Xiangjing Lai and Jin-Kao Hao. "A tabu search based memetic algorithm for the max-mean dispersion problem". Computers & Operations Research 72,118--127 , 2016.

 

Table1. Best results obtained by our algorithm in the above paper, corresponding to 160 instances with n <= 1000. 

Instance name N f Solution
MDPI1_20 20 13.880000 Click here
MDPI2_20 20 13.608000 Click here
MDPI3_20 20 11.795714 Click here
MDPI4_20 20 17.540000 Click here
MDPI5_20 20 16.006250 Click here
MDPI6_20 20 14.606364 Click here
MDPI7_20 20 14.882222 Click here
MDPI8_20 20 14.461429 Click here
MDPI9_20 20 14.035000 Click here
MDPI10_20 20 13.443333 Click here
MDPII1_20 20 18.855000 Click here
MDPII2_20 20 17.830000 Click here
MDPII3_20 20 18.110000 Click here
MDPII4_20 20 17.842000 Click here
MDPII5_20 20 16.344000 Click here
MDPII6_20 20 17.610000 Click here
MDPII7_20 20 18.938333 Click here
MDPII8_20 20 21.880000 Click here
MDPII9_20 20 19.785000 Click here
MDPII10_20 20 22.599000 Click here
MDPI1_25 25 17.270833 Click here
MDPI2_25 25 15.121429 Click here
MDPI3_25 25 14.181667 Click here
MDPI4_25 25 19.856667 Click here
MDPI5_25 25 17.537143 Click here
MDPI6_25 25 17.966667 Click here
MDPI7_25 25 16.207000 Click here
MDPI8_25 25 18.136667 Click here
MDPI9_25 25 17.477778 Click here
MDPI10_25 25 19.459167 Click here
MDPII1_25 25 21.810000 Click here
MDPII2_25 25 22.185000 Click here
MDPII3_25 25 23.564444 Click here
MDPII4_25 25 19.740000 Click here
MDPII5_25 25 20.790000 Click here
MDPII6_25 25 20.174444 Click here
MDPII7_25 25 19.947000 Click here
MDPII8_25 25 23.921000 Click here
MDPII9_25 25 25.016000 Click here
MDPII10_25 25 23.575000 Click here
MDPI1_30 30 19.861250 Click here
MDPI2_30 30 18.813333 Click here
MDPI3_30 30 15.248889 Click here
MDPI4_30 30 22.717333 Click here
MDPI5_30 30 17.236667 Click here
MDPI6_30 30 18.375455 Click here
MDPI7_30 30 15.292500 Click here
MDPI8_30 30 19.247273 Click here
MDPI9_30 30 22.004286 Click here
MDPI10_30 30 18.698462 Click here
MDPII1_30 30 22.272143 Click here
MDPII2_30 30 26.913846 Click here
MDPII3_30 30 21.897273 Click here
MDPII4_30 30 20.537500 Click here
MDPII5_30 30 22.790000 Click here
MDPII6_30 30 20.351000 Click here
MDPII7_30 30 27.655000 Click here
MDPII8_30 30 26.884167 Click here
MDPII9_30 30 24.176667 Click here
MDPII10_30 30 24.800000 Click here
MDPI1_35 35 19.183333 Click here
MDPI2_35 35 17.168000 Click here
MDPI3_35 35 17.074615 Click here
MDPI4_35 35 23.350000 Click here
MDPI5_35 35 19.017692 Click here
MDPI6_35 35 19.445000 Click here
MDPI7_35 35 19.497143 Click here
MDPI8_35 35 21.230667 Click here
MDPI9_35 35 20.980000 Click here
MDPI10_35 35 16.937778 Click here
MDPII1_35 35 25.967500 Click here
MDPII2_35 35 26.135455 Click here
MDPII3_35 35 24.159231 Click here
MDPII4_35 35 24.415000 Click here
MDPII5_35 35 23.857500 Click here
MDPII6_35 35 24.673077 Click here
MDPII7_35 35 29.393846 Click here
MDPII8_35 35 25.217273 Click here
MDPII9_35 35 27.435000 Click here
MDPII10_35 35 25.712500 Click here
MDPI1_150 150 45.920192 Click here
MDPI2_150 150 43.392381 Click here
MDPI3_150 150 40.046304 Click here
MDPI4_150 150 44.044138 Click here
MDPI5_150 150 42.479388 Click here
MDPI6_150 150 43.722955 Click here
MDPI7_150 150 46.077308 Click here
MDPI8_150 150 42.451346 Click here
MDPI9_150 150 42.479767 Click here
MDPI10_150 150 41.797805 Click here
MDPII1_150 150 57.484000 Click here
MDPII2_150 150 57.820652 Click here
MDPII3_150 150 58.421818 Click here
MDPII4_150 150 57.381064 Click here
MDPII5_150 150 54.228571 Click here
MDPII6_150 150 56.442653 Click here
MDPII7_150 150 58.889167 Click here
MDPII8_150 150 57.965370 Click here
MDPII9_150 150 58.302619 Click here
MDPII10_150 150 57.175122 Click here
MDPI1_500 500 81.277044 Click here
MDPI2_500 500 78.610216 Click here
MDPI3_500 500 76.300787 Click here
MDPI4_500 500 82.332081 Click here
MDPI5_500 500 80.354029 Click here
MDPI6_500 500 81.248553 Click here
MDPI7_500 500 78.164511 Click here
MDPI8_500 500 79.139881 Click here
MDPI9_500 500 77.421000 Click here
MDPI10_500 500 81.309871 Click here
MDPII1_500 500 109.610136 Click here
MDPII2_500 500 105.717536 Click here
MDPII3_500 500 107.821739 Click here
MDPII4_500 500 106.100071 Click here
MDPII5_500 500 106.857162 Click here
MDPII6_500 500 106.297958 Click here
MDPII7_500 500 107.149379 Click here
MDPII8_500 500 103.779195 Click here
MDPII9_500 500 106.619793 Click here
MDPII10_500 500 104.651507 Click here
MDPI1_750 750 96.650699 Click here
MDPI2_750 750 97.564880 Click here
MDPI3_750 750 97.798864 Click here
MDPI4_750 750 96.041364 Click here
MDPI5_750 750 96.761928 Click here
MDPI6_750 750 99.861250 Click here
MDPI7_750 750 96.545413 Click here
MDPI8_750 750 96.726976 Click here
MDPI9_750 750 98.058377 Click here
MDPI10_750 750 100.064185 Click here
MDPII1_750 750 128.863707 Click here
MDPII2_750 750 130.954426 Click here
MDPII3_750 750 129.782453 Click here
MDPII4_750 750 126.582271 Click here
MDPII5_750 750 129.122878 Click here
MDPII6_750 750 129.025215 Click here
MDPII7_750 750 125.646682 Click here
MDPII8_750 750 130.940548 Click here
MDPII9_750 750 128.889908 Click here
MDPII10_750 750 133.265300 Click here
MDPI1_1000 1000 119.174112 Click here
MDPI2_1000 1000 113.524795 Click here
MDPI3_1000 1000 115.138638 Click here
MDPI4_1000 1000 111.150397 Click here
MDPI5_1000 1000 112.723188 Click here
MDPI6_1000 1000 113.198718 Click here
MDPI7_1000 1000 111.555536 Click here
MDPI8_1000 1000 111.263194 Click here
MDPI9_1000 1000 115.958833 Click here
MDPI10_1000 1000 114.731644 Click here
MDPII1_1000 1000 147.936175 Click here
MDPII2_1000 1000 151.380035 Click here
MDPII3_1000 1000 150.788178 Click here
MDPII4_1000 1000 149.178006 Click here
MDPII5_1000 1000 151.520847 Click here
MDPII6_1000 1000 148.343378 Click here
MDPII7_1000 1000 148.742375 Click here
MDPII8_1000 1000 147.826804 Click here
MDPII9_1000 1000 147.083880 Click here
MDPII10_1000 1000 150.046137 Click here

