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Abstract. This paper presents an enhancement of the well-known Lou-
vain algorithm for community detection with modularity maximization
which was introduced in [16]. The Louvain algorithm is a partial multi-
level method which applies the vertex mover heuristic to a series of coars-
ened graphs. The Louvain+ algorithm proposed in this paper generalizes
the Louvain algorithm by including a uncoarsening phase, leading to a
full multi-level method. Experiments on a set of popular complex net-
works show the benefits induced by the proposed Louvain+ algorithm.

Keywords: Clustering; Optimization over networks; Heuristics.

1 Introduction

Complex networks are a graph-based model which is very useful to represent
connections and interactions of the underlying entities in a real networked sys-
tem such as social [1], biological 2], and technological networks [3]. A vertex
of the complex network represents an object of the real system while an edge
symbolizes an interaction between two objects. For example in a social network,
a vertex corresponds to a particular member of the network and an edge repre-
sents a relationship between two members. Complex networks typically display
non-trivial structural and functional properties which impact the dynamics of
processes applied to the network [4]. Analysis and synthesis of complex networks
help discover these specific features, understand the dynamics of the networks
and represent a real challenge for research [5,6].

A complex network may be characterized by a community structure. Vertices
of a community are grouped to be highly interconnected while different commu-
nities are loosely associated with each other. Community is also called cluster
or still module [7]. All the communities of a network form a clustering. In terms
of graph theory, a clustering can be defined as a partition of the vertices of the
underlying graph into disjoint subsets, each subset representing a community.

Intuitively, a community is a cohesive group of vertices that are more con-
nected to each other than to the vertices in other communities. To quantify the
quality of a given community and more generally a clustering, modularity is cer-
tainly the most popular measure [8]. Under this quality measure, the problem



of community detection becomes a pure combinatorial optimization problem.
Formally, the modularity measure can be stated as follows.

Given a weighted graph G = (V, E, w) where w is a weighting function, i.e.,
w: V x Vi R such that for all {u,v} € E,w({u,v}) # 0, and for all {u,v} ¢
E,w({u,v}) =0. Let X CV and Y C V be two vertex subsets, W(X,Y) the
weight sum of the edges linking X and Y, ie., W(X,Y) =" ey w({u,v})
(in this formula, each edge is counted twice). The modularity of a clustering
with k& communities C' = {¢1,ca,...,cx} (Vi € {1,2,....k},¢; CV and ¢; # &
UF_jei =V; Vi, 5 €{1,2,..,k},c; Necj = D) is given by:

W(Ci, Ci) dl 2
WV, V) <W(K V))

where d; is the sum of the degrees of the vertices of community ¢;, i.e.,
di =Y e, deg(v) with deg(v) being the degree of vertex v.

It is easy to show that @ belongs to the interval [-0.5,1]. A clustering with a
small @ value close to -0.5 implies the absence of real communities. A large Q
value close to 1 indicates a good clustering containing highly cohesive commu-
nities. The trivial clustering with a single cluster has a @ value of 0.

Community detection with modularity is an important research topic and
has a number of concrete applications [9]. In addition to its practical interest,
community detection is also notable for its difficulty from a computational point
of view. Indeed, the problem is known to be NP-hard [10] and constitutes thus
a real challenge for optimization methods.

A number of heuristic algorithms have been proposed recently in the liter-
ature for community detection with the modularity measure. These algorithms
follow three general solution approaches. First, greedy agglomeration algorithms
like [11,12] iteratively merge two clusters that yield a clustering by following a
greedy criterion. Second, local optimization algorithms like [13,14,15] improve
progressively the solution quality by transitioning from a clustering to another
clustering (often of better quality) by applying a move operator. The quality
of such an algorithm depends strongly (among other things) on the move op-
erator(s) employed. Third, hybrid algorithms like [16,17,18,19] combine several
search strategies (e.g., greedy and multi-level methods) in order to take ad-
vantage of the underlying methods. Among the existing community detection
algorithms, the Louvain algorithm presented in [16] (see next section) is among
the most popular methods.

