Recombination Operators for Satisfiability
Problems

Frédéric Lardeux, Frédéric Saubion and Jin-Kao Hao

LERIA, University of Angers
2 Bd Lavoisier, 49045 Angers Cedex 01, France
Frederic.Lardeux@univ-angers.fr
Frederic.Saubion@univ-angers.fr
Jin-Kao.HaoQuniv-angers.fr

Abstract. In this paper, we present several recombination operators
that are specially designed for SAT problems. These operators take into
account the semantic information induced by the structure of the given
problem instance under consideration. Studies are carried out to assess
the relative performance of these recombination operators on the one
hand, and to show the high effectiveness of one of them when it is em-
bedded into a hybrid genetic local search algorithm on the other hand.

1 Introduction

The satisfiability problem (SAT) [6] consists in finding a truth assignment that
satisfies a well-formed Boolean expression. An instance of the SAT problem is
defined by a set of boolean variables (also called atoms) X = {z1,...,z,} and
a boolean formula ¢:{0,1}" — {0,1}. A literal is a variable or its negation.
A (truth) assignment is a function v: X — {0,1}. The formula is said to be
satisfiable if there exists an assignment satisfying ¢ and unsatisfiable otherwise.
The formula ¢ is in conjunctive normal form (CNF) if it is a conjunction of
clauses where a clause is a disjunction of literals. In this paper, ¢ is supposed to
be in CNF.

SAT is originally stated as a decision problem but we are also interesting
here in the MAX-SAT problem which consists in finding an assignment which
satisfies the maximum number of clauses in ¢.

SAT and its variants have many practical applications (VLSI test and veri-
fication, consistency maintenance, fault diagnosis, planning ...). During the last
decade, several improved solution algorithms have been developed and impor-
tant progress has been achieved. These algorithms can be divided into two main
classes:

Complete algorithms: Designed to solve the initial decision problem, the most
powerful complete algorithms are based on the Davis-Putnam-Loveland proce-
dure [2]. They differ essentially by the underlying heuristic used for the branching
rule [13,19]. Specific techniques such as symmetry-breaking, backbone detecting

or equivalence elimination are also used to reinforce these algorithms [1,4,12].

Incomplete algorithms: They are mainly based on local search [8,10,11,15]
and evolutionary algorithms [3,5,14,7,9]. Walksat [15] and UnitWalk [10] are
famous examples of incomplete algorithms. Incomplete algorithms represent one
of the most powerful approaches for finding models of very large SAT instances
and for solving large scale MAX-SAT instances.

In this paper, we are interested in the hybrid genetic local search approach
for SAT and in particular the design of recombination (crossover) operators. We
introduce two new recombination operators taking into account the constraint
structure of the given problem instance under consideration.

To assess the performance of these recombination operators, we compare
them with two other crossover operators. We also study the combined effect of
our crossover operators when they are embedded into a genetic local search algo-
rithm. We show experimentally that such a hybrid algorithm is able to produce
highly competitive results compared with other state of the art evolutionary
algorithms as well as with WalkSat and UnitWalk, two leading SAT solvers.

In the next section, we present the hybrid evolutionary framework for SAT.
We propose then an analysis of the recombination operators and of the interac-
tion between LS and recombination operators. At last, we compare our hybrid
algorithm to other well-known algorithms in order to evaluate its performance.

2 Hybrid Evolutionary Algorithm Framework

In this section, we define the main lines of a hybrid evolutionary algorithm ob-
tained by mixing a recombination stage with a local search (LS) process. Given
an initial population, the first step consists in selecting some best elements (i.e.
assignments) according to a fitness function eval. Then, recombinations are per-
formed on this selected population. Each child is individually improved using
a local search process and inserted under certain conditions in the population.
The general algorithm is described in figure 1. It is clear that this algorithm can
be adjusted by changing the selection function, the recombination operator or
the local search method but also by modifying the insertion conditions.

