Xiangjing Lai and Jin-Kao Hao. "A tabu search based memetic algorithm for the max-mean dispersion problem". Computers & Operations Research 72,118--127 , 2016.
Table1. Best results obtained by our algorithm in the above paper, corresponding to 160 instances with n <= 1000.
| Instance name | N | f | Solution |
| MDPI1_20 | 20 | 13.880000 | Click here |
| MDPI2_20 | 20 | 13.608000 | Click here |
| MDPI3_20 | 20 | 11.795714 | Click here |
| MDPI4_20 | 20 | 17.540000 | Click here |
| MDPI5_20 | 20 | 16.006250 | Click here |
| MDPI6_20 | 20 | 14.606364 | Click here |
| MDPI7_20 | 20 | 14.882222 | Click here |
| MDPI8_20 | 20 | 14.461429 | Click here |
| MDPI9_20 | 20 | 14.035000 | Click here |
| MDPI10_20 | 20 | 13.443333 | Click here |
| MDPII1_20 | 20 | 18.855000 | Click here |
| MDPII2_20 | 20 | 17.830000 | Click here |
| MDPII3_20 | 20 | 18.110000 | Click here |
| MDPII4_20 | 20 | 17.842000 | Click here |
| MDPII5_20 | 20 | 16.344000 | Click here |
| MDPII6_20 | 20 | 17.610000 | Click here |
| MDPII7_20 | 20 | 18.938333 | Click here |
| MDPII8_20 | 20 | 21.880000 | Click here |
| MDPII9_20 | 20 | 19.785000 | Click here |
| MDPII10_20 | 20 | 22.599000 | Click here |
| MDPI1_25 | 25 | 17.270833 | Click here |
| MDPI2_25 | 25 | 15.121429 | Click here |
| MDPI3_25 | 25 | 14.181667 | Click here |
| MDPI4_25 | 25 | 19.856667 | Click here |
| MDPI5_25 | 25 | 17.537143 | Click here |
| MDPI6_25 | 25 | 17.966667 | Click here |
| MDPI7_25 | 25 | 16.207000 | Click here |
| MDPI8_25 | 25 | 18.136667 | Click here |
| MDPI9_25 | 25 | 17.477778 | Click here |
| MDPI10_25 | 25 | 19.459167 | Click here |
| MDPII1_25 | 25 | 21.810000 | Click here |
| MDPII2_25 | 25 | 22.185000 | Click here |
| MDPII3_25 | 25 | 23.564444 | Click here |
| MDPII4_25 | 25 | 19.740000 | Click here |
| MDPII5_25 | 25 | 20.790000 | Click here |
| MDPII6_25 | 25 | 20.174444 | Click here |
| MDPII7_25 | 25 | 19.947000 | Click here |
| MDPII8_25 | 25 | 23.921000 | Click here |
| MDPII9_25 | 25 | 25.016000 | Click here |
| MDPII10_25 | 25 | 23.575000 | Click here |
| MDPI1_30 | 30 | 19.861250 | Click here |
| MDPI2_30 | 30 | 18.813333 | Click here |
| MDPI3_30 | 30 | 15.248889 | Click here |
| MDPI4_30 | 30 | 22.717333 | Click here |
| MDPI5_30 | 30 | 17.236667 | Click here |
| MDPI6_30 | 30 | 18.375455 | Click here |
| MDPI7_30 | 30 | 15.292500 | Click here |
| MDPI8_30 | 30 | 19.247273 | Click here |
| MDPI9_30 | 30 | 22.004286 | Click here |
| MDPI10_30 | 30 | 18.698462 | Click here |
| MDPII1_30 | 30 | 22.272143 | Click here |
| MDPII2_30 | 30 | 26.913846 | Click here |
| MDPII3_30 | 30 | 21.897273 | Click here |
| MDPII4_30 | 30 | 20.537500 | Click here |
| MDPII5_30 | 30 | 22.790000 | Click here |
| MDPII6_30 | 30 | 20.351000 | Click here |
| MDPII7_30 | 30 | 27.655000 | Click here |
| MDPII8_30 | 30 | 26.884167 | Click here |
| MDPII9_30 | 30 | 24.176667 | Click here |
| MDPII10_30 | 30 | 24.800000 | Click here |
| MDPI1_35 | 35 | 19.183333 | Click here |
| MDPI2_35 | 35 | 17.168000 | Click here |
| MDPI3_35 | 35 | 17.074615 | Click here |
| MDPI4_35 | 35 | 23.350000 | Click here |
| MDPI5_35 | 35 | 19.017692 | Click here |
| MDPI6_35 | 35 | 19.445000 | Click here |
| MDPI7_35 | 35 | 19.497143 | Click here |
| MDPI8_35 | 35 | 21.230667 | Click here |
| MDPI9_35 | 35 | 20.980000 | Click here |
| MDPI10_35 | 35 | 16.937778 | Click here |