The Louvain algorithm belongs to the hybrid approach and can be compared
to the general multi-level framework which requires both a coarsening and un-
coarsening phases [20]. The coarsening phase reduces the size of a graph at each
level by grouping several vertices of the original graph into a single vertex. The
uncoarsening phase does the inverse by unfolding the vertices of the coarsen
graph and then applying a refinement (optimization) procedure. While Louvain
algorithm does use a coarsening phase, it omits the uncoarsening phase. How-
ever, from an optimization point of view, it is known that the uncoarsening
phase within the multi-level framework is useful to further improve the quality
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of the solution (see the example given in Sect. 2). This paper aims to extend the
Louvain algorithm by including a uncoarsening phase, making the algorithm a
full multi-level method. Experiments on a set of popular complex networks show
the benefits induced by the proposed Louvain+ algorithm.

2 The Louvain Algorithm

The Louvain algorithm presented by Blondel et al. [16] operates on multiple
levels of graphs, applying the vertex mover (VM) procedure on each level to
improve the modularity. In this Section, we recall the two key elements of the
methods: the VM procedure and the coarsening phase.

2.1 Vertex mover procedure

For a given graph where each vertex represents a community, one iteration of
VM explores all the vertices of the graph in a random order. For each vertex,
one examines all the possible moves to a neighbor community with an increased
modularity. The move giving the largest increase is chosen and realized. At the
end of an iteration, all the vertices of the current graph are processed. One
proceeds with a new iteration if at least one vertex has migrated. To ensure that
the vertices are examined in a purely random order during each iteration, the
exploration of the vertices follows a random permutation of {1,2,...,n} which
is generated at the beginning once and for all. The procedure stops if no vertex
has migrated when all the vertices have been examined. Another possible stop
criterion is a minimum modularity gain: if the total gain obtained in one iteration
is lower than the minimum gain required, the algorithm stops.

2.2 Coarsening phase

The coarsening phase of the Louvain algorithm starts with the initial graph G
(call it level 0 graph G°) and produces a hierarchy of coarser graphs G*, G2, ... of
decreasing orders. We use G' = (V!, B!, w') to denote the graph of level [. From
the graph G° and the initial trivial clustering where each vertex of G° forms
a singleton community, the VM heuristic is applied to generate an improved
clustering C°. Then the graph G! of level 1 is created such that a vertex is
introduced for each community of C° and an edge between two vertices is defined
if they represent two neighboring communities in CY. Now the VM heuristic is
applied to the new graph G' with the clustering of singleton communities. This
process continues and stops at some level L if the VM heuristic can not improve
the initial clustering with singleton communities of G*.
Formally, the generation of the coarsened graph G'™* from (G',C!) are achieved

according to the following steps [21].

1. A vertex in G'*! corresponds to a community of clustering C* and vice versa.
Given a community c of clustering C', let T'*!(c) denote the corresponding
vertex in G,
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Fig. 1. Tllustration of the Louvain algorithm. The initial graph G° contains 17 vertices
and 29 edges. A first application of VM procedure to the trivial clustering of singleton
communities gives the clustering C° composed of 5 communities. Then the coarsen
graph G' is built with weighted edges and loops (squares in this graph represents
communities from a lower level). The VM procedure is applied to the new graph G*
to obtain the clustering C' with 3 communities. At level 2, the application of the
VM procedure to the initial clustering of singleton communities does not change the
clustering. The algorithm stops.



2. Given two communities ¢ and ¢’ of clustering C!, if they are connected by at
least one edge in G!, then their corresponding vertices T'*1(c) and T'*+1(¢’)
1 ’
are linked by an edge in G'*'. Additionally, the edge is weighted by w
3. Aloop is added to each vertex 7' (c) corresponding to community ¢ weighted
by w'tH (T (), TH (c)) = Wi(c,c).

This Louvain algorithm is illustrated on Figure 1 with a simple graph con-
taining 17 vertices and 29 edges.