 

Table 2. Best results obtained by our algorithm in the above paper, corresponding to 40 large instances generated by us. 

Instance name N f Solutions
MDPI1_3000 3000 189.048965 Click here
MDPI2_3000 3000 187.387292 Click here
MDPI3_3000 3000 185.666806 Click here
MDPI4_3000 3000 186.163727 Click here
MDPI5_3000 3000 187.545515 Click here
MDPI6_3000 3000 189.431257 Click here
MDPI7_3000 3000 188.242583 Click here
MDPI8_3000 3000 186.796814 Click here
MDPI9_3000 3000 188.231264 Click here
MDPI10_3000 3000 185.682511 Click here
MDPII1_3000 3000 252.320433 Click here
MDPII2_3000 3000 250.062137 Click here
MDPII3_3000 3000 251.906270 Click here
MDPII4_3000 3000 253.941007 Click here
MDPII5_3000 3000 253.260423 Click here
MDPII6_3000 3000 250.677750 Click here
MDPII7_3000 3000 251.134413 Click here
MDPII8_3000 3000 252.999648 Click here
MDPII9_3000 3000 252.425770 Click here
MDPII10_3000 3000 252.396590 Click here
MDPI1_5000 5000 240.162535 Click here
MDPI2_5000 5000 241.827401 Click here
MDPI3_5000 5000 240.890819 Click here
MDPI4_5000 5000 240.997186 Click here
MDPI5_5000 5000 242.480129 Click here
MDPI6_5000 5000 240.376038 Click here
MDPI7_5000 5000 242.820139 Click here
MDPI8_5000 5000 241.194990 Click here
MDPI9_5000 5000 239.760560 Click here
MDPI10_5000 5000 243.473734 Click here
MDPII1_5000 5000 322.235897 Click here
MDPII2_5000 5000 327.301910 Click here
MDPII3_5000 5000 324.813456 Click here
MDPII4_5000 5000 322.237586 Click here
MDPII5_5000 5000 322.491211 Click here
MDPII6_5000 5000 322.950488 Click here
MDPII7_5000 5000 322.850438 Click here
MDPII8_5000 5000 323.112120 Click here
MDPII9_5000 5000 323.543775 Click here
MDPII10_5000 5000 324.519908 Click here

 

Notes:

1. All the instances with n<=1000 can be downloaded from http://www.optsicom.es/edp/. In addition, the source code and executable code to generate the large instances (with n=3000 or 5000) are also available from here.

2. The format of the solution file is as follows:

First row: the number of elements (N) and the objective value of solution (f)

Then, for each line: the index of variable, the value of variable

3. The source code of our algorithm is available on this page (click here).