Representation The most obvious way to represent an individual for a SAT
instance with n variables is a string of n bits where each variable is associated to
one bit. Other representation schemes are discussed in [7]. Therefore the search
space is the set S = {0,1}" (i.e. all the possible strings of n bits) and an individ-
ual X obviously corresponds to an assignment. X |¢ denotes the truth value of
the 7% atom. Given an individual X and a clause ¢, we use the boolean function
sat(X,c) to denote the fact that the assignment associated to X satisfies the
clause c.

Insertion

Improved Children

Population

Selection Local Search

I

Recombination

Fig. 1. Algorithm Scheme

Fitness Function Given a formula ¢ and an individual X, the fitness of X is
defined to be the number of clauses which are not satisfied by X:

eval: § - IN
X — card({c|-sat(X,c) Ac € ¢})

where card denotes as usual the cardinality of a set. The smallest value of this
function equals 0 if ¢ is satisfiable and an individual having this fitness value
corresponds to a satisfying solution.

Selection Process The selection operator is a function which takes as input a
given population and extracts some individuals which will serve as parents for
the recombination stage. To insure an efficient search, it is necessary to keep
some diversity in the population. Indeed, if the selected parents are too similar,
some region of the search space S will not be explored.

Recombination This operator creates new assignments from two selected par-
ent assignments. Classical random crossover may be used. However, as we show
later in the paper, specific crossovers that are meaningful to the SAT problem
may be much more powerful.

Local Search The local search process improves a configuration by a sequence
of small changes in order to reach a local optimum according to the evaluation
function, a good neighborhood function [18] and some mechanisms like tabu list,
random walk, and so on.

Insertion An improved child can be inserted according to different conditions
(e.g. if it is better than any individual of the population). These conditions are
important with respect to the average equality and the diversity of the popula-
tion. A child is inserted in the population if it is better than the worst of the

sub-population of possible parents.

3 Recombination Operators

A recombination operator (also called crossover) has to take into account as
much as possible the semantics of the individuals in order to control the general
search process and to obtain an efficient algorithm. In SAT and MAX-SAT, the
variables are the atoms and a constraint structure is induced by the clauses of
the given formula. Therefore, while the representation focuses on the atoms, an
efficient crossover should take into account this whole constraint structure.

We first define a function allowing to change the value of the variables:

flip: {0,1} — {0,1}
z —»1l-=x

Then, we define an improvement function:

imp: S x IN = IN
(X,1) — card({c| sat(X[i « flip(X|i)],c) A —sat(X,c)})
—card({c | —sat(X[i « flip(X|7)],c) A sat(X,c)})

This function computes the improvement obtained by flipping the it* com-
ponent of X and was previously introduced in GSAT and Walksat [16,15]. It
corresponds to the gain of the solution according to the function eval (i.e. the
number of false clauses which become true by flipping the atom i minus the
number of satisfied clauses which become false). Remark that if this number is
negative then the number of false clauses increases if the flip is performed.

In order to take into account the specific structures of a problem, we will
use the relations over the variables induced by the clauses. There are three
possibilities as to the satisfaction of a clause under the two parents:

— the clause is satisfied in the two parents,
— the clause is unsatisfied in the two parents,
— the clause is satisfied in only one parent.

The aim of our recombination is then to obtain a child which benefits from the
parents but with the maximum number of true clauses. Therefore, one should
try to correct false clauses and to maintain true ones.

When a clause c is false for the two parents, a possible solution to turn ¢ to
true is to flip a variable of ¢ 1. Therefore, the child receives an opposite value for
this variable with respect to its parents. Unfortunately, this action may produce
false clauses. To limit this number of appearing false clauses, the choice of the
variable is guided by the imp evaluation function.

L If a clause is false for both parents, then all the variables appearing in this clause
have necessarily the same value in both parents. This comes from the fact that a
clause can be false only if all of its literals are false.

When a clause ¢ is true for the two parents, we may copy in the child all
the values assigned to the variables of ¢ in one of the parent in the child. Un-
fortunately, this action would only take into account the structure of the chosen
parent. To be fair, we should copy values of variables coming from both parents.
But, these values can be different. A solution is to select the variable whose flip
has the smallest impact and to put its value such that the corresponding literal
is true in c. Since only one variable is necessary to maintain this clause true, we
may again guide this operation with the imp function.

