraints

There are essentially two big families of constraints: traffic constraints and in-
terference constraints. The traffic constraint for each cell Cj; is represented by an
integer T; coding the minimum number of frequencies necessary for C; to cover
its maximum traffic volume. In practice, this maximum traffic value is defined
by an estimation of the maximum number of communications which can simul-
taneously arise within this cell. The interference constraints over the network
are represented by a symmetric compatibility matrix M[N,N] defined by:

— M[i,j] with i # j represents the minimum frequency separation required to
satisfy the adjacent-cell constraints between the cells C; and Cj.
Vn € [1.7], Vm € [1.T5], |fin — fim| > M[L,j]

— M[i,i] represents the minimum frequency separation necessary to satisfy the
co-cell constraints:
Vn,me [1.G],n #m, |fin— fim| > M[i]

— MI1,j]=0 means there is no constraint between the cells C; and Cj.

Several optimization problems can be defined for FAP. For example, given
a traffic volume in the network, we may minimize the frequency interference
and the number of frequencies used. Otherwise, given a number of available
frequencies, we may maximize the traffic volume (assigning more frequencies to
a cell) while minimizing the frequency interference. In the latter case, the two
optimization objectives are orthogonal. Indeed, requiring a higher degree of reuse
of frequencies implies a higher risk of frequency interference. In this paper, we
deal with the first problem, i.e. we try to mimimize the frequency interference
using a minimum number of frequencies for a given traffic volume.

3 EAs for FAP

The main obstacle of applying EAs to a new application lies essentially in two
difficulties. First, we must define an efficient encoding for the given application
and a set of tailored genetic operators. Second, we must find an efficient combi-
nation of these operators working with the encoding. The first point is related
to the application at hand and can be solved by integrating, at different levels
of an EA| specific knowledge about the application and various efficient local
search techniques. On the contrary, the second point is a methodological issue
and must be dealt with independently of applications. Indeed, until now, neither
the roles of genetic operators nor their combinations are well understood. From
an application point of view, the simultaneous presence of all the genetic com-
ponents makes it difficult to build efficient EAs and to evaluate the efficiency of
each component. For these reasons, to tackle our application with EAs, we take
a step-by-step approach which is based on the bottom-up principle.

Instead of integrating all the genetic components in an EA, we begin with
a very simple EA which uses only mutation and selection. Using this largely
simplified EA, many alternative mutation and selection operators can be exper-
imented with and evaluated. Another interesting point of this simple EA is that



it may work with a singleton population. In this case, the EA can be used to
simulate numerous (stochastic) hill-climbers. Once the most efficient selection
and mutation operators are identified, crossover may be added to the initial EA
if this proves to be necessary for the application.

Problem Encoding & Solution Space

Given a problem FAP = < X, D, C, F' >, afeasible solution s =< C1,C5, ...,Cn >
corresponds to a complete assignment of frequencies to cells where

- |C;| = T;, i.e. each C; is composed of T; frequencies (genes) assigned to it.

An individual or a chromosome I simply represents a feasible solution. A
population of chromosomes represents a part of the total search space composed
of all the feasible solutions of FAP noted by S = {s | s is a feasible solution of
FAP}. Note that this encoding satisfies implicitly the traffic constraint.

Other encodings are possible. For instance, one may use a NFx% Zsz’l boolean
matrix, each element of the matrix indicating if a frequency is assigned to a cell.
One may also use a heterogeneous 2 dimensional encoding whereby a number
of frequencies equal to its traffic corresponds to each cell. However, the chosen
encoding has some desirable properties compared with others. First, the num-
ber of genes in a chromosome is minimized. Second, mutation can be directly
applied. Third, crossover can also be directly applied or be applied with a min-
imum constraint of choosing crossover points at the first gene of each cell.

Fitness Function

Two functions are used to evaluate an individual’s fitness: the first is for evalu-
ating the initial population and offspring produced by crossover and the second
is for offspring produced by mutation.

