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Abstra
t. This paper presents an enhan
ement of the well-known Lou-

vain algorithm for 
ommunity dete
tion with modularity maximization

whi
h was introdu
ed in [16℄. The Louvain algorithm is a partial multi-

level method whi
h applies the vertex mover heuristi
 to a series of 
oars-

ened graphs. The Louvain+ algorithm proposed in this paper generalizes

the Louvain algorithm by in
luding a un
oarsening phase, leading to a

full multi-level method. Experiments on a set of popular 
omplex net-

works show the bene�ts indu
ed by the proposed Louvain+ algorithm.
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1 Introdu
tion

Complex networks are a graph-based model whi
h is very useful to represent


onne
tions and intera
tions of the underlying entities in a real networked sys-

tem su
h as so
ial [1℄, biologi
al [2℄, and te
hnologi
al networks [3℄. A vertex

of the 
omplex network represents an obje
t of the real system while an edge

symbolizes an intera
tion between two obje
ts. For example in a so
ial network,

a vertex 
orresponds to a parti
ular member of the network and an edge repre-

sents a relationship between two members. Complex networks typi
ally display

non-trivial stru
tural and fun
tional properties whi
h impa
t the dynami
s of

pro
esses applied to the network [4℄. Analysis and synthesis of 
omplex networks

help dis
over these spe
i�
 features, understand the dynami
s of the networks

and represent a real 
hallenge for resear
h [5,6℄.

A 
omplex network may be 
hara
terized by a 
ommunity stru
ture. Verti
es

of a 
ommunity are grouped to be highly inter
onne
ted while di�erent 
ommu-

nities are loosely asso
iated with ea
h other. Community is also 
alled 
luster

or still module [7℄. All the 
ommunities of a network form a 
lustering. In terms

of graph theory, a 
lustering 
an be de�ned as a partition of the verti
es of the

underlying graph into disjoint subsets, ea
h subset representing a 
ommunity.

Intuitively, a 
ommunity is a 
ohesive group of verti
es that are more 
on-

ne
ted to ea
h other than to the verti
es in other 
ommunities. To quantify the

quality of a given 
ommunity and more generally a 
lustering, modularity is 
er-

tainly the most popular measure [8℄. Under this quality measure, the problem



of 
ommunity dete
tion be
omes a pure 
ombinatorial optimization problem.

Formally, the modularity measure 
an be stated as follows.

Given a weighted graph G = (V,E,w) where w is a weighting fun
tion, i.e.,

w : V × V 7−→ R su
h that for all {u, v} ∈ E,w({u, v}) 6= 0, and for all {u, v} /∈
E,w({u, v}) = 0. Let X ⊆ V and Y ⊆ V be two vertex subsets, W (X,Y ) the
weight sum of the edges linking X and Y , i.e., W (X,Y ) =

∑

u∈X,v∈Y w({u, v})
(in this formula, ea
h edge is 
ounted twi
e). The modularity of a 
lustering

with k 
ommunities C = {c1, c2, ..., ck} (∀i ∈ {1, 2, ..., k}, ci ⊂ V and ci 6= ∅;

∪k
i=1ci = V ; ∀i, j ∈ {1, 2, ..., k}, ci ∩ cj = ∅) is given by:

Q(C) =

k
∑

i=1

[

W (ci, ci)

W (V, V )
−

(

di
W (V, V )

)2
]

(1)

where di is the sum of the degrees of the verti
es of 
ommunity ci, i.e.,
di =

∑

v∈ci
deg(v) with deg(v) being the degree of vertex v.

It is easy to show that Q belongs to the interval [-0.5,1℄. A 
lustering with a

small Q value 
lose to -0.5 implies the absen
e of real 
ommunities. A large Q
value 
lose to 1 indi
ates a good 
lustering 
ontaining highly 
ohesive 
ommu-

nities. The trivial 
lustering with a single 
luster has a Q value of 0.