Finally, when a clause ¢ is true for one parent and false for the other, the so-
lution proposed by Fleurent and Ferland [5] is: “The corresponding variables [to
this clause] are assigned values according to the parent satisfying the identified
clause.”

It is clear that the order in which the clauses are traversed is important. Here,
they are traversed in the same order that they appear in the studied benchmark.

We now present the definitions of four crossovers. Three of them are struc-
tured operators using the previous remarks. We present also the classical uniform
crossover, which is used as a reference for comparisons. Each operator is a func-
tion cross: S x & — S (i.e. two parents produce one child).

Let X and Y be two parents and Z be the resulting child.

Uniform Crossover
Each variable of Z takes the value of X orY with equal probability.

Corrective Clause crossover (CC)

For each clause ¢ such that —sat(X,e) A —sat(Y,c) A —sat(Z,c) and for all po-
sitions i such that the variable z; appears in ¢, we compute o = imp(X,i) +
imp(Y,i) and we set Z|k = flip(X|k) where k is the position such that o is
mazimum. All the variables of Z with no value take the value of X or Y with
equal probability.

Corrective Clause and Truth Maintenance crossover (CCTM)

For each clause ¢ such that —sat(X,e) A —sat(Y,c) A —sat(Z,c) and for all po-
sitions i such that the variable z; appears in ¢, we compute o = imp(X,i) +
imp(Y,i) and we set Z|k = flip(X|k) where k is the position such that o is
mazimum. For all the clauses ¢ such that sat(X,c) A sat(Y,c) and for all posi-
tions i such that the variable x; appears in ¢ and its associated literal is true at
least in one parent, we compute o = imp(X, i) +imp(Y,i) and we value Z|k such
that sat(Z,c) where k is the position such that o is minimum. All the variables
of Z with no value take the value of X orY with equal probability.

Fleurent and Ferland crossover [5] (F&F)

For each clause ¢ such that sat(X, c)A—sat(Y,c) (resp. ~sat(X, c)Asat(Y,c)) and
for all the positions i such that the varigble z; € ¢, Z|i = X|i (resp. Z|i =Y |i).
All the variables of Z with no value take the value of X orY with equal proba-

bilaty.

Notice that CC, CCTM and F&F crossovers differ on the use of the truth
values of the clauses induced by the parents. As mentioned above, the key idea is
to correct false clauses, to preserve true clauses and to maintain the structure of
the assignments. In order to study the characteristics of the different operators,
we reduce the algorithm to a sequence of recombination stages on a population
with or without the selection process between two consecutive stages. The tests
are realized with a random 3-sat instance (£5600.cnf) with 500 variables and a
ratio of clauses-to-variables of 4.3. Two measures are used: the profile of num-
ber of crossovers vs. fitness and number of crossovers vs. population entropy.
Entropy expresses the diversity of the population. The smallest value is 0, indi-
cating that all the individual of the population are the same. The largest value
is 1, indicating that all the individuals are different.

Definition 1. Entropy [5] Let n;; = number of times where the variable i is set
to j in the population P.

n 1
Z Z card(P) log card(P)
=1 35=0

entropy(P) = nlog2
The population size is 100 and the sub-population of possible parents has
a size of 15. Two parents are randomly chosen in this sub-population. A child
is inserted in the population if its fitness is better than the fitness of the worst
individual of the sub-population.
Figure 2 shows the performances of the four crossover operators combined
with or without selection according to the two measures. One observes that:

— the selection damages the F&F crossover behavior,

— the selection improves the results of the uniform crossover, the CCTM crossover
and the CC crossover,

— the uniform crossover does not provide good results with or without selection,

— the CCTM crossover and the CC crossover have a better entropy than the
F&F crossover,

— the CC crossover and the CCTM crossover with the selection process provide
very good results with a diversity higher than all the other crossovers.

Therefore, an efficient crossover is not necessary a crossover which quickly
improves the whole population.Rather, the crossover should be able to ensure
a good trade-off between quality and diversification of the population. The di-
versification allows a better exploration of the search space and prevents the
population from stagnating in poor local optima.