For any individual I, one natural way to calculate its fitness is to apply the
following function f: S — NC (the number of interference constraints).

T; T;

=33 SN CH gk + Y COGi.kp) (1)

i=1j=i+1k=1p=1 i=1k=1p=k+1
CI(i,j,k,p)=11f | fix — fipl < M[i,j]
= 0 otherwise
CO(i, k,p) = 1if | fix — fipl < M[i, 1]

= 0 otherwise

It 1s easy to see that this function examines in pairs all the cells of the
networks in order to count the total number of interference constraints violated
by I. Given that T; (i € [1..N]) are bounded by NF| the time complexity of the
fitness function (1) is @(N? x N F'?).



When mutation is applied to an individual I producing 7’, only one cell in
I 1s affected. More precisely, only one frequency of the cell is changed. Thus,
to calculate the fitness of I’) only cells adjacent to this modified cell need to
be re-examined to calculate the fitness difference between I and I’. This can
be realized by using the following formula which counts the number of violated
constraints induced by the frequency f; 1 of the cell C;.

f(Ciky= > Z]:Cl(i,j,k,p)—i— Z CO(i, k,p) (2)

j=lj#ip=1 p=1,p#k

CTand CO are the same as defined in (1). Since the traffic of the cells is bound-
ed by the number of frequencies NF, the time complexity of this function is
O(N x NF). Note finally that, in practice, the complexity is much lower since
the number of adjacent—cells of C; is usually much smaller than N-1.

Selection

For the purpose of investigating the effects of crossover for FAP, a single selection
mechanism, Baker’s SUS (Stochastic Universal Sampling) selection algorithm [2]
is used for all our EAs (with and without crossover). Similar to the standard
spinning wheel method with one pointer, SUS can be considered as a spinning
wheel method with K equally spaced pointers (K being the size of population).
Hence, all K samples will be achieved in a single spin. Like other probabilistic
selection methods, well-fit individuals will have more chances to be selected by
SUS.

Compared with other selection methods, SUS has some desirable qualities
such as simplexity and efficiency (complexity of @(K)), and accuracy and preci-
sion (zero bias and minimum spread). Moreover, according to our experiments,
SUS gives good results on average.

Crossover

Three crossover operators are studied: two standard crossovers, i.e. one-point
and uniform, and one specialized crossover called conflict-based.

— one-point: a crossover point is randomly chosen with equal probability and
the right portions of the two parents are exchanged, producing two children.

— uniform: each gene of the two children receives the corresponding gene from
either parent one or parent two according to a given probability [13].

— conflict-based: the 1dea of this specialized crossover is to use specific knowl-
edge about the application. It tries to pass on good genes from the parents to
their children. More precisely, frequencies (genes) free of conflict are directly
copied and frequencies in conflict are stochastically or deterministically cho-
sen. Figure 1 gives an example whereby deterministic choices are made for
genes in conflict.



Parent 1 [o T 23] 3] 2o 2] 1]1] o]

Conflict Vector |Yac| NolNolYalNolYal NolYal N0|YES|
Parent 2 |l|0|3|1|1|3|l|2|2|3|
Conflict Vector |N0|Y5|Y55|No |Ye5|Ye5| Nolle Ya;l Nol
child 1 e[ 2[sfafofloflofafa]sal]

[pefpr]etfe2fet[rfe]pet]ept]ee]

Child 2 [2]2]slaJ2]afafafa]s]

[pefpr]etfrefetfe[r]rp]r]e ]

Fig. 1. Conflict-based crossover

These crossover operators can be considered to be sufficiently representative
for studying the effects of crossover for FAP. In fact, one-point and uniform
crossover are well known and have some complementary properties. One-point
crossover exhibits the minimum distributional bias and the maximum positional
bias. On the contrary, uniform crossover exhibits the maximum distributional
bias and the minimum positional bias. Moreover, uniform crossover is known
to be more disruptive, which is particularly suitable for small populations to
sustain a highly explorative and diversifying search. On the other hand, special-
ized crossovers use application knowledge to insure a better transition of useful
information from parents to offspring.

