Morphologie et sémantique Équivalence et forme normale conjonctive Conséquence sémantique et insatisfiabilité La Résolution, une méthode syntaxique

Logique propositionnelle pour la représentation des connaissances

Igor Stéphan

UFR Sciences Angers

2015-2016

La logique propositionnelle

- Langage simple de représentation des connaissances
- Manipulation déclarative de la connaissance
- Mise au jour d'une connaissance qui est déjà présente mais cachée
- Mécanisme monotone : ce qui est inféré ne pourra être remis en cause
- Peu compatible avec le raisonnement de sens commun, la gestion de l'imparfait, de l'incertain

Morphologie et sémantique

Équivalence et forme normale conjonctive Conséquence sémantique et insatisfiabilité La Résolution, une méthode syntaxique

- 1 Morphologie et sémantique
- Équivalence et forme normale conjonctive
- 3 Conséquence sémantique et insatisfiabilité
- 4 La Résolution, une méthode syntaxique

La morphologie de la logique propositionnelle

- L'ensemble des symboles propositionnels est noté \mathcal{SP} .
- Les connecteurs logiques
 - ∧ (et, conjonction, d'arité 2),
 - ∨ (ou, disjonction, d'arité 2),
 - ¬ (négation d'arité 1),
 - → (implication d'arité 2)
 - → (équivalence d'arité 2).
- Les constantes logiques
 - ↓ (bottom), ce qui est toujours faux.
 - ⊤ (top), ce qui est toujours vrai.
- PROP, l'ensemble des formules :
 - $\mathcal{SP} \cup \{\bot, \top\} \subset \mathsf{PROP}$
 - si $A \in PROP$ alors $\neg A \in PROP$
 - si $A, B \in \mathbf{PROP}$ alors $(A \land B), (A \lor B), (A \to B), (A \leftrightarrow B) \in \mathbf{PROP}$

La sémantique de la logique propositionnelle (1)

- L'ensemble des valeurs de vérité est $BOOL = \{vrai, faux\}$
- La sémantique de la logique propositionnelle associe à une formule une valeur de vérité
- Une valuation v est une fonction qui assigne à chaque symbole propositionnel une valeur de vérité.
- Une interprétation booléenne selon une valuation v est une fonction notée v* : PROP → BOOL :

$$v^*(\bot) = i_\bot$$
 $v^*(\top) = i_\top$
 $v^*(p) = v(p)$ pour tout $p \in \mathcal{SP}$
 $v^*(\neg A) = i_\neg(v^*(A))$ pour tout $A \in \mathbf{PROP}$
 $v^*((A \circ B)) = i_\circ(v^*(A), v^*(B))$ pour tout $A, B \in \mathbf{PROP}$
 $et \circ \in \{\land, \lor, \to, \leftrightarrow\}$

La sémantique de la logique propositionnelle (2)

- A chaque connecteur logique est associée une fonction à valeur dans BOOL qui en définit sa sémantique.
 - $i_{\perp} :\rightarrow \mathsf{BOOL}$ $i_{\perp} = \mathsf{faux}$
 - $i_{\top} :\rightarrow BOOL$

 $i_{\top} = \mathsf{vrai}$

• $i_{\neg}: \mathsf{BOOL} \to \mathsf{BOOL}$

X	$i_{\neg}(x)$
vrai	faux
faux	vrai

• $\overline{i_{\wedge}, i_{\vee}, i_{\rightarrow}, i_{\leftrightarrow}}$: BOOL × BOOL \rightarrow BOOL

X	У	$i_{\wedge}(x,y)$	$i_{\vee}(x,y)$	$i_{\rightarrow}(x,y)$	$i_{\leftrightarrow}(x,y)$
vrai	vrai	vrai	vrai	vrai	vrai
vrai	faux	faux	vrai	faux	faux
faux	vrai	faux	vrai	vrai	faux
faux	faux	faux	faux	vrai	vrai

La sémantique de la logique propositionnelle (3)

- Une valuation v satisfait une proposition F si $v^*(F) = \mathbf{vrai}$ (cette valuation est alors un modèle de F et noté $v \models F$)
- Une formule est satisfiable si elle admet (au moins) un modèle.
- Une valuation est un modèle pour un ensemble de formules si elle est un modèle pour chacune des formules.
- Une valuation v falsifie une formule F si $v^*(F) = \mathbf{faux}$ (noté $v \not\models F$).
- Une formule est falsifiable (ou réfutable) si elle admet (au moins) une valuation qui la falsifie.
- Une formule F est une tautologie si toute valuation en est un modèle (noté $\models F$ et dans le cas contraire $\not\models F$)
- Une formule est insatisfiable si aucune valuation n'en est un modèle.