Community dete
tion with modularity is an important resear
h topi
 and

has a number of 
on
rete appli
ations [9℄. In addition to its pra
ti
al interest,


ommunity dete
tion is also notable for its di�
ulty from a 
omputational point

of view. Indeed, the problem is known to be NP-hard [10℄ and 
onstitutes thus

a real 
hallenge for optimization methods.

A number of heuristi
 algorithms have been proposed re
ently in the liter-

ature for 
ommunity dete
tion with the modularity measure. These algorithms

follow three general solution approa
hes. First, greedy agglomeration algorithms

like [11,12℄ iteratively merge two 
lusters that yield a 
lustering by following a

greedy 
riterion. Se
ond, lo
al optimization algorithms like [13,14,15℄ improve

progressively the solution quality by transitioning from a 
lustering to another


lustering (often of better quality) by applying a move operator. The quality

of su
h an algorithm depends strongly (among other things) on the move op-

erator(s) employed. Third, hybrid algorithms like [16,17,18,19℄ 
ombine several

sear
h strategies (e.g., greedy and multi-level methods) in order to take ad-

vantage of the underlying methods. Among the existing 
ommunity dete
tion

algorithms, the Louvain algorithm presented in [16℄ (see next se
tion) is among

the most popular methods.

The Louvain algorithm belongs to the hybrid approa
h and 
an be 
ompared

to the general multi-level framework whi
h requires both a 
oarsening and un-


oarsening phases [20℄. The 
oarsening phase redu
es the size of a graph at ea
h

level by grouping several verti
es of the original graph into a single vertex. The

un
oarsening phase does the inverse by unfolding the verti
es of the 
oarsen

graph and then applying a re�nement (optimization) pro
edure. While Louvain

algorithm does use a 
oarsening phase, it omits the un
oarsening phase. How-

ever, from an optimization point of view, it is known that the un
oarsening

phase within the multi-level framework is useful to further improve the quality



of the solution (see the example given in Se
t. 2). This paper aims to extend the

Louvain algorithm by in
luding a un
oarsening phase, making the algorithm a

full multi-level method. Experiments on a set of popular 
omplex networks show

the bene�ts indu
ed by the proposed Louvain+ algorithm.

2 The Louvain Algorithm

The Louvain algorithm presented by Blondel et al. [16℄ operates on multiple

levels of graphs, applying the vertex mover (VM) pro
edure on ea
h level to

improve the modularity. In this Se
tion, we re
all the two key elements of the

methods: the VM pro
edure and the 
oarsening phase.

2.1 Vertex mover pro
edure

For a given graph where ea
h vertex represents a 
ommunity, one iteration of

VM explores all the verti
es of the graph in a random order. For ea
h vertex,

one examines all the possible moves to a neighbor 
ommunity with an in
reased

modularity. The move giving the largest in
rease is 
hosen and realized. At the

end of an iteration, all the verti
es of the 
urrent graph are pro
essed. One

pro
eeds with a new iteration if at least one vertex has migrated. To ensure that

the verti
es are examined in a purely random order during ea
h iteration, the

exploration of the verti
es follows a random permutation of {1, 2, ..., n} whi
h

is generated at the beginning on
e and for all. The pro
edure stops if no vertex

has migrated when all the verti
es have been examined. Another possible stop


riterion is a minimum modularity gain: if the total gain obtained in one iteration

is lower than the minimum gain required, the algorithm stops.

2.2 Coarsening phase

The 
oarsening phase of the Louvain algorithm starts with the initial graph G
(
all it level 0 graph G0

) and produ
es a hierar
hy of 
oarser graphs G1, G2, ... of
de
reasing orders. We use Gl = (V l, El, wl) to denote the graph of level l. From
the graph G0

and the initial trivial 
lustering where ea
h vertex of G0
forms

a singleton 
ommunity, the VM heuristi
 is applied to generate an improved


lustering C0
. Then the graph G1

of level 1 is 
reated su
h that a vertex is

introdu
ed for ea
h 
ommunity of C0
and an edge between two verti
es is de�ned

if they represent two neighboring 
ommunities in C0
. Now the VM heuristi
 is

applied to the new graph G1
with the 
lustering of singleton 
ommunities. This

pro
ess 
ontinues and stops at some level L if the VM heuristi
 
an not improve

the initial 
lustering with singleton 
ommunities of GL
.