Mutation

For the same reason we fix the selection operator, we have chosen to fix the
mutation operator to be used in our experiments in order to isolate the effects of
crossover. More precisely, a special mutation operator which is based on frequen-
cy conflict and defined in [5] is used by all our EAs. This conflict-based mutation
(CBM) operator is composed of three choices based on specific knowledge of the
application: 1) random selection of a cell among the cells in conflict, 2) random
selection of a frequency from this cell, and 3) the best frequency value which is
different from the current value.

Compared with other mutation operators we have tested, including classic
random and specialized mutations of the same class defined in [5], the chosen
mutation proves to be the most efficient on average for this application.

4 Experimentation and Results

4.1 Tests

In this section, we present our experimental results for the various EAs on two
sets of FAP instances provided by the French National Research Center for T-
elecommunications. These instances are produced by a generator in such a way



that they correspond to real situations encountered in real networks or sub-
networks in France. Consequently, some instances have a very big size in terms
of the number of cells (variables) and of inteference constraints. The biggest
instance has 300 cells (600 genes) and more than 30,000 constraints. Moreover,
each gene may take up to 30 possible values (frequencies).

Test Set No.1 (Traffic=1)

The first set of FAP instances has the following characteristics.
— traffic constrainis: T; = 1 (i € [1..N]); i.e. each cell is assigned one frequency.
Consequently, a co-cell constraint does not exist (M[i,i] = 0 for i € [1..N]).
— adjacent constraints: |f; — f;| > M[i,j] = 1 (i, j € [1..N]) for two adjacent
cells C; and Cj; i.e. C; and C; must be assigned different frequency values.

It is easy to see that these instances correspond to the classic graph coloring
problem. In fact, it will be sufficient to replace frequencies by colors, cells by n-
odes and adjacent constraints by edges. Finding an optimal frequency assignment
is equivalent to coloring a graph using only a minimum number (the chromatic
number) of necessary colors. For these instances, the chromatic number corre-
sponds to the minimum (optimal) number of frequencies necessary for having
a frequency assignment without interference (optimal solution). The names of
these instances consist of three integer parameters nf.nc.d where

nf : the optimal number of frequencies needed for an optimal solution.

nc : the number of cells in the network.

d : the density of interference constraints defined as a percentage of all the
possible constraints over the network.

For example, the instance 8.150.30 defines a problem composed of 150 cells with
8 available frequencies and 30% of 150*(150-1)/2 total constraints. For large
problems having a high density, we obtain up to 13,000 constraints.

Test Set No.2 (Traffic=2)

The second set of FAP instances has the following characteristics.
— traffic constraints: T; = 2 (i € [1..N]); i.e. each cell is assigned two frequencies.
— co-cell constraints: |f; » — fim| > M[i,i] = 3 (1 € [1..N]); i.e. two frequencies
assigned to the same cell must have a minimum distance of 3.
— adjacent constrainis: |f; » — fjm| > M[1,j] € [1,2] (1, ] € [1..N]) if C; and C}
are adjacent cells; i.e. two frequencies assigned to two adjacent cells must
have a minimum distance of 1 or 2 according to the cells.

The names of the instances consist of four integer parameters nf.nc.d.p. The first
three parameters have similar meanings to those presented before. The fourth
parameter indicates the average degree for the nodes of the graph (the average
number of constraints associated with a cell). Due to the way the instances are
generated, the exact number of frequencies for an optimal solution is no longer
known in advance. However, this optimal number is bounded by a value given
by the generator.



Compared with the first set, these instances are naturally much harder due
to the doubled traffic and more constraints. For large instances having a high
density, we obtain up to 300 cells (therefore 600 genes) and 30,000 constraints®.