| MDPII1_35 | 35 | 25.967500 | Click here |
| MDPII2_35 | 35 | 26.135455 | Click here |
| MDPII3_35 | 35 | 24.159231 | Click here |
| MDPII4_35 | 35 | 24.415000 | Click here |
| MDPII5_35 | 35 | 23.857500 | Click here |
| MDPII6_35 | 35 | 24.673077 | Click here |
| MDPII7_35 | 35 | 29.393846 | Click here |
| MDPII8_35 | 35 | 25.217273 | Click here |
| MDPII9_35 | 35 | 27.435000 | Click here |
| MDPII10_35 | 35 | 25.712500 | Click here |
| MDPI1_150 | 150 | 45.920192 | Click here |
| MDPI2_150 | 150 | 43.392381 | Click here |
| MDPI3_150 | 150 | 40.046304 | Click here |
| MDPI4_150 | 150 | 44.044138 | Click here |
| MDPI5_150 | 150 | 42.479388 | Click here |
| MDPI6_150 | 150 | 43.722955 | Click here |
| MDPI7_150 | 150 | 46.077308 | Click here |
| MDPI8_150 | 150 | 42.451346 | Click here |
| MDPI9_150 | 150 | 42.479767 | Click here |
| MDPI10_150 | 150 | 41.797805 | Click here |
| MDPII1_150 | 150 | 57.484000 | Click here |
| MDPII2_150 | 150 | 57.820652 | Click here |
| MDPII3_150 | 150 | 58.421818 | Click here |
| MDPII4_150 | 150 | 57.381064 | Click here |
| MDPII5_150 | 150 | 54.228571 | Click here |
| MDPII6_150 | 150 | 56.442653 | Click here |
| MDPII7_150 | 150 | 58.889167 | Click here |
| MDPII8_150 | 150 | 57.965370 | Click here |
| MDPII9_150 | 150 | 58.302619 | Click here |
| MDPII10_150 | 150 | 57.175122 | Click here |
| MDPI1_500 | 500 | 81.277044 | Click here |
| MDPI2_500 | 500 | 78.610216 | Click here |
| MDPI3_500 | 500 | 76.300787 | Click here |
| MDPI4_500 | 500 | 82.332081 | Click here |
| MDPI5_500 | 500 | 80.354029 | Click here |
| MDPI6_500 | 500 | 81.248553 | Click here |
| MDPI7_500 | 500 | 78.164511 | Click here |
| MDPI8_500 | 500 | 79.139881 | Click here |
| MDPI9_500 | 500 | 77.421000 | Click here |
| MDPI10_500 | 500 | 81.309871 | Click here |
| MDPII1_500 | 500 | 109.610136 | Click here |
| MDPII2_500 | 500 | 105.717536 | Click here |
| MDPII3_500 | 500 | 107.821739 | Click here |
| MDPII4_500 | 500 | 106.100071 | Click here |
| MDPII5_500 | 500 | 106.857162 | Click here |
| MDPII6_500 | 500 | 106.297958 | Click here |
| MDPII7_500 | 500 | 107.149379 | Click here |
| MDPII8_500 | 500 | 103.779195 | Click here |
| MDPII9_500 | 500 | 106.619793 | Click here |
| MDPII10_500 | 500 | 104.651507 | Click here |
| MDPI1_750 | 750 | 96.650699 | Click here |
| MDPI2_750 | 750 | 97.564880 | Click here |
| MDPI3_750 | 750 | 97.798864 | Click here |
| MDPI4_750 | 750 | 96.041364 | Click here |
| MDPI5_750 | 750 | 96.761928 | Click here |
| MDPI6_750 | 750 | 99.861250 | Click here |
| MDPI7_750 | 750 | 96.545413 | Click here |
| MDPI8_750 | 750 | 96.726976 | Click here |
| MDPI9_750 | 750 | 98.058377 | Click here |
| MDPI10_750 | 750 | 100.064185 | Click here |
| MDPII1_750 | 750 | 128.863707 | Click here |
| MDPII2_750 | 750 | 130.954426 | Click here |
| MDPII3_750 | 750 | 129.782453 | Click here |
| MDPII4_750 | 750 | 126.582271 | Click here |
| MDPII5_750 | 750 | 129.122878 | Click here |
| MDPII6_750 | 750 | 129.025215 | Click here |
| MDPII7_750 | 750 | 125.646682 | Click here |
| MDPII8_750 | 750 | 130.940548 | Click here |
| MDPII9_750 | 750 | 128.889908 | Click here |
| MDPII10_750 | 750 | 133.265300 | Click here |
| MDPI1_1000 | 1000 | 119.174112 | Click here |
| MDPI2_1000 | 1000 | 113.524795 | Click here |
| MDPI3_1000 | 1000 | 115.138638 | Click here |
| MDPI4_1000 | 1000 | 111.150397 | Click here |