Formally, the generation of the 
oarsened graphGl+1
from (Gl

,Cl
) are a
hieved

a

ording to the following steps [21℄.

1. A vertex in Gl+1

orresponds to a 
ommunity of 
lustering Cl

and vi
e versa.

Given a 
ommunity c of 
lustering Cl
, let T l+1(c) denote the 
orresponding

vertex in Gl+1
.
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Fig. 1. Illustration of the Louvain algorithm. The initial graph G
0

ontains 17 verti
es

and 29 edges. A �rst appli
ation of VM pro
edure to the trivial 
lustering of singleton


ommunities gives the 
lustering C
0

omposed of 5 
ommunities. Then the 
oarsen

graph G
1
is built with weighted edges and loops (squares in this graph represents


ommunities from a lower level). The VM pro
edure is applied to the new graph G
1

to obtain the 
lustering C
1
with 3 
ommunities. At level 2, the appli
ation of the

VM pro
edure to the initial 
lustering of singleton 
ommunities does not 
hange the


lustering. The algorithm stops.



2. Given two 
ommunities c and c′ of 
lustering Cl
, if they are 
onne
ted by at

least one edge in Gl
, then their 
orresponding verti
es T l+1(c) and T l+1(c′)

are linked by an edge in Gl+1
. Additionally, the edge is weighted by

W l(c,c′)
2 .

3. A loop is added to ea
h vertex T l+1(c) 
orresponding to 
ommunity c weighted
by wl+1(T l+1(c), T l+1(c)) = W l(c, c).

This Louvain algorithm is illustrated on Figure 1 with a simple graph 
on-

taining 17 verti
es and 29 edges.

3 Algorithm Louvain+

We extend the Louvain algorithm by introdu
ing an un
oarsening-re�nement

phase at the end of the standard Louvain algorithm. Our Louvain+ algorithm

exe
utes the following steps:

1. Run the Louvain algorithm to obtain a series of 
oarsened graphsG1, G2, ...GL

and 
lusterings C1, C2, ...CL
, assuming the highest level is L.

2. Run the un
oarsening phase from CL−1
and proje
t the 
urrent 
lustering

to a new 
lustering C̄L−2
where ea
h 
oarsened 
ommunity of the 
urrent


lustering is unfolded (un
oarsened) into its 
omposing 
ommunities. The

new 
lustering C̄L−2
is immediately re�ned by the VM heuristi
 to improve

its quality. The improved C̄L−2
serves then as the initial 
lustering for the

next proje
tion appli
ation. This pro
ess 
ontinues until level 0 is rea
hed.

(Noti
e that it is useless to start the un
oarsening phase from CL
sin
e

no moves are made by the VM heuristi
 during the last iteration of the


oarsening phase.)

We des
ribe now the pro
ess of proje
tion. Given two verti
es vl1 and vl2
of graph Gl

, we use vl1 Γ
l vl2 to denote the relation �vl1 and vl2 belong to the

same 
ommunity in Cl
.� Furthermore, we use γl(vl) to denote the 
ommunity

to whi
h vertex vl belongs in Cl
. By 
onvention, let C̄L−1 = CL−1

denote the

�rst proje
ted 
lustering. At ea
h level l = L − 2, L − 3..., the 
lustering C̄l

is the result of the proje
tion of C̄l+1
onto Cl

whi
h is optimized by the VM

heuristi
. In C̄l
, two verti
es vl1 and vl2 belong to the same 
ommunity if the

verti
es in Gl+1

orresponding to the 
ommunities γl(vl1) and γl(vl2) from Cl

belong to the same 
ommunity in Cl+1
. Formally, this is denoted by vl1 Γ

l vl2 ≡
T l(γl(vl1))Γ

l+1 T l(γl(vl2)). This relation de�nes entirely the new 
lustering C̄l
.