- Morphologie et sémantique
- 2 Équivalence et forme normale conjonctive
- 3 Conséquence sémantique et insatisfiabilité
- 4 La Résolution, une méthode syntaxique

Une relation d'équivalence sur les formules

- $F \equiv G$ si (et seulement si) $\models (F \leftrightarrow G)$
- est une relation d'équivalence
- \equiv est une congruences vis-à-vis des connecteurs logiques : soient F, F', G et G' des formules, si $F \equiv F'$ et $G \equiv G'$ alors $\neg F \equiv \neg F'$, $(F \lor G) \equiv (F' \lor G')$, $(F \to G) \equiv (F' \to G')$, $(F \leftrightarrow G) \equiv (F' \leftrightarrow G')$ et $(F \land G) \equiv (F' \land G')$.

Équivalences classiques (1)

- 1. $(F \rightarrow G) \equiv (\neg F \lor G)$ [\rightarrow selon du \lor et de la \neg]
- 2. $(F \rightarrow G) \equiv \neg (F \land \neg G) [\rightarrow \text{ selon du } \land \text{ et de la } \neg]$
- 3. $(F \leftrightarrow G) \equiv ((F \rightarrow G) \land (G \rightarrow F)) [\leftrightarrow \text{selon du } \land \text{ et de l'} \rightarrow]$
- 4. $\neg \neg F \equiv F$ [négation involutive]
- 5. $\neg (F \lor G) \equiv (\neg F \land \neg G)$ [loi de De Morgan]
- 6. $\neg (F \land G) \equiv (\neg F \lor \neg G)$ [loi de De Morgan]
- 7. $\neg \top \equiv \bot [\bot \text{ selon de } \neg \text{ et } \top]$
- 8. $\neg \bot \equiv \top \ [\top \ \text{selon de} \ \neg \ \text{et} \ \bot]$
- 9. $(\neg F \land F) \equiv \bot [\bot \text{ selon de } \neg \text{ et } \land]$
- 10. $(\neg F \lor F) \equiv \top [\top \text{ selon de } \neg \text{ et } \lor]$
- 11. $(F \wedge F) \equiv F$ [idempotence du \wedge]
- 12. $(F \vee F) \equiv F$ [idempotence du \vee]
- 13. $(\top \land F) \equiv F \ [\top \text{ élément neutre de } \land]$
- 14. $(\top \lor F) \equiv \top [\top \text{ élément absorbant de } \lor]$

Équivalences classiques (2)

- 15. $(\bot \lor F) \equiv F \ [\bot \text{ élément neutre de } \lor]$
- 16. $(\bot \land F) \equiv \bot [\bot \text{ élément absorbant de } \land]$
- 17. $(F \land (F \lor G)) \equiv F$ [Loi d'absorption]
- 18. $(F \lor (F \land G)) \equiv F$ [Loi d'absorption]
- 19. $(F \wedge G) \equiv (G \wedge F)$ [Commutativité du \wedge]
- 20. $(F \lor G) \equiv (G \lor F)$ [Commutativité du \lor]
- 21. $((F \land G) \land H) \equiv (F \land (G \land H))$ [Associativité du \land]
- 22. $((F \lor G) \lor H) \equiv (F \lor (G \lor H))$ [Associativité du \lor]
- 23. $(F \land (G \lor H)) \equiv ((F \land G) \lor (F \land H))$ [Distributivité du \land par rapport au \lor]
- 24. $(F \lor (G \land H)) \equiv ((F \lor G) \land (F \lor H))$ [Distributivité du \lor par rapport au \land]
- 25. $(F \rightarrow G) \equiv (\neg G \rightarrow \neg F)$ [Contraposée]