4 Crossovers and Local Search

A good crossover insures a meaningful diversification leading the search to promis-
ing areas. Now it is necessary to add LS to perform an intensified search of solu-

Average number of false clauses

False clauses
False clauses

1000

200 w o w0 20 200 o0 a0
Crossovers (without selection) Crossovers (with selection)

Population diversity

Entropy

1000

200 w o w0 20 200 0 a0
Crossovers (without selection) Crossovers (with selection)

Fig. 2. The left column shows the crossovers without the selection stage and the right
column shows the crossovers with the selection stage (1-Uniform crossover, 2-CCTM
crossover, 3-CC crossover and 4-F&F crossover)

tions in the identified particular areas. Based on this idea, the GASAT algorithm
is a hybridization of LS and a specific recombination operator [9].

To assess further the performance of each crossover operator within a whole
algorithm, we insert each of this four cross operators in GASAT and employ
a tabu search as local searcher. Now we run with the conditions detailed in
section 5.2 each of the four hybrid algorithms on four instances. 3blocks is a
blocks world instance, pari6-4-c is a parity function instance and £1000 and
color10-3 are presented in details in section 5.2. Experimental conditions are
the same for the four algorithms. Notice that the F&F crossover is used without
the selection process since this gives better results (figure 2).

Two comparison criteria are used in order to evaluate the different crossovers
improved by a LS. The first criterion is the success rate (%) which corresponds
to the number of successful runs divided by the number of tries. The second
criterion is the average number of crossovers (cr.) for the successful runs.

Table 1 shows a slight dominance of the CC crossover. These results show the
interaction between CC and LS is more powerful than the interactions between
the other crossovers and LS operator.

CC CCTM F&F Uniform
instances % cr. % | cr. % | cr. % | cr.
3blocks 10.00{439.00 (1cl) (1 cl.) (1cl)
color-10-3({100.00|287.00(|93.33(224.06(|96.66|255.20(/93.33(218.00
£1000 90.35(235.31(66.66|177.38(|83.33|189.90(|80.00(146.08
parl6-4—c || 5.00|788.00|[10.00|206.00|| (2.80 cl.) || (2.75 cl.)

Table 1. Comparison of different crossovers included in the GASAT algorithm (if no
assignment is found then the average number of false clauses is given)

5 Experimental Results with the CC crossover

In this section, we evaluate the GASAT algorithm with the CC crossover on
different classes of benchmarks. We compare first GASAT with five evolutionary
algorithms presented in [7]. Then we show comparisons with the well known
Walksat [15] and UnitWalk [10], a winner of the SAT2003 competition. All our
tests are realized on a cluster with Linux and Alinka (5 nodes with each of them
2 CPU Pentium IV 2, 2 Ghz and 1 GB of RAM) used in sequential run.

5.1 Comparisons with evolutionary algorithms from [7]

The purpose of this section is to compare GASAT with several state-of-the-
art evolutionary algorithms presented in [7]. To make the comparison as fair
as possible, we run GASAT under the same condition as that used in [7]. More
precisely, each problem instance is solved between 5 and 50 times, each run being
limited to 3 x 10%. The benchmarks used in this experimentation are:

— suite A, 4 groups of 3 instances with 30, 50, 75 and 100 variables,
— suite B, 3 groups of 50 instances with 50, 75 and 100 variables,
— suite C, 5 groups of 100 instances with 20, 40, 60, 80 and 100 variables.

All these instances are random 3-sat instances with a ratio clauses-to-variables
of 4.3.

Results of GASAT are shown in table 2, together with the results of the
five evolutionary algorithms reported in [7]. One observes that on these random
instances GASAT with CC crossover does not have the best success rate but
requires in general much fewer flips to obtain a solution. Next section will show
more results of GASAT on much larger random instances as well as structured
instances.