The number of 
ommunities in C̄l+1
is the same as in C̄l

. The un
oarsening phase

with re�nement by the VM heuristi
 is illustrated on Figure 2 whi
h starts with

the result of Louvain algorithm (i.e., C1
) obtained in Figure 1.

4 Experimental results

4.1 Ben
hmark and proto
ol of test

To evaluate the e�
ien
y of our Louvain+ algorithm, we 
ompare it with the

Louvain algorithm on a set of 13 networks from di�erent appli
ation domains
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Fig. 2. Illustration of the un
oarsening-re�nement phase of the Louvain+ algorithm.

We start with level 1 from the example of Figure 1. The 
lustering C
1
of level 1

has three 
ommunities 
ontaining 
ommunities from level 0. With the un
oarsening

operation, the 
lustering C
1
is proje
ted to a new 
lustering where new 
ommunities

are formed. For instan
e all the verti
es from 
ommunities 1 and 5 of C
0
now form a

new 
ommunity of the proje
ted 
lustering while 
ommunities 2 and 4 of C
0
lead to

another new 
ommunity. Sin
e the stru
ture of 
ommunities in the proje
ted 
lustering

has 
hanged, the VM pro
edure 
an be applied to the proje
ted 
lustering to obtain

an improved 
lustering with an in
reased modularity. We see that displa
ing vertex

6 of the proje
ted 
lustering from 
ommunity 1 to 
ommunity 2 leads to a higher

modularity (0.38228 vs 0.37872).

shown in Table 1. Both algorithms are 
oded in Free Pas
al and exe
uted on a PC

equipped with a Pentium Core i7 870 of 2.93 GHz and 8 GB of RAM

3

. Sin
e

the algorithm is sensitive to the order of verti
es, we generate 100 instan
es

of ea
h graph with random verti
es order. We use a deterministi
 version of

the Louvain and Louvain+ algorithms (i.e. without preliminary random vertex

reordering) and exe
ute them on these 100 instan
es. For ea
h graph, we present

the distribution or average of di�erent measures (modularity, number of verti
es

mispla
ed et
.) obtained over the 100 instan
es.

We use the minimal modularity gain ǫ between two 
onse
utive iterations

(see Se
t. 2.1) as the stop 
ondition of the VM pro
edure. We use ǫc and ǫr
to distinguish the minimal modularity gain for the 
oarsening phase (for both

3

The sour
e 
ode of our Louvain+ algorithm will be made available at www.info.univ-

angers.fr/pub/hao/Louvainplus.html



Table 1. Ben
hmark graphs in the literature for 
ommunity dete
tion with the number

of verti
es (n) and the number of edges (m). These are undire
ted graphs with medium

size (from about 2000 to almost 1 million of edges).

Graph Des
ription n m Sour
e

Jazz jazz musi
ian 
ollaborations network 198 2742 [23℄

Email university e-mail network 1133 5451 [24℄

Power topology of the Western States Power Grid of the

United States

4941 6594 [25℄

Yeast Protein-Protein intera
tion network in yeast 2284 6646 [26℄

Erdos Erdös 
ollaboration network 6927 11850 [27℄

Arxiv network of s
ienti�
 papers and their 
itations 9377 24107 [28℄

PGP trust network of mutual signing of 
ryptography

keys

10680 24316 [29℄

Condmat2003 s
ienti�
 
oauthorship network in 
ondensed-

matter physi
s

27519 116181 [30℄

Astro-ph 
ollaboration network of arXiv Astro Physi
s 16046 121251 [31℄

Enron email network from Enron 36692 183831 [32℄

Brightkite friendship network from a lo
ation-based so
ial

networking servi
e

58228 214078 [33℄

Slashdot so
ial network from Slashdot news web site 77359 469180 [32℄

Gowalla lo
ation-based so
ial network from a website 196591 950327 [33℄

Louvain and Louvain+) and for the un
oarsening phase (only Louvain+). It is


lear that a smaller ǫ indu
es more appli
ations of the VM heuristi
 and thus

more 
omputing time. In all of our experiments, we set ǫr = 10−5
.