Forme normale conjonctive

- Si x est un symbole propositionnel alors $\overline{x} = \neg x$ et $\overline{\neg x} = x$
- Un littéral est un symbole propositionnel (x) ou son conjugué ou complémentaire (\overline{x})
- Une formule est une clause si c'est une disjonction de littéraux
- Une formule est sous forme normale conjonctive si c'est une conjonction de clauses.
- Toute formule peut être ramenée à une formule sous forme normale conjonctive qui lui est équivalente

Mise sous forme normale conjonctive

- Eliminer tous les \perp et \top grâce aux équivalences 13, 14, 15 et 16 (élément neutre et élément absorbant)
- ② remplacer toutes les \leftrightarrow grâce à l'équivalence 3 : $(F \leftrightarrow G) \equiv ((F \rightarrow G) \land (G \rightarrow F))$
- **3** remplacer toutes les \rightarrow grâce aux équivalences 1 ou 2 : $(F \rightarrow G) \equiv (\neg F \lor G)$ et $(F \rightarrow G) \equiv \neg (F \land \neg G)$
- construire une proposition constituée uniquement de \vee , de \wedge et de littéraux grâce aux équivalences 5 et 6 (lois de De Morgan) : $\neg(F \vee G) \equiv (\neg F \wedge \neg G)$ et $\neg(F \wedge G) \equiv (\neg F \vee \neg G)$ et 4 (involution de la négation) : $\neg \neg F \equiv F$
- appliquer les équivalences 24 (distributivité du ∨ par rapport au ∧) : (F ∨ (G ∧ H)) ≡ ((F ∨ G) ∧ (F ∨ H)) et 20 (commutativité du ∨) : (F ∨ G) ≡ (G ∨ F)

- Morphologie et sémantique
- Équivalence et forme normale conjonctive
- 3 Conséquence sémantique et insatisfiabilité
- 4 La Résolution, une méthode syntaxique

Conséquence sémantique

- Une formule F est conséquence sémantique d'un ensemble Σ de formules (noté $\Sigma \models F$) si pour toute valuation, si elle est un modèle de Σ alors elle est un modèle de F.
- Une formule F n'est pas conséquence sémantique d'un ensemble Σ de formules est noté $\Sigma \not\models F$.
- Pour Σ un ensemble de formules et α une formule. $\Sigma \models \alpha$ si et seulement si $\Sigma \cup \{\neg \alpha\}$ est insatisfiable
- La conséquence sémantique peut être démontrée par une table de vérité prenant en compte toutes les valuations possibles

- Morphologie et sémantique
- Équivalence et forme normale conjonctive
- 3 Conséquence sémantique et insatisfiabilité
- 4 La Résolution, une méthode syntaxique

La Résolution en logique propositionnelle (1)

- Une méthode syntaxique (basée sur des règles de calcul)
- Le calcul est une preuve
- Le calcul établit l'insatisfiabilité d'un ensemble de clauses
- La règle de résolution est l'équivalence suivante utilisée de gauche à droite :

$$((C \vee I) \wedge (C' \vee \overline{I})) \equiv (((C \vee I) \wedge (C' \vee \overline{I})) \wedge (C \vee C'))$$

- Application implicite de l'idempotence de la disjonction sur (C ∨ C')
- 2 cas particuliers :
 - La propagation unitaire ($C = \bot$ ou $C' = \bot$)

$$(I \wedge (C' \vee \overline{I})) \equiv (I \wedge C') \text{ et } ((C \vee I) \wedge \overline{I}) \equiv (C \wedge \overline{I})$$

• La détection de l'insatisfiabilité ($C = \bot$ et $C' = \bot$)

$$(I \wedge \bar{I}) \equiv \bot$$

La Résolution en logique propositionnelle (2)

- Une preuve par résolution est une suite d'application de la règle de résolution menant à la détection de l'insatifiabilité
- La résolution est correcte : toute preuve par résolution à partir d'un ensemble de clauses démontre que cet ensemble de clauses est insatisfiable
- La résolution est complète : tout ensemble de clauses insatisfiable admet au moins une preuve par résolution
- Par application du théorème reliant conséquence sémantique et insatisfiabilité, la Résolution est une méthode pratique qui permet de mettre en évidence la conséquence sémantique