Yan Jin, Jin-Kao Hao*. "General swap-based multiple neighborhood tabu search for the maximum independent set problem". Engineering Applications of Artificial Intelligence 37: 20-33, 2015.
Table1. Detailed computational results of SBLS on the set of 21 difficult DIMACS and BHOSLIB instances and 11 CODE instances.
No. | Graph | Size* | Optimal Solution |
1 | brock400_1 | 27 | Click here |
2 | brock400_2 | 29 | Click here |
3 | brock400_3 | 31 | Click here |
4 | brock400_4 | 33 | Click here |
5 | brock800_1 | 23 | Click here |
6 | brock800_2 | 24 | Click here |
7 | brock800_3 | 25 | Click here |
8 | brock800_4 | 26 | Click here |
9 | C2000.9 | 80 | Click here |
10 | C4000.5 | 18 | Click here |
11 | frb30-15-1 | 30 | Click here |
12 | frb35-17-1 | 35 | Click here |
13 | frb40-19-1 | 40 | Click here |
14 | frb45-21-1 | 45 | Click here |
15 | frb50-23-1 | 50 | Click here |
16 | frb53-24-1 | 53 | Click here |
17 | frb56-25-1 | 56 | Click here |
18 | frb59-26-1 | 59 | Click here |
19 | frb100-40 | 97 | Click here |
20 | MANN_a45 | 345 | Click here |
21 | MANN_a81 | 1100 | Click here |
22 | 1dc.1024 | 94 | Click here |
23 | 1dc.2048 | 172 | Click here |
24 | 2dc.1024 | 16 | Click here |
25 | 2dc.2048 | 24 | Click here |
26 | 1et.1024 | 171 | Click here |
27 | 1et.2048 | 316 | Click here |
28 | 1tc.1024 | 196 | Click here |
29 | 1tc.2048 | 352 | Click here |
30 | 1zc.1024 | 112 | Click here |
31 | 1zc.2048 | 198 | Click here |
32 | 1zc.4096 | 379 | Click here |
Notes:
1.
DIMACS graphs are available on-line from http://www.cs.hbg.psu.edu/txn131/clique.html, BHOSLIB benchmark is available from
http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.html and CODE benchmark is available
from http://neilsloane.com/doc/graphs.html or can be provided on request to jin@info.univ-angers.fr or jinyan.hust@gmail.com.
2.
Program Code is available here or can be provided on request to hao@info.univ-angers.fr or jinyan.hust@gmail.com.
3. Given a graph G = (V, E), the format of the Maximum Independent Set S is as follows:
v1 v2 ... vn where vi
(i=1,...,n) is the ith vertex which is included in S (vi ∈ {0,1,2,...,|V|-1}) and n is the
cardinality of S.