3 Algorithm Louvain+

We extend the Louvain algorithm by introducing an uncoarsening-refinement
phase at the end of the standard Louvain algorithm. Our Louvain+ algorithm
executes the following steps:

1. Run the Louvain algorithm to obtain a series of coarsened graphs G*, G2, ...G*
and clusterings C', 02, ...C*, assuming the highest level is L.

2. Run the uncoarsening phase from C*~! and project the current clustering
to a new clustering C7~2 where each coarsened community of the current
clustering is unfolded (uncoarsened) into its composing communities. The
new clustering C*~2 is immediately refined by the VM heuristic to improve
its quality. The improved C*~2 serves then as the initial clustering for the
next projection application. This process continues until level 0 is reached.
(Notice that it is useless to start the uncoarsening phase from CT since
no moves are made by the VM heuristic during the last iteration of the
coarsening phase.)

We describe now the process of projection. Given two vertices v} and v
of graph G!, we use v} I''v} to denote the relation “v! and v} belong to the
same community in C'.” Furthermore, we use 7'(v') to denote the community
to which vertex v! belongs in C!. By convention, let CL~! = CL~! denote the
first projected clustering. At each level | = L — 2, L — 3..., the clustering C!
is the result of the projection of C'*! onto C! which is optimized by the VM
heuristic. In C?, two vertices v} and v} belong to the same community if the
vertices in G'*1 corresponding to the communities v!(v!) and ~!(v}) from C!
belong to the same community in C'*1. Formally, this is denoted by v} I'' v}, =
T Y (v})) T T+ (vh)). This relation defines entirely the new clustering C'.
The number of communities in C**! is the same as in C'. The uncoarsening phase
with refinement by the VM heuristic is illustrated on Figure 2 which starts with
the result of Louvain algorithm (i.e., C'') obtained in Figure 1.

4 Experimental results

4.1 Benchmark and protocol of test

To evaluate the efficiency of our Louvain+ algorithm, we compare it with the
Louvain algorithm on a set of 13 networks from different application domains



LEVEL 0 i

ﬂ coarsening ﬂ

N %oarsening

0-0.37872

Fig. 2. Illustration of the uncoarsening-refinement phase of the Louvain+ algorithm.
We start with level 1 from the example of Figure 1. The clustering C' of level 1
has three communities containing communities from level 0. With the uncoarsening
operation, the clustering C'' is projected to a new clustering where new communities
are formed. For instance all the vertices from communities 1 and 5 of C° now form a
new community of the projected clustering while communities 2 and 4 of C° lead to
another new community. Since the structure of communities in the projected clustering
has changed, the VM procedure can be applied to the projected clustering to obtain
an improved clustering with an increased modularity. We see that displacing vertex
6 of the projected clustering from community 1 to community 2 leads to a higher
modularity (0.38228 vs 0.37872).

shown in Table 1. Both algorithms are coded in Free Pascal and executed on a PC
equipped with a Pentium Core i7 870 of 2.93 GHz and 8 GB of RAM 3. Since
the algorithm is sensitive to the order of vertices, we generate 100 instances
of each graph with random vertices order. We use a deterministic version of
the Louvain and Louvain+ algorithms (i.e. without preliminary random vertex
reordering) and execute them on these 100 instances. For each graph, we present
the distribution or average of different measures (modularity, number of vertices
misplaced etc.) obtained over the 100 instances.

We use the minimal modularity gain e between two consecutive iterations
(see Sect. 2.1) as the stop condition of the VM procedure. We use €. and e,
to distinguish the minimal modularity gain for the coarsening phase (for both

3 The source code of our Louvain+ algorithm will be made available at www.info.univ-
angers.fr/pub/hao/Louvainplus.html



Table 1. Benchmark graphs in the literature for community detection with the number
of vertices (n) and the number of edges (m). These are undirected graphs with medium
size (from about 2000 to almost 1 million of edges).