It is obvious that with the un
oarsening-re�nement phase, the proposed

Louvain+ algorithm will in
rease or leave un
hanged the modularity whi
h is

a
hieved by Louvain. In the rest of this se
tion, we assess experimentally the im-

pa
t of the un
oarsening phase of Louvain+ on the run time 
ost, the modularity

improvement and the stru
tural 
hanges of the 
lustering.

4.2 Exe
ution time and modularity

Figure 3 shows a 
omparison of a

umulated average runtime between Louvain

and Louvain+ when they are applied to the set of 13 graphs with the same

parameter value ǫc = ǫr = 10−5
. With the same 
oarsening phase in both algo-

rithms, we 
an measure the extra time required by the un
oarsening-re�nement

phase of Louvain+. We observe that the 
urve of Louvain+ is slightly above that

of Louvain but with a similar linear growth on m (number of edges in graph).

The time 
omplexity seems to be in O(m). Curve delta shows a linear in
rease

of runtime required by the un
oarsening-re�nement phase. Louvain+ does not


hange the 
omplexity of the Louvain algorithm. Over the 13 tested graphs, the

average in
rease of runtime 
aused by the re�nement is about 20%.

Figure 4 presents for ea
h graph the gain of modularity given by the re�ne-

ment of Louvain+. We observe that Louvain+ leads to an in
rease of modularity

between 0.002 and 0.01 with respe
t to the results obtained by Louvain. This is

a
hieved thanks to the un
oarsening phase introdu
ed in Louvain+.

On the other hand, as shown in Figure 3, Louvain+ 
onsumes more CPU time

than Louvain to a
hieve the reported (better) results. One interesting question is
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.



to know whether Louvain+ is able to attain the same results with less 
omputing

time. To verify this, we 
arry out another experiment where we run Louvain+

with a relaxed 
oarsening phase by using a mu
h larger ǫc value (ǫc = 10−2

instead of ǫc = 10−5
).

Now observe again Figure 4 for the modularity gain of Louvain+. It 
an be

seen that Louvain+ with ǫc = 10−2
leads to a modularity performan
e 
ompara-

ble to that with ǫc = 10−5
while the 
omputing time is de
reased, and be
omes

lower than the 
omputing time of Louvain. This 
an be explained as follows.

With the relaxed ǫc value, the 
oarsening phase is redu
ed. Even if this gener-

ally leads to a 
lustering with a de
reased modularity at the end of the 
oarsening

phase, the modularity is improved during the un
oarsening-re�nement phase.

Table 2. Stru
tural 
omparison between Louvain and the two versions of Louvain+

(with ǫc = 10
−5

and ǫc = 10
−2

respe
tively). The average per
entage of verti
es, mis-

pla
ed before the un
oarsening-re�nement phase and 
orre
tly pla
ed after, are 
om-

puted over the 100 instan
es of graphs. We also show the similarity, 
omputed by the

NMI, between 
lusterings before and after the re�nement phase (
olumn 'similarity').