4.2 Measure Criteria

Two criteria are used: ezcess of frequencies and number of fitness evaluations.

Excess: the number of frequencies added to the minimum of the optimal solu-
tion. For instance, for the problem 8.150.20 which requires 8 frequencies, an
excess of 2 of a method means that the method can only find an optimal
solution by adding 2 extra frequencies. This criterion is essential because
adding even one frequency may make the initial problem much easier to
solve. This criterion reflects the gquality of a solution found by an algorithm.

Nb_evaluation: the evaluation number needed to obtain an optimal solution,
corresponding to the exact number of points in the search space visited by
an algorithm. This criterion reflects the speed of an algorithm and is the most
objective for measuring an algorithm’s performance.

The criterion of generation number is not used since two algorithms may have
completely different complexities for a generation.

4.3 Results

This section describes two (classes of) EAs and their results on the two sets of
FAP instances. The first EA called SM is a simple EA which uses only selection
(S) and mutation (M). The second EA called SCM is SM augmented by crossover
(C). The set up of SM and SCM is defined as follows.

— SM: SM uses the SUS selection and the conflict-based mutation defined in
§3. Beginning with an initial population, SM selects first some individuals
using SUS favoring well-fit individuals. Then the conflict-based mutation is
applied to certain individuals according to the mutation rate.

— SCM: SCM uses the same selection and mutation operators as SM, but before
mutation is activated, crossover (one of those described in §3) is applied to
certain individuals according to the crossover rate.

— Population size: the population size is fixed at 50 for all of our experiments.

— Inttal population: it is generated randomly, i.e. for each gene of an individual,
a random value is taken from among all the possible frequency values.

— P, (the crossover rate): it defines the percentage of the selected individuals
that will receive a crossover operation, producing two offspring. According
to our experiments, P, is fixed at 40% in this paper.

— P, (the mutation rate): it defines the percentage of individuals that will re-
ceive a mutation operation, i.e. one frequency (gene) of a cell will be changed.
According to our experiments, P, is fixed at 10% in this paper.

3 The difficulty of a problem depends not only on the number of variables and the
number of possible values for each variable, but also on the number of constraints.



— Generation: The maximum generation for each try is fixed between 10,000-
50,000 according to the difficulty of the instances.

Remember that the main objective to reach in the application is to minimize
the frequency interference with a minimum number of frequencies. In practice,
our EAs begin with a certain number K of frequencies (a bigger value than the
optimal). If an optimal solution is found within a certain number of tries (fixed
at 5 in this paper) with K frequencies, then the procedure will try to solve the
problem with K-1 frequencies and so on. This process continues until the proce-
dure can no longer find an optimal solution (an interference-free assignment).

Table 1 gives the results of SM and SCM on the first set of FAP instances.

problems |Opt.|SM SCM(0O) SCM(U) SCM(CB)
Excess Excess Excess Excess
/nb_eval. |/nb_eval. |/nb_eval. |/nb_eval.
8.150.10 8 —1—0/14280 —1—0/25510 +0/21500 —|—0/3000
8.150.20 | 8 —1—2/68900 —1—2/116250 —1—2/291300 —1—2/130200
8.150.30 8 —1—0/605620 —1—5/478170 +0/351900 —|—0/437500
15.150.10 | 15 —1—0/13400 —1—0/19700 +0/19170 —|—0/1630
15.150.20 | 15 —1—0/32985 —1—0/44952 —1—0/42939 —|—0/5484
15.150.30 | 15 —1—0/101170 —1—0/427240 +0/554170 —|—0/465900
15.300.10 | 15 —1—0/58890 —1—0/73280 +0/62470 —|—0/8540
15.300.20( 15 —1—2/742300 —1—2/1107000 +2/1034000 —1—3/1985000
15.300.30(| 15 —1—8/756930 —1—8/1594558 —1—9/893348 —|—9/781000
30.300.10 | 30 —1—0/78390 —1—0/71360 —1—0/59030 —1—0/4250
30.300.20 | 30 —|—0/130110 —1—0/122900 +0/110350 —1—0/14150
30.300.30 | 30 —1—0/237480 —1—0/312470 —1—0/256180 —1—0/65370

Table 1. Comparative results on test No. 1

SCM(X) indicates the crossover operator used, O, U and CB represent one-
point, uniform and conflict-based crossover respectively.