Graph Description n m  Source

Jazz jazz musician collaborations network 198 2742 [23]

Email university e-mail network 1133 5451 [24]

Power topology of the Western States Power Grid of the 4941 6594 [25]
United States

Yeast Protein-Protein interaction network in yeast 2284 6646 [26]

Erdos Erdés collaboration network 6927 11850 [27]

Arxiv network of scientific papers and their citations 9377 24107 [28]

PGP trust network of mutual signing of cryptography 10680 24316 [29]
keys

Condmat2003  scientific coauthorship network in condensed- 27519 116181 [30]
matter physics

Astro-ph collaboration network of arXiv Astro Physics 16046 121251 [31]

Enron email network from Enron 36692 183831 [32]

Brightkite friendship network from a location-based social 58228 214078 [33]
networking service

Slashdot social network from Slashdot news web site 77359 469180 [32]

Gowalla location-based social network from a website 196591 950327 [33]

Louvain and Louvain+) and for the uncoarsening phase (only Louvain+). It is
clear that a smaller € induces more applications of the VM heuristic and thus
more computing time. In all of our experiments, we set €, = 107°.

It is obvious that with the uncoarsening-refinement phase, the proposed
Louvain+ algorithm will increase or leave unchanged the modularity which is
achieved by Louvain. In the rest of this section, we assess experimentally the im-
pact of the uncoarsening phase of Louvain+ on the run time cost, the modularity
improvement and the structural changes of the clustering.

4.2 Execution time and modularity

Figure 3 shows a comparison of accumulated average runtime between Louvain
and Louvain+ when they are applied to the set of 13 graphs with the same
parameter value e, = ¢, = 1075, With the same coarsening phase in both algo-
rithms, we can measure the extra time required by the uncoarsening-refinement
phase of Louvain+. We observe that the curve of Louvain+ is slightly above that
of Louvain but with a similar linear growth on m (number of edges in graph).
The time complexity seems to be in O(m). Curve delta shows a linear increase
of runtime required by the uncoarsening-refinement phase. Louvain+ does not
change the complexity of the Louvain algorithm. Over the 13 tested graphs, the
average increase of runtime caused by the refinement is about 20%.

Figure 4 presents for each graph the gain of modularity given by the refine-
ment of Louvain+. We observe that Louvain+ leads to an increase of modularity
between 0.002 and 0.01 with respect to the results obtained by Louvain. This is
achieved thanks to the uncoarsening phase introduced in Louvain—+.

On the other hand, as shown in Figure 3, Louvain+ consumes more CPU time
than Louvain to achieve the reported (better) results. One interesting question is
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Fig. 3. Runtime comparison between Louvain and Louvain+. The three upper curves
show the average run time of Louvain, Louvain+(e. = 107°) and Louvain+ (¢, = 107?)
on the set of 13 graphs over 100 instances in milliseconds as a function of the number
of edges m. The blue curve delta (lowest one) represents the time difference between
Louvain-+(e. = 107°) and Louvain.
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Fig. 4. Box-and-Whisker Plots for the modularity gain obtained by the uncoarsening-
refinement phase on 100 instances of each graph. Two versions are tested, one with
€. = 107° and one with e, = 10~2 (parameter value on x-axis). In both cases, the final
expected precision is the same, e, = 107°.



to know whether Louvain+- is able to attain the same results with less computing
time. To verify this, we carry out another experiment where we run Louvain+
with a relaxed coarsening phase by using a much larger €. value (e, = 1072
instead of €. = 107?).

Now observe again Figure 4 for the modularity gain of Louvain+. It can be
seen that Louvain+ with e, = 1072 leads to a modularity performance compara-
ble to that with e, = 10~° while the computing time is decreased, and becomes
lower than the computing time of Louvain. This can be explained as follows.
With the relaxed e, value, the coarsening phase is reduced. Even if this gener-
ally leads to a clustering with a decreased modularity at the end of the coarsening
phase, the modularity is improved during the uncoarsening-refinement phase.