| MDPI5_1000 | 1000 | 112.723188 | Click here |
| MDPI6_1000 | 1000 | 113.198718 | Click here |
| MDPI7_1000 | 1000 | 111.555536 | Click here |
| MDPI8_1000 | 1000 | 111.263194 | Click here |
| MDPI9_1000 | 1000 | 115.958833 | Click here |
| MDPI10_1000 | 1000 | 114.731644 | Click here |
| MDPII1_1000 | 1000 | 147.936175 | Click here |
| MDPII2_1000 | 1000 | 151.380035 | Click here |
| MDPII3_1000 | 1000 | 150.788178 | Click here |
| MDPII4_1000 | 1000 | 149.178006 | Click here |
| MDPII5_1000 | 1000 | 151.520847 | Click here |
| MDPII6_1000 | 1000 | 148.343378 | Click here |
| MDPII7_1000 | 1000 | 148.742375 | Click here |
| MDPII8_1000 | 1000 | 147.826804 | Click here |
| MDPII9_1000 | 1000 | 147.083880 | Click here |
| MDPII10_1000 | 1000 | 150.046137 | Click here |
Table 2. Best results obtained by our algorithm in the above paper, corresponding to 40 large instances generated by us.
| Instance name | N | f | Solutions |
| MDPI1_3000 | 3000 | 189.048965 | Click here |
| MDPI2_3000 | 3000 | 187.387292 | Click here |
| MDPI3_3000 | 3000 | 185.666806 | Click here |
| MDPI4_3000 | 3000 | 186.163727 | Click here |
| MDPI5_3000 | 3000 | 187.545515 | Click here |
| MDPI6_3000 | 3000 | 189.431257 | Click here |
| MDPI7_3000 | 3000 | 188.242583 | Click here |
| MDPI8_3000 | 3000 | 186.796814 | Click here |
| MDPI9_3000 | 3000 | 188.231264 | Click here |
| MDPI10_3000 | 3000 | 185.682511 | Click here |
| MDPII1_3000 | 3000 | 252.320433 | Click here |
| MDPII2_3000 | 3000 | 250.062137 | Click here |
| MDPII3_3000 | 3000 | 251.906270 | Click here |
| MDPII4_3000 | 3000 | 253.941007 | Click here |
| MDPII5_3000 | 3000 | 253.260423 | Click here |
| MDPII6_3000 | 3000 | 250.677750 | Click here |
| MDPII7_3000 | 3000 | 251.134413 | Click here |
| MDPII8_3000 | 3000 | 252.999648 | Click here |
| MDPII9_3000 | 3000 | 252.425770 | Click here |
| MDPII10_3000 | 3000 | 252.396590 | Click here |
| MDPI1_5000 | 5000 | 240.162535 | Click here |
| MDPI2_5000 | 5000 | 241.827401 | Click here |
| MDPI3_5000 | 5000 | 240.890819 | Click here |
| MDPI4_5000 | 5000 | 240.997186 | Click here |
| MDPI5_5000 | 5000 | 242.480129 | Click here |
| MDPI6_5000 | 5000 | 240.376038 | Click here |
| MDPI7_5000 | 5000 | 242.820139 | Click here |
| MDPI8_5000 | 5000 | 241.194990 | Click here |
| MDPI9_5000 | 5000 | 239.760560 | Click here |
| MDPI10_5000 | 5000 | 243.473734 | Click here |
| MDPII1_5000 | 5000 | 322.235897 | Click here |
| MDPII2_5000 | 5000 | 327.301910 | Click here |
| MDPII3_5000 | 5000 | 324.813456 | Click here |
| MDPII4_5000 | 5000 | 322.237586 | Click here |
| MDPII5_5000 | 5000 | 322.491211 | Click here |
| MDPII6_5000 | 5000 | 322.950488 | Click here |
| MDPII7_5000 | 5000 | 322.850438 | Click here |
| MDPII8_5000 | 5000 | 323.112120 | Click here |
| MDPII9_5000 | 5000 | 323.543775 | Click here |
| MDPII10_5000 | 5000 | 324.519908 | Click here |
Notes:
1. All the instances with n<=1000 can be downloaded from http://www.optsicom.es/edp/. In addition, the source code and executable code to generate the large instances (with n=3000 or 5000) are also available from here.
2. The format of the solution file is as follows:
First row: the number of elements (N) and the objective value of solution (f)
Then, for each line: the index of variable, the value of variable
3. The source code of our algorithm is available on this page (click here).