From the data in the table, two remarks can be made. First, although all
of our EAs manage to solve most of the instances, they have serious difficulties
with 3 instances (in bold) which are intrinsically hard. Second, according to
the quality criterion, all the EAs behave similarly. However, according to the
speed criterion, SCM(CB) is much more efficient. This seems logical given that
the CB crossover operator directly passes on good frequencies (genes) to future
generations, which favors the convergence of the algorithm.

Note also that the number of evaluations used in the table does not distin-
guish Nb_evaluation caused by crossover from that caused by mutation. However,
as discussed in §3, evaluating an individual produced by crossover is much more
expensive than evaluating an individual produced by mutation (O(N? x N F?)
v.s O(N x NF) ). The same remark remains true for Table 2. Thus, in practice,
crossover can justify its utility only if 1t produces solutions of better quality.

Table 2 gives the results of SM and SCM on the second set of FAP instances.
Since now there are two genes for each cell (the traffic is of 2), one-point and
uniform are adapted to take this fact into account. We use 02 (U2) to designate
the adapted one-point (uniform) crossover and O1 (U1) the original one. Now the



crossover point is limited to the first gene of each cell. In particular, for uniform
crossover U2, the two genes of each cell will be simultaneously exchanged in the
two parents. It should be pointed out that these adapted crossovers can be also

considered to be specialized operators.

problems |Opt.|SM SCM(01) |SCM(U1) |SCM(02) |SCM(U2) |SCM(CB)
Excess Excess Excess Excess Excess Excess
/nb eval. |/nb eval. |/nbeval. |/nbeval. |/nbeval. |/nb eval.
4.75.05.10 11 —|—1/104529 —1—2/98943 —1—2/125057 —|—1/260428 —|—2/359733 —1—2/14945
4.75.05.30 11 —|—1/243279 +1/262432 +2/193739 +1/118270 —1—2/97548 +2/114257
4.75.15.10 | 11 —1—6/87593 +5/724826 +6/92105 +6/457314 —|—5/401066 +7/17880
4.75.15.30 | 11 —1—3/507024 —1—5/274746 —1—5/957438 —1—5/112524 —1—5/425902 —1—6/300893
8.75.05.10 16 —1—0/33920 +0/33622 +0/46166 +0/33246 —1—0/38660 —1—0/4382
8.75.05.30 16 —1—0/32928 +0/36514 +0/43146 +0/33946 —1—0/40214 —1—0/4642
8.75.25.10 | 16 —|—7/165876 +7/130708 +5/1736100 +5/401363 —1—5/169621 —|—7/31892
8.75.25.30 | 16 —1—3/603915 —|—3/537415 —1—4/352140 —|—3/1017383 —1—4/131194 —|—7/22933
8.150.05.30 | 16 —1—0/191264 —|—0/154114 —1—0/445288 —1—0/198962 —|—0/151854 —1—0/55000
8.150.05.60 | 16 —|—0/153216 +0/118812 +0/184286 +0/140346 —1—0/129712 +0/31000
8.150.15.30| 16 —1—5/1044435 —|—7/409000 —1—6/2491000 —|—6/1945000 —|—7/2374000 —|—8/834000
15.300.05.60 | 30 —1—0/370000 —1—0/221000 —|—0/194000 —|—0/196000 —|—0/203000 —|—0/8000
30.300.05.60| 60 —1—0/413000 +0/205000 +0/193000 +0/224000 —|—0/179000 —|—0/6000

Table 2. Comparative results on test No. 2

The second set of FAP instances is, in general, much harder than the first
set since the search space is much bigger: the number of genes is doubled and
the number of interference constraints increases notably. This can be seen easily
from the table. In fact, the EAs have serious difficulties on more instances and
several extra frequencies are often needed to find a conflict-free assignment.