Table 2. Structural comparison between Louvain and the two versions of Louvain+
(with €. = 107" and ¢, = 1072 respectively). The average percentage of vertices, mis-
placed before the uncoarsening-refinement phase and correctly placed after, are com-
puted over the 100 instances of graphs. We also show the similarity, computed by the
NMI, between clusterings before and after the refinement phase (column ’similarity’).

graph % corrections similarity
€=10" e =107
Jazz 0.5% 1.3% 0.953
Email 1.2% 1.2% 0.879
Power 0.1% 0.1% 0.947
Yeast 0.6% 0.4% 0.869
Erdos 1.4% 1.4% 0.856
Arxiv 0.5% 0.4% 0.907
PGP 0.1% 0.1% 0.981
Condmat2003 0.4% 0.4% 0.884
Astro-ph 0.7% 0.5% 0.906
Enron 0.2% 0.1% 0.955
Brightkite 0.3% 0.1% 0.931
Slashdot 0.3% 0.0% 0.845
Gowalla 0.3% 0.2% 0.930
average 0.5% 0.5% 0.911

4.3 Bad vertices and structural changes in clustering

We now turn our attention to evaluate the structural changes in clustering made
by the uncoarsening-refinement phase of Louvain+-. For this purpose, we com-
pare the clusterings obtained before and after the uncoarsening-refinement phase,
corresponding to the results of Louvain and Louvain+ respectively. An interest-
ing measure for this evaluation is the percentage of misplaced vertices according



to the strong sense of community criterion [34] correctly placed by the refine-
ment. A community is defined in the strong sense if the internal degree of all the
vertices of the community is greater than the external degree (there are more
adjacent vertices in a community than outside). This is a very strong condition
of existence of a community which is rarely satisfied in real networks, but it is
interesting to count the number of vertices that do not satisfy this condition
for a given clustering. To simplify our discussion, we use the term ’correction’
to designate these vertices misplaced by Louvain (i.e., those vertices with an
internal degree smaller than some external degree), but correctly placed by Lou-
vain+, i.e. by the refinement phase. Generally, according to our observations,
the maximum of modularity goes with the minimum of misplaced vertices.

We show in Table 2 the percentage of vertices corrected by the refinement
phase of Louvain+ and the similarity between clusterings before and after this
phase. We find that the percentage of corrections is positive for all the tested
graphs. This percentage represents 0.1% to 1.4% of the total vertices, with an
average of 0.5% over all the tested graphs. This information allows us to confirm
once again the usefulness of the uncoarsening-refinement phase introduced in the
Louvain+ algorithm.

We also calculate the global structural difference between clusterings before
and after the refinement phase, measured by the similarity called NMI [35]. This
measure is based on information theory and mostly used in community detection.
The range of NMI goes from 0 (completely different clusterings) to 1 (identical
clusterings). Table 2 discloses that structural changes made by the Louvain+
refinement is quite important with a NMI between 0.84 and 0.98. As the NMI
scale is logarithmic, a value of 0.9 implies a significant structural difference.

5 Conclusion and perspectives

In this work, we have presented an improved algorithm for community detection
with modularity. The proposed Louvain+ algorithm extends the well-known Lou-
vain algorithm by adding an uncoarsening-refinement phase, leading to a fully
multi-level method. From the result of the Louvain algorithm, this extension
goes backward and uncoarsens successively each intermediate graph generated
during the Louvain algorithm and applies the vertex mover heuristic to each un-
coarsened graph to improve the modularity. We have assessed the performance
of the proposed algorithm on a set of 13 popular real networks. The comparisons
with Louvain show that with comparable computing times, Louvain+ achieves
systematically better modularity than Louvain does, thanks to the optimization
during the uncoarsening-refinement phase. Experiments also disclosed that the
extension of the uncoarsening phase does not change the linear complexity of
the initial Louvain algorithm.

Like Louvain, the proposed Louvain+ algorithm is conceptually simple and
computationally fast. As a consequence, it can be applied to very large networks
that can be encountered in numerous real situations. Additionally, it can be used



within more sophisticated methods, e.g. to generate initial clusterings that are
further improved by search-based heuristics.
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