5.2 Comparison with Walksat and UnitWalk

Due to the incomplete and non deterministic character of GASAT, Walksat and
UnitWalk, each algorithm has been run 20 times on each benchmark with an
execution time limited to 1 hour. These algorithms are used with their standard
parameters. The number of flips is limited to 101 x 10° for the three algorithms.

| Instances [GASAT [SAWEA [RFEA2 [[RFEA2+[FlipGA || ASAP |
[Suite[nb.[var.[%[A [%[| A [[%] 8. [%] A. [[%] A [%[4]

3 [30 || 99] 1123][100[34015[[100] 3535][100] 2481[[100] 25490[[100] 9550
3 |40 |[100] 1135]| 93]53289([100] 3231|[100| 3081|[100| 17693][100] 8760
3 |50 || 91| 1850{| 85|60743][100] 8506/[100| 7822([100|127900][100| 68483
3 [100(95| 7550{ 72[86631|| 99[26501]| 97|34780(| 87|116653|[100| 52276
50 [50 || 96] 2732]] -] -]|100[12053][100[11350][100]103800[[100] 61186
50 | 75 || 83| 6703] -| -|| 95/41478|| 96]39396]| 82| 29818 87| 39659
50 [100 || 69[28433] -| -|| 77|71907|| 81|80282]| 57| 20675 59| 43601

100(20 (|100| 109((100(12634|[100| 365(|100| 365|/100| 1073||100| 648
100(40 (|100| 903|| 89|35988|(100| 3015|{100| 2951{|100| 14320|/100| 16644
100| 60 || 97| 9597|| 73|47131|| 99|18857|| 99|19957(|100(127520(|100|184419
100| 80 || 66| 7153|| 52|62859|| 92|50199|| 95|49312(| 73| 29957|| 72| 45942
100(100|| 74| 1533|| 51|69657|| 72|68053|| 79|74459(62| 20319|| 61| 34548
Table 2. Comparison between evolutionary algorithms (%-success rate , fl.-average
number of flips of successful runs)

Q| Q| Q| Q| Q| W | B w=| &= | >

We provide now the precise parameters for each algorithm.

GASAT: GASAT works with a population of 10? individuals. During the gen-
eration of this population, a LS of 10® flips is applied to each individual. The
selection process for the parents and the insertion condition for the child are acti-
vated. The number of possible parents for the crossover is limited to 15 different
individuals. The number of allowed crossovers is 10% and a LS (tabu search) of
at most 10* flips is applied on each child. The size of the tabu list is set to 10%
of the number of variables in the problem.

Walksat?: We use the version v41. The number of tries is 10 with at most
101 x 10* flips for each try. Walksat uses the “novelty” heuristic with a noise set
to 0.5.

UnitWalk®: We use UnitWalk version 0.981. The maximum number of flips is
101 x 10® with 1 run.

Benchmarks Two classes of instances have been used: structured instances and
random instances. Some instances are satisfiable and others are unsatisfiable.
These instances? were used by the SAT2002 [17] or SAT2003 competition.

— structured instances:
- color-10-3, color-18-4, color-22-5 (chessboard coloring problem),
-difp_19 0 _arr rcr, difp 19 99 arr rcr (integer factorization),

% Walksat is available : http://www.cs.washington.edu/homes/kautz/walksat/
3 UnitWalk is available : http://logic.pdmi.ras.ru/ arist/UnitWalk/
* Available at http://www.info.univ-angers.fr/pub/lardeux/SAT/benchmarks-EN.html

- g125.17, g125.18 (graph coloring instances),
- mat25.shuffled, mat26.shuffled (matrix multiplication),
- par32-5, par32-5-c (problems of learning the parity function).
— random instances:
- £1000, £2000 (DIMACS instances),
- 2 instances of 500 variables generated by hgen2 with 2 differents seeds,
- 2 instances generated by glassy one with 399 and 450 variables.

For each instance, the number of clauses is given in the column ¢l and the
number of variables is given in the column var. The random seed is also given
when it is known.