As was the case for Table 1, similar observations can be made for Table 2.
In terms of solution quality, there is no significant difference between the three
crossover operators on the one hand, and no significant difference between SM
and SCM on the other. Note also that SCM(CB) is very efficient in terms of
evaluation number, though its solution quality is sometime worse than others.

Finally, the resolution time varies greatly following instances. Easy instances,
often having a low density of constraints, can be solved instantaneously while
the solving of hard instances is, in general, very time consuming and may require
several hours CPU time on a SPARC-10 station.

4.4 Discussion

In terms of solution quality, the results of SM and SCM presented in Tables 1&2
are better than those of two complete methods: graph coloring algorithms and
constraint programming (CP) presented in [1, 3]. In terms of resolution speed,
CP is much faster for easy instances than other methods. Compared with two
of the most efficient incomplete methods SA [1] and TS [10], the results of SM
and SCM are worse especially in terms of quality. For example, both SA and TS
find optimal solutions for all the instances of the first set and require less extra
frequencies than SM and SCM for the second set.




However, it should be noted that an efficient EA without crossover, called
M&S, exists [5]. Compared with SM, there are two important differences. First,
M&S uses the elitist strategy instead of SUS for selection. Second, like a s-
tochastic hill-climber, M&S uses the conflict-based mutation augmented by a
deterioration control probability, i.e. non-improved offspring produced by muta-
tion are only accepted stochastically. These two points result in M&S and SM
having different behavior and, consequently, producing different results. Indeed,
M&S gives competitive or better results compared with SA and TS cited above.

5 Conclusions & Future Work

This study shows the interest of the evolutionary approach for FAP. Mean-
while, empirical evidence suggests that the contribution of the tested crossovers
is marginal both in terms of solution quality and resolution speed. This is es-
pecially true for hard instances. Whether this conclusion can be generalized is
not clear. However, considering its higher complexity for implementation and for
fitness evaluation with respect to mutation, we can say that crossover is useful
only if it proves to significantly improve the search in terms of solution quality. In
the case where low quality solutions are sufficient for practical need, specialized
crossovers may be developed.

At the same time, these remarks should be interpreted carefully for several
reasons. First, we cannot exclude the possibility of existence of other specialized
and efficient crossovers. Second, in this paper, crossover is studied in the context
of traditional genetic search, i.e. crossover is used as the main search operator.
Other possibilities of using crossover are worthy of investigation. For example, in
mutation-oriented algorithms, any specialized efficient mutation operator may be
used as the main search mechanism to reach rapidly local optima and crossover
is occasionally activated to create new promising individuals in order to help the
search to escape from the local optima.

Finally, the EAs presented here can be improved in several respects. First, it
is evident that more efficient, application knowledge-based genetic operators may
be researched. Second, a more technical and interesting improvement is possible
concerning the constraint handling technique. Indeed, the current encoding takes
into account only traffic constraints but not co-cell constraints. Consequently,
two frequencies may be assigned to one cell during the search even if they violate
the co-cell constraint. This conflict situation is only repaired (hopefully) by the
search operators and may re-appear later. One way to solve this problem is to
include co-cell constraints directly in the solution encoding, i.e. we make sure
from the beginning of the search process that conflict frequencies will not be
assigned to the same cell. In this way, the search space will be greatly reduced
since both the number of constraints to be checked explicitly and the possible
combinations of frequencies to be assigned to cells are reduced. Preliminary
study on this issue shows very promising performance and a complete study of
this technique will be reported in the near future.
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