graph % 
orre
tions similarity

ǫc = 10
−5

ǫc = 10
−2

Jazz 0.5% 1.3% 0.953

Email 1.2% 1.2% 0.879

Power 0.1% 0.1% 0.947

Yeast 0.6% 0.4% 0.869

Erdos 1.4% 1.4% 0.856

Arxiv 0.5% 0.4% 0.907

PGP 0.1% 0.1% 0.981

Condmat2003 0.4% 0.4% 0.884

Astro-ph 0.7% 0.5% 0.906

Enron 0.2% 0.1% 0.955

Brightkite 0.3% 0.1% 0.931

Slashdot 0.3% 0.0% 0.845

Gowalla 0.3% 0.2% 0.930

average 0.5% 0.5% 0.911

4.3 Bad verti
es and stru
tural 
hanges in 
lustering

We now turn our attention to evaluate the stru
tural 
hanges in 
lustering made

by the un
oarsening-re�nement phase of Louvain+. For this purpose, we 
om-

pare the 
lusterings obtained before and after the un
oarsening-re�nement phase,


orresponding to the results of Louvain and Louvain+ respe
tively. An interest-

ing measure for this evaluation is the per
entage of mispla
ed verti
es a

ording



to the strong sense of 
ommunity 
riterion [34℄ 
orre
tly pla
ed by the re�ne-

ment. A 
ommunity is de�ned in the strong sense if the internal degree of all the

verti
es of the 
ommunity is greater than the external degree (there are more

adja
ent verti
es in a 
ommunity than outside). This is a very strong 
ondition

of existen
e of a 
ommunity whi
h is rarely satis�ed in real networks, but it is

interesting to 
ount the number of verti
es that do not satisfy this 
ondition

for a given 
lustering. To simplify our dis
ussion, we use the term '
orre
tion'

to designate these verti
es mispla
ed by Louvain (i.e., those verti
es with an

internal degree smaller than some external degree), but 
orre
tly pla
ed by Lou-

vain+, i.e. by the re�nement phase. Generally, a

ording to our observations,

the maximum of modularity goes with the minimum of mispla
ed verti
es.

We show in Table 2 the per
entage of verti
es 
orre
ted by the re�nement

phase of Louvain+ and the similarity between 
lusterings before and after this

phase. We �nd that the per
entage of 
orre
tions is positive for all the tested

graphs. This per
entage represents 0.1% to 1.4% of the total verti
es, with an

average of 0.5% over all the tested graphs. This information allows us to 
on�rm

on
e again the usefulness of the un
oarsening-re�nement phase introdu
ed in the

Louvain+ algorithm.

We also 
al
ulate the global stru
tural di�eren
e between 
lusterings before

and after the re�nement phase, measured by the similarity 
alled NMI [35℄. This

measure is based on information theory and mostly used in 
ommunity dete
tion.

The range of NMI goes from 0 (
ompletely di�erent 
lusterings) to 1 (identi
al


lusterings). Table 2 dis
loses that stru
tural 
hanges made by the Louvain+

re�nement is quite important with a NMI between 0.84 and 0.98. As the NMI

s
ale is logarithmi
, a value of 0.9 implies a signi�
ant stru
tural di�eren
e.

5 Con
lusion and perspe
tives

In this work, we have presented an improved algorithm for 
ommunity dete
tion

with modularity. The proposed Louvain+ algorithm extends the well-known Lou-

vain algorithm by adding an un
oarsening-re�nement phase, leading to a fully

multi-level method. From the result of the Louvain algorithm, this extension

goes ba
kward and un
oarsens su

essively ea
h intermediate graph generated

during the Louvain algorithm and applies the vertex mover heuristi
 to ea
h un-


oarsened graph to improve the modularity. We have assessed the performan
e

of the proposed algorithm on a set of 13 popular real networks. The 
omparisons

with Louvain show that with 
omparable 
omputing times, Louvain+ a
hieves

systemati
ally better modularity than Louvain does, thanks to the optimization

during the un
oarsening-re�nement phase. Experiments also dis
losed that the

extension of the un
oarsening phase does not 
hange the linear 
omplexity of

the initial Louvain algorithm.

Like Louvain, the proposed Louvain+ algorithm is 
on
eptually simple and


omputationally fast. As a 
onsequen
e, it 
an be applied to very large networks

that 
an be en
ountered in numerous real situations. Additionally, it 
an be used



within more sophisti
ated methods, e.g. to generate initial 
lusterings that are

further improved by sear
h-based heuristi
s.
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