This page shows the best
results obtained by Breakout Local Search
(BLS) for VSP:
Una Benlic and Jin-Kao Hao.
Breakout Local Search for the Vertex
Separator Problem. Proc. of
the 23th Intl. Joint Conference on
Artificial Intelligence (IJCAI-13),
pages 461-467,
August 2013, Beijing, China.
The source code is here (Please make sure that the above paper is cited if you use the code in your research). The software is distributed for academic puposes only. If you wish to use this software for commercial applications, please obtain a permission from Una Benlic (benlic@info.univ-angers.fr) or Jin-Kao Hao (hao@info.univ-angers.fr).
This VSP benchmark consists of
a set of 54 toroidal, planar and
random graph, generated by Helmberg and Rendl [Helmberg and Rendl,
2000]. The number of vertices
ranges from |V| = 800
to 3000. All the vertices are given unit
weights and b =
⌊1.05|V|/2⌋.
The format of these
data files is:
b
value, number of nodes (n), number of edges
for each node i (i = 1,...,n) in turn:
'v', node, node cost
for each edge (i,j) (i,j=1,...,n, i < j) in turn:
'e', i, j, edge cost
The output format is a string of size |V|, such that the ith element corresponds to the subset of vertex i. The value 0 indicates that a vertex is in the separator, while values 1 and 2 indicate that the vertex is in shores A and B respectively.
Table1. Best results obtained by Breakout Local Search (BLS) algorithm.Instance | Best res. | Instance | Best res. |
G1 | 257 | G28 | 822 |
G2 | 257 | G29 | 820 |
G3 | 257 | G30 | 821 |
G4 | 363 | G31 | 819 |
G5 | 257 | G32 | 40 |
G6 | 257 | G33 | 50 |
G7 | 257 | G34 | 80 |
G8 | 257 | G35 | 435 |
G9 | 257 | G36 | 440 |
G10 | 257 | G37 | 434 |
G11 | 16 | G38 | 439 |
G12 | 32 | G39 | 435 |
G13 | 45 | G40 | 440 |
G14 | 146 | G41 | 435 |
G15 | 144 | G42 | 439 |
G16 | 144 | G43 | 411 |
G17 | 144 | G44 | 411 |
G18 | 146 | G45 | 410 |
G19 | 144 | G46 | 412 |
G20 | 144 | G47 | 411 |
G21 | 144 | G48 | 100 |
G22 | 588 | G49 | 60 |
G23 | 590 | G50 | 50 |
G24 | 589 | G51 | 224 |
G25 | 589 | G52 | 223 |
G26 | 587 | G53 | 221 |
G27 | 820 | G54 | 219 |