Evaluation Three comparison criteria are used to evaluate GASAT and to
compare it with UnitWalk and Walksat. The first criterion is the success rate
(%) which corresponds to the number of success divided by the number of runs.
This criterion is important since it highlights the search power of the algorithm.
The two other criteria are the average number of flips (fl.) and the average time
in seconds (sec.) for the successful runs. The number of flips for GASAT include
the flips performed during the crossover operations.

| Benchmarks || GASAT [Walksat | UnitWalk® |
instances var | cls [sat]] % [A.° | sec. || % [A.°] sec. [% [A.° | sec.
color-10-3 300 | 6475 |Y [|100|1046| 93.33((100(404| 24.41|| (13.00 clauses)
color-18-4 1296| 95905 | 7 || (25.95 clauses) ||(38.00 clauses)|| (65.00 clauses)
color-22-5 2420(272129| 7 || (9.10 clauses) ||(15.60 clauses)| (57.00 clauses)
difp_19_0_arr_rcr [1201] 6563 | Y || (6.75 clauses) |[(21.90 clauses)||100]10100]319.53
difp_19.99_arr rcr|1201| 6563 |Y || (9.25 clauses) ||(21.25 clauses)|| (88.00 clauses)
gl25.17 2125| 66272 | Y || (8.00 clauses) || 35 |458|251.46(| (28.00 clauses)
g125.18 2250| 70163 | Y || 70 |5501|860.81 100| 9] 2.40((23.00 clauses)
mat25.shuffled 588 | 1968 | N || (3.85 clauses) || (3.00 clauses) || (28.00 clauses)
mat26.shuffled 744 | 2464 | N || (3.20 clauses) || (2.55 clauses) || (25.00 clauses)
par32-5-c 1339| 5350 |Y || (5.90 clauses) |[(12.70 clauses)| (60.00 clauses)
par32-5 3176] 10325 | Y || (4.15 clauses) [|(12.10 clauses)|| 10 [10100]191.65

Table 3. Structured instances (if no assignment is found then the average number of
false clauses is given between parentheses, 7 indicates the satisfiability of an instance
is unknown)

Results Analysis The results given in table 3 and table 4 do not show a clear
supremacy of one algorithm over other ones. However, GASAT is generally more

® When no assignment is found UnitWalk does not give the best number of false clauses
but only the last found.
8 You must multiply by 10% to obtain the real number of flips.

| Benchmarks [GASAT || Walksat || UnitWalk ° |
gen seed | var [cls [sat][%] A.° | sec. [[% [A.°] sec. [[% [f.° | sec.
glassy|1069116088| 399 |1862| Y || (5.00 clauses) || (5.60 clauses) ||(43.00 clauses)
glassy| 325799114 | 450 |2100| Y || (8.10 clauses) |[(10.70 clauses)||(38.00 clauses)
£1000 - 1000(4250| Y (|90|2485| 35.75(|100({367| 9.17(|100(1386| 6.45
Y
Y

2000 - 2000|8500 5 (3417|207.00|| 70 |586| 26.65||100|1232|10.41
hgen2|1205525430| 500 {1750 (1.00 clause) || (1.00 clause) || (8.00 clauses)
hgen2| 512100147 [500 [1750] Y || (1.00 clause) || (1.00 clause) [[(21.00 clauses)
Table 4. Random instances (if no assignment is found then the average number of
false clauses is given between parentheses, 7 indicates the satisfiability of an instance
is unknown)

efficient on structured instances than on random instances. These results are
not surprising since the CC crossover is based on the idea of exploring clause
structure. Taking the two tables together, one may conclude GASAT gives very
competitive results on the tested instances.

6 Conclusion

We have presented two new recombination operators for SAT and compared
them with two previous known operators. The most powerful crossover is the
Corrective Clause crossover. Inserted in the GASAT algorithm, it gives very
interesting results. By their global and local nature, the crossover and the LS
operators act interactively to ensure a good compromise between exploration
and exploitation of the search space. Moreover, a selection mechanism is also
employed to preserve the diversity of the population.

GASAT with the CC crossover is evaluated on both structured and ran-
dom instances. Its performances are compared with two well-known algorithms
(Walksat and UnitWalk) and several state-of-the-art evolutionary algorithms.
The experimentations show that GASAT gives globally very competitive re-
sults, in particular, on structured instances. Meanwhile, it seems that GASAT
behaves less well on some random instances.

The new crossovers reported in this paper are a first step. Studies are on
the way to have a better interactivity between crossovers and LS. We are also
working on other hybridizations such as CC and complete algorithms.

Acknowledgments We would like to thank the anonymous referees for their
helpful comments and remarks.

References

1. Belaid Benhamou and Lakhdar Sais. Theoretical study of symmetries in proposi-
tional calculus and applications. In CADE’92, pages 281-294, 1992.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394-397, Jul 1962.

Kenneth A. De Jong and William M. Spears. Using genetic algorithm to solve
NP-complete problems. In Proc. of the Third Int. Conf. on Genetic Algorithms,
pages 124-132, San Mateo, CA, 1989.

Olivier Dubois and Gilles Dequen. A backbone-search heuristic for efficient solving
of hard 3-SAT formulae. In Bernhard Nebel, editor, Proc. of the IJCAI’01, pages
248-253, San Francisco, CA, 2001.

Charles Fleurent and Jacques A. Ferland. Object-oriented implementation of
heuristic search methods for graph coloring, maximum clique, and satisfiability. In
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
volume 26 of DIMACS Series in Discrete Mathematics and Theoretical Computer
Science, pages 619-652, 1994.

Michael R. Garey and David S. Johnson. Computers and Intractability , A Guide
to the Theory of NP-Completeness. W.H. Freeman & Company, San Francisco,
1978.

Jens Gottlieb, Elena Marchiori, and Claudio Rossi. Evolutionary algorithms for
the satisfiability problem. Evolutionary Computation, 10(1):35-50, 2002.

Pierre Hansen and Brigitte Jaumard. Algorithms for the maximum satisfiability
problem. Computing, 44(4):279-303, 1990.

Jin-Kao Hao, Frédéric Lardeux, and Frédéric Saubion. Evolutionary computing
for the satisfiability problem. In Applications of Evolutionary Computing, volume
2611 of LNCS, pages 259-268, 2003.

Edward A. Hirsch and Arist Kojevnikov. UnitWalk: A new SAT solver that uses
local search guided by unit clause elimination. PDMI preprint 9/2001, Steklov
Institute of Mathematics at St.Petersburg, 2001.

Brigitte Jaumard, Mihnea Stan, and Jacques Desrosiers. Tabu search and a
quadratic relaxation for the satisfiability problem. In Cliques, Coloring, and Satis-
fiability: Second DIMACS Implementation Challenge, volume 26 of DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, pages 457-478, 1994.
Chu Min Li. Integrating equivalency reasoning into davis-putnam procedure. In
Proc. of the AAAI’00, pages 291-296, 2000.

Chu Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability
problems. In Proc. of the ITCAI’97, pages 366-371, 1997.

Elena Marchiori and Claudio Rossi. A flipping genetic algorithm for hard 3-SAT
problems. In Proceedings of the Genetic and Evolutionary Computation Confer-
ence, volume 1, pages 393—400, 1999.

Bart Selman, Henry A. Kautz, and Bram Cohen. Noise strategies for improving
local search. In Proc. of the AAAI, Vol. 1, pages 337-343, 1994.

Bart Selman, Hector J. Levesque, and David G. Mitchell. A new method for solving
hard satisfiability problems. In Proc. of the AAAI’92, pages 440-446, San Jose,
CA, 1992.

Laurent Simon, Daniel Le Berre, and Edward A. Hirsch. The SAT2002 competition.
Technical report, Fifth International Symposium on the Theory and Applications
of Satisfiability Testing, May 2002.

Mutsunori Yagiura and Toshihide Ibarak. Efficient 2 and 3-flip neighborhood search
algorithms for the MAX SAT: Experimental evaluation. Journal of Heuristics,
7(5):423-442, 2001.

Hantao Zhang. SATO: An efficient propositional prover. In Proc. of the 14th
International Conference on Automated deduction, volume 1249 of LNAI, pages
272-275, Berlin